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Abstract
Liver cancer is the sixth common cancer and forth cause of cancer-related death worldwide. Based on usually advanced 
stages of hepatocellular carcinoma (HCC) at the time of diagnosis, therapeutic options are limited and, in many cases, not 
effective, and typically result in the tumor recurrence with a poor prognosis. Radioimmunotherapy (RIT) offers a selective 
internal radiation therapy approach using beta or alpha emitting radionuclides conjugated with tumor-specific monoclonal 
antibodies (mAbs), or specific selective peptides. When compared to chemotherapy or radiotherapy, radiolabeled mAbs 
against cancer-associated antigens could provide a high therapeutic and exclusive radiation dose for cancerous cells while 
decreasing the exposure-induced side effects to healthy tissues. The recent advances in cancer immunotherapy, such as 
blockade of immune-checkpoint inhibitors (ICIs), has changed the landscape of cancer therapy, and the efficacy of differ-
ent classes of immunotherapy has been tested in many clinical trials. Taking into account the use of ICIs in the liver tumor 
microenvironment, combined therapies with different approaches may enhance the outcome in the future clinical studies. 
With the development of novel immunotherapy treatment options in the recent years, there has been a great deal of informa-
tion about combining the diverse treatment modalities to boost the effectiveness of immunomodulatory drugs. In this opinion 
review, we will discuss the recent advancements in RIT. The current status of immunotherapy and internal radiotherapy will 
be updated, and we will propose novel approaches for the combination of both techniques.

Graphical abstract
Potential target antigens for radioimmunotherapy in Hepatocellular carcinoma (HCC). HCC radioimmunotherapy target 
antigens are the most specific and commonly accessible antigens on the surface of HCC cells. CTLA-4 ligand and receptor, 
TAMs, PD-1/PD-L, TIM-3, specific IEXs/TEXs, ROBO1, and cluster of differentiation antigens CD105, CD147 could all 
be used in HCC radioimmunotherapy. Abbreviations: TAMs, tumor-associated macrophages; CTLA-4, cytotoxic T-lym-
phocyte associated antigen-4; PD-1, Programmed cell death protein 1; PD-L, programmed death-ligand1; TIM-3, T-cell 
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immunoglobulin (Ig) and mucin-domain containing protein-3; IEXs, immune cell-derived exosomes; TEXs, tumor-derived 
exosomes.

Keywords  Radioimmunotherapy · Hepatocellular carcinoma · Immune checkpoint inhibitor · Target antigens · Exosome 
antigens

Radioimmunotherapy is an effective 
and selective internal radiation therapy. To 
avoid the off‑target effects, radionuclides 
are attached to tumor‑directed monoclonal 
antibodies

Hepatocellular carcinoma (HCC) is the sixth common can-
cer and the forth cause of cancer-related death worldwide 
[1]. Since the end of the last century, radioimmunotherapy 
(RIT) using a combination of intra-tumoral/intravenous 
radionuclide therapy and specific antigen targeting mole-
cules has attracted a great interest [2, 3]. Nowadays, thanks 
to the RIT advancement, new methods for the adjustment 
of the absorbed radiation dose have been developed, both 
for cancerous and healthy tissues. They can be considered 
a basis for a personalized treatment of cancer and reduc-
tion of the toxicity of the extra-radiation exposure [4]. The 
timeline for the development of targeted therapeutics in 
HCC is depicted in Fig. 1.

Antigen specific radiolabeled monoclonal antibodies 
(mAbs) can release a high therapeutic radiation dose to 
cancerous cells while minimizing the exposure-associated 
side effects to healthy cells by their selective tropism to 
cancer-associated antigens on tumor cells. The striking and 
durable clinical responses in some patients [4, 5] resulted in 
a mainstream attention to this approach. RIT offers signifi-
cant benefits including a favorable safety profile, rapid and 
durable response, and selective effects [6].

The development of immune-checkpoint inhibitors (ICIs) 
was a clinical breakthrough which substantially modified the 
paradigm of the cancer treatment. Interestingly, the recent 
application of targeted therapies against oncogenic drivers 
significantly enhanced the survival of non-small cell lung 
cancer (NSCLC) patients with a favorable toxicity profile 
[7]. Likewise, a meta-analysis confirmed the superiority of 
ICIs over docetaxel in pretreated NSCLC patients and indi-
cated a slight benefit from anti-PD-1 than from anti-PD-L1 
inhibitors [8]. The T-cell exhaustion is a state of T-cell fail-
ure caused by the current treatment strategies that restrict the 
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T-cell activation. Numerous studies have shown that immune 
tolerance plays a role in the development of HCC, imply-
ing that ICIs inhibition could be a useful therapy approach. 
Collectively, the recent evidence has shown that immuno-
therapies improve the survival and are safe, but their effects 
are limited. Recently, the novel approach of ICIs combin-
ing with other medications is introduced to counteract the 
tumor-induced immunosuppression. Given that there is a 
lack of evidence regarding the various RIT combinations 
in HCC, in the current review we have discussed the recent 
advancements in RIT, which are being explored, and their 
outcomes are awaited [9].

Radioimmunotherapy approaches 
in hepatocellular carcinoma

Whereas the previously described approaches offer novel 
opportunities for the treatment of HCC, single-agent immu-
notherapy does not provide efficient patient outcomes. 
Since immunosuppressive components and factors such as 
Tregs, TAMs, and IL-35 are up-regulated in the liver, it has 
a higher physiological immune tolerance to antigens than 
other organs do. Another rationale is that various pathways 
involved in the growth of HCC produce an immunologi-
cally tolerogenic microenvironment for the mutant hepato-
cytes’ proliferation, leading to the resistance to single-agent 
immunotherapies. Furthermore, most immunotherapies have 
severe dosage-dependent adverse effects, including rash, 
diarrhea, pulmonary edema, and a cytokine storm, which 
become apparent when the dose is increased [10]. Thus, 

integrating different immunotherapies with classic thera-
peutic techniques is an important avenue of the anti-HCC 
therapy [11].

The remarkable therapeutic advantages of RIT are based 
on the specific targeting of tumor cells rather than noncan-
cerous tissues. It is expected that radiation focuses only on 
the tumor, however this ideal can never be achieved practi-
cally due to the bystander effect [4]. Trans-arterial radioem-
bolization is a catheter-directed internal radiation approach 
that delivers radionuclides directly into the tumor [12]. In 
addition, RIT is administered over a matter of minutes and 
delivers the radiation payload over a timescale of days, dur-
ing which the patient does not need to return for additional 
injections [4]. Moreover, the interplay between the radiation 
effects and the immune system have been investigated and 
many studies have shown the synergistic effects on local 
and distant tumors when radiation therapy is combined with 
immunotherapy. The growing clinical enthusiasm for this 
approach is strengthened by many ongoing trials combin-
ing immunotherapy with definitive and palliative radiation.

The liver is a radiosensitive organ, which makes the 
liver toxicity a major concern in combined treatments [3]. 
To minimize the liver toxicity associated with a combined 
treatment, precise radiation dose adjustment for both treat-
ments is crucial [13].

Radionuclides

In RIT, radionuclides are the cytotoxic agents which are con-
jugated to specific antibodies as a guide to selectively destroy 
tumor cells with their ionizing emissions. Radionuclides are 

Fig. 1   Timeline of hepatocellular carcinoma targeted therapies. The 
first RIT application occurred about 1980, after the development of 
radiotherapy in 1941. In 2006, a breakthrough in the field of medical 
oncology was made with the creation of targeted radioimmunother-
apy for the treatment of HCC. The results of the clinical trial, which 
indicated sorafenib's efficacy in HCC  were presented in 2007. Sev-
enteen therapies have been authorized since 2011. The US Food and 

Drug Administration (FDA) approved a combination of nivolumab 
1  mg/kg and ipilimumab 3  mg/kg to treat patients with HCC  who 
have previously been treated with sorafenib on March 10, 2020. Sev-
eral medications that were approved as monotherapies would eventu-
ally be combined with radionuclides, resulting in improved clinical 
outcomes
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usually selected according to their radio-physical properties 
such as the type of emission, energy level and half-life as 
well as labeling chemistry. The tumor response depends on 
multiple characteristics of radionuclides such as the dose 
rate, cumulative radiation dose, and the radio-sensitivity of 
the tumor cells. For an efficient tumor treatment, radioiso-
topes with short path lengths such as alpha (< 100 μm) or 
beta (1–10 mm) are required rather than gamma-emitting 
radioisotopes. Beta radiation is suitable for targeting tumors 
larger than 0.5 cm [14, 15]. Shorter-range beta emitters may 
be used to treat small tumor cell clusters [16], whereas more 
powerful and longer-range beta emitters can be used for 
larger tumors [16].

Currently, most RIT protocols use beta‐emitting radio-
nuclides such as iodine‐131 (131I), yttrium‐90 (90Y), and 
lutetium‐177 (177Lu). 131I- or 90Y-labeled conjugated mAbs 
provide selective deposition of radionuclides in the tumor 
[17]. The application of alpha radiation in RIT has also been 
developed recently [18]. Alpha emitters transfer their energy 
to the surrounding molecules within a narrow range. Bis-
muth-213 (213Bi), astatine-211 (211At), and actinium-225 
(225Ac) are well-studied alpha emitting atoms [19–22]. 
Radionuclides used in HCC-RIT are listed in Table 1.

Targeting tumor antigens, immune ligands 
and receptor candidates for the treatment 
of hepatocellular carcinoma

The liver has a major function to maintain the immune hemo-
stasis. The immune system detects and responds to external 
antigens or mutant cells. Liver sinusoidal endothelial cells 
(LSECs), hepatocytes, Kupffer cells (KCs), hepatic stellate 
cells (HCSs), and dendritic cells (DCs) make together the 
internal hepatic immune network. Also, immunoglobulins 
and complements as a part of the humoral immune sys-
tem are involved in the liver immune surveillance [19–22]. 
The initiation and progression of an HCC tumor are usu-
ally accompanied by chronic inflammation in the liver due 

to the presence of various cytokines such as IL-10, IL-35, 
and TGF-β and many immune cells, e.g., regulatory T-cells 
(Tregs), Th2 macrophages, and M2 macrophages. These 
components synergistically prepare a hypoxic immunosup-
pressive microenvironment (HISM) for cancerous cells. 
HCC-induced immunosuppression has not been fully stud-
ied, but many publications indicate that immunotherapy by 
targeting the anti-tumor immunity can lead to a change in 
the number of immune cells or their function, attenuation of 
cytotoxic T-lymphocyte responses, expression of immune 
receptors and ligands, and increased cytokine levels [11, 23]. 
Tracing a targetable antigen plays a crucial role in the suc-
cess of immunotherapy-based clinical practice. The most 
intensively expressed surface antigen which is specific to a 
cancerous cell is an ideal target for RIT.

Programmed cell death protein 1 (PD-1) and programmed 
death-ligand1 (PD-L1, also known as B7-H1) are surface 
proteins expressed on a broad range of immune cells [24, 
25]. PD-L1 expression in the tumor tissue occurs at an early 
stage and may represent an important contribution to the 
immune evasion during the HCC progression [25]. Due to 
the expression of PD-L1 and PD-L2 on KCs and LSECs 
in both normal liver tissues and HCC cancer cells, liver-
infiltrating T-cells frequently encounter negative signals 
and become “exhausted” [25]. The PD-L1 expression level 
significantly correlates with the tumor size, recurrence 
rate, and PIVKA-II (prothrombin induced by vitamin K 
absence-II) levels. PD-L2 levels are also associated with 
the histological differences of tumors [26]. HCC patients 
with PD-L1 expression are at a significantly higher risk of 
the cancer recurrence [27]. Currently, anti-PD-1 antibodies 
(nivolumab and pembrolizumab) and anti-PD-L1 antibodies 
(atezolizumab and avelumab) are approved agents for the 
treatment of different types of cancers [28]. In September, 
2017, nivolumab was approved for the treatment of patients 
with advanced HCC who were sorafenib-refractory/intoler-
ant [29]. The results suggest that, in the treatment of patients 
with advanced HCC, nivolumab offers better opportuni-
ties as compared to the other conventional therapies [30]. 
Although FDA-approved pembrolizumab as a second-line 
treatment for patients with HCC, it failed to meet the pri-
mary endpoints for both the overall survival and progres-
sion-free survival [31].

Tumor-infiltrating lymphocytes (TILs) and tumor-associ-
ated macrophages (TAMs) play a major role in the progres-
sion and prognosis of HCC [32]. T-cell immunoglobulin 
(Ig) and mucin-domain containing protein-3 (Tim-3) have 
been well recognized as crucial negative regulators of the 
T-cell-mediated responses [32]. Tim-3 is expressed on TILs 
in HCC and impairs their function through the Tim-3/galec-
tin-9 signaling pathway [33, 34]. Tim-3 and PD-1 are two 
critical suppressor molecules and their expression on TILs 
is associated with a poor prognosis [33]. In patients with 

Table 1   Characteristics of radionuclides for RIT in hepatocellular 
carcinoma

Radioisotopes Max energy (keV) Max 
range 
(mm)

Half-life

90Y β, 2284 (100%) 12.0 2.7 days
177Lu β, 497 (100%) 1.8 6.7 days
131I β, 606 (89%); γ, 364 (81%) 2.3 8 days
67Cu β, 575 (100%) 2.1 2.6 days
186Re 107 4.5 3.7 days
188Re β, 212 (100%) 11 16.9 h
166Ho β, 1854 (50%), 1774 

(48.7%); γ, 0.8 (6.7%)
8 26.8 h
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adaptive resistance to the anti-PD-1 treatment, the Tim-3 
expression was significantly up-regulated. A blockade of 
both PD-1 and Tim-3 showed a significant increase in the 
survival rate in a mouse model of lung cancer [35]. It has 
been demonstrated that Tim-3 is a negative regulator of IFN-
secreting CD4+ Th1 and CD8+ T-cells, as well as a key par-
ticipant in T-cell exhaustion in the tumor microenvironment 
[36]. Tim-3 overexpression in hepatocytes promotes tumor 
cell proliferation, while anti-Tim-3 antibodies or RNAi 
decrease the tumor growth in malignant hepatocytes, both 
in vitro and in Tim-3 mutant mice [37].

Another important checkpoint inhibitor molecule, cyto-
toxic T-lymphocyte associated antigen-4 (CTLA-4), is found 
on the surface of cytotoxic T and Treg cells and plays a mul-
tifaceted role. CTLA-4 molecules bind to CD80 and CD86 
with a higher affinity than CD28 [38]. CTLA-4 is actively 
competing for binding to the co-stimulatory CD28 mole-
cule, and after the attachment to its receptor, it stimulates 
the increased secretion of the immunoregulatory cytokine, 
IL-10. It also serves as a key mediator which inhibits the 
T-cell activation and muted immune response [39]. Treme-
limumab is a fully humanized mAb targeting CTLA-4 and 
is well-tolerated when administered as a single agent to 
patients with HCC. It works by enhancing the T-cell acti-
vation and proliferation [40] through various mechanisms 
which are still under study. Reinforcement of the anti-tumor 
activity of cytotoxic T-cells has also been reported following 
the blockade of CTLA-4 in HCC patients [40]. Many studies 
applied Ipilimumab, an anti-CTLA-4, in combination with 
nivolumab (NCT01658878) and could show an acceptable 
safety profile with an objective response rate that was two 
times higher than that of the nivolumab monotherapy (31% 
VS. 14%) [41]. Furthermore, combining Tremelimumab with 
interventional radiologic procedures has been applied in a 
few studies and resulted in promising clinical outcomes with 
objective durable responses [42]. Sobhani et al., suggested 
that antibodies or small molecules that inhibit CTLA-4, but 
do not alter CTLA-4 levels in Treg cells, could be innovative 
and eventually more effective in eliminating cancer cells. It 
seems that such medications would not degrade CTLA-4 
and so would not interfere with the function of Treg cells 
in preventing autoimmunity. As a result, CTLA-4 inhibi-
tion could be accomplished without CTLA-4 degradation 
or toxicity-related side effects. Testing their efficacy in com-
bination with other ICIs, such as anti-PD1 and anti-PD-L1 
could enhance therapeutic efficacy [38].

CD147 (also named EMMPRIN or HAb18G/CD147) is 
a member of the Ig superfamily of adhesion molecules and 
is always associated with the invasiveness in HCC [43]. The 
previous studies have demonstrated that CD147 is involved 
in the epithelial-mesenchymal transition in hepatocytes and 
also inhibits the Rho signaling pathways and the amoe-
boid movement by inhibiting annexin II phosphorylation. 

Moreover, the oncogenetic transmembrane CD147 protein 
activates the membrane localization of WAVE2 and Rac1 
through the integrin-FAK-PI3K/PIP3 pathway, promotes 
the formation of lamellipodia and enhances the mesenchy-
mal movement [44]. Furthermore, the main three functions 
of CD147 have been revealed in the regulation of glucose 
metabolism in HCC. CD147 acts as an important regulator 
of the Warburg effect in HCC cells by promoting glyco-
lysis through inhibiting the mitochondrial biogenesis and 
oxidative phosphorylation. CD147 facilitates the expres-
sion of monocarboxylate transporter 1 (MCT1) and export 
of lactate, which leads to the activation of the PI3K/Akt/
MDM2 pathway and consecutively induction of p53 deg-
radation. Finally, the down-regulation of glucose metabo-
lism by blocking CD147 suppresses proliferation of HCC 
cells, suggesting the metabolic impact of CD147 on the 
tumor growth in HCC [45]. The lipid metabolism in cancer 
cells is also regulated by CD147 [46–48]. The described 
findings indicate that the oncoprotein CD147 remarkably 
promotes the de novo fatty acid synthesis via up-regulating 
lipogenic enzymes ACC1 and FASN via the Akt/mTOR/
SREBP1c signaling pathway, and coordinately inhibits fatty 
acid β-oxidation through the down-regulation of fatty acid 
oxidative enzymes CPT1A and ACOX1 via the p38 MAPK/
PPARα signaling pathway [46].

These crucial roles make CD147 an attractive target for 
the therapeutic intervention in HCC. In HCC patients, the 
increased CD147 expression in tumor tissues, but not in the 
serum, is frequently linked to a poor prognosis [49]. Iodine-
metuximab (Licartin) is an 131I-labeled murine mAb HAb18 
F(ab’)2 fragment against the HAb18G/CD147 antigen and 
its specificity and efficient affinity have been proved in the 
preliminary studies [93, 94]. 131I metuximab has also been 
successfully applied to prevent the tumor recurrence fol-
lowing the liver transplantation or radiofrequency ablation 
(RFA) in patients with advanced HCC [50, 51]. The anti-
CD147 treatment inhibits migration and invasion of HCC 
by down-regulation of the metal-matrix protease (MMP) 
production and rearrangement of the actin cytoskeleton [51].

A transmembrane glycoprotein Endoglin (CD105) is 
one of the co-receptors of the transforming growth factor 
β (TGF-β) [52, 53] and is implicated in multiple signaling 
pathways including proliferation, migration and adhesion 
of endothelial cells (ECs). CD105 is also expressed in the 
cytoplasm of non-ECs of normal and malignant tissues [54]. 
Undifferentiated and differentiated adult-derived human 
liver stem/progenitor cells [55], human adipose-derived stem 
cells [56], and hepatic perivascular mesenchymal stem cells 
(MSCs) [57] are also characterized by different expression 
levels of CD105.

The observations and collected data in terms of CD105 
expression and its prognostic role in HCC are not consist-
ent [58]. Limited evidence has shown that CD105 is not an 
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appropriate target for the angiogenesis therapy, since the 
protein is expressed not only in neo-vessels of tumors but 
also in LSECs in non-tumoral tissues [59]. Several types 
of therapeutic approaches based on anti-CD105 mAbs have 
shown beneficial anti-angiogenic and anti-tumor impacts 
including radio-labelled antibodies or immunotoxin-conju-
gated antibodies [60]. Moreover, the use of CD105-targeting 
liposomes could be considered a novel strategic tool for the 
future application of CD105-directed neoplastic and anti-
angiogenic therapies [61]. Furthermore, the clinical stud-
ies showed the effectiveness of chimeric IgG1 anti-CD105 
mAb (TRC105) in terms of angiogenesis and tumor growth 
inhibition and apoptosis induction [53]. However, the use of 
TRC105 in those HCC patients who were refractory to the 
sorafenib treatment resulted in unsatisfactory results. Based 
on the observations, a combination of TRC105 with novel 
promising agents in patients with HCC could result in bet-
ter results.

The human homologue of the Drosophila Roundabout 
gene, ROBO1, encodes a receptor that is considered a novel 
subfamily of the Ig superfamily. ROBO1 is significantly up-
regulated in 85% of HCC patients and its role have been 
demonstrated in the cancer angiogenesis and metastasis [62]. 
The pro-angiogenic effect of ROBO1 in ECs is mediated by 
the modulation of the Rho family of GTPases and cytoskel-
eton in HCC. The Rho family of GTPases, including Rho, 
Rac, and Cdc42, has been implicated in many cellular pro-
cesses, including actin and microtubules’ organization. They 
are also essential in the cell polarity, microtubule dynam-
ics, membrane transport pathways, and transcription factor 
activity [63]. Inhibition of the RhoC/Rac GTPase activation 
resulted in decreased angiogenesis in HCC [63, 64]. Appli-
cation of Mab against ROBO1 has shown anti-cancer activ-
ity in the HCC animal model [63]. Using 90Y-anti-ROBO1 
Mab on a HCC xenograft tumor in nude mice, significant 
anti-tumor growth effects were found indicated by tumor 
cells degeneration and increased number of apoptotic cells 
without necrosis or fibrosis [65]. These findings supported 
radiolabeled anti-ROBO1 IgG as a potential candidate for 
RIT in HCC. However, immunotherapy of HCC by targeting 
ROBO-1 is still under study and requires further investiga-
tions to develop more effective therapeutic approaches [66].

Targeting tumor angiogenesis is considered an attrac-
tive therapeutic modality for the cancer treatment. HCC is a 
hyper vascular solid tumor, and inhibition of angiogenesis 
is an efficient intervention to treat HCC [67]. Among anti-
bodies with the anti-angiogenetic activity which have been 
tested in patients with HCC, only bevacizumab, human-
ized anti-VEGF mAb, has received an approval for clini-
cal indications [68, 69]. A novel combination therapy with 
bevacizumab and atezolizumab is under investigation for the 
treatment of advanced HCC (NCT03434379). Accordingly, 
the FDA has granted a breakthrough therapy designation 

for co-administration of atezolizumab and bevacizumab to 
be a first-line therapy for advanced or metastatic HCC [70].

Extra‑vesicles and their therapeutic potential

The recent studies have revealed the possible role of bio-
markers based on extra-vesicles (EVs) in the HCC progres-
sion. EVs are now recognized as important derivatives of 
both immune and tumor cells [71] which transfer bioactive 
components from the host cells to the recipient cells. It has 
been shown that immune cell-derived exosomes (IEXs) and 
tumor-derived exosomes (TEXs) can activate the humoral 
and cell-mediated immune system by transferring anti-
gens to the antigen-presenting cells (APCs) [72]. Thereby, 
IEXs can initiate and promote the anti-tumoral responses 
and inhibit the tumor progression [73]. In contrast to IEXs, 
TEXs contain immunosuppressive factors affecting the anti-
tumor activity of immune cells. A large number of studies 
have demonstrated that TEXs can suppress the activation of 
NK cells, interfere with the maturation of DCs, promote the 
development of myeloid-derived suppressor cells, and trans-
form macrophages into the tumor-promoting phenotype [74, 
75]. A recent study demonstrated that DCs treated with TEX 
can definitely elicit the tumor suppression by improving the 
tumor-specific immunity. Importantly, an intravenous injec-
tion of HCC-derived TEX-treated DCs increased infiltrated 
T-cells’ and interferon (IFN)-γ levels as well as decreased 
IL-10 and TGF-β at the tumor sites [76]. On the other hand, 
TEXs could undermine the function of T-cells and NK cells, 
and could increase the immuno-prohibitive M2 macrophages 
and N2 neutrophils in HCC [71].

EVs from HCC cells could play a significant role as a 
carrier of antigens in a wide range [77]. Recently, the role 
of HCC-derived EVs has been explored in immunotherapy. 
DCs were activated by pulsed HCC cells-derived TEXs 
which carried HCC antigens. TEX-pulsed DCs significantly 
activated the T-cell-dependent anti-tumor immunity in host 
HCC cells and improved the tumor microenvironment in 
host HCC cells [76].

PD-L1 expressing EVs may be produced by tumor 
cells, immune cells, MSCs [78] or other cells in the tumor 
microenvironment [79]. The circulating level of PD-L1 
does not correlate with the intra-tumoral expression of this 
molecule [80]. HCC-derived EVs promoted the expression 
of PD-L1 in macrophages to prohibit the T-cell activa-
tion through miR-23a/PTEN/AKT [81]. Moreover, EVs 
derived from melatonin-treated HCC cells could decrease 
the expression of PD-L1 and suppress the secretion of 
cytokines (IL-6, IL-1β, IL-10, and TNF-α) in macrophages 
[82]. Combining DC-TEX vaccination with sorafenib and 
a PD-1 antibody could promote the immune responses in 
an orthotopic HCC-vaccinated mice model. Moreover, a 
combination of DC-TEX and sorafenib could significantly 
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reduce the number of Treg cells and increase the number 
of CD8+ T-cells [76]. The data have shown that both the 
circulating levels and intra-tumoral expression of PD-L1 
independently contribute to the HCC prognosis [83]. It has 
been demonstrated that TEXs can carry PD-L1 on their 
surface as well and play an important role in the tumor 
development [73]. However, the application of PD-L1 
on EVs as a possible predictor for the anti-PD-1 therapy 
approach remains controversial [80] and a PD-1/PD-L1 
blockade in these patients resulted in considerable individ-
ual differences. The resistance to immunotherapy against 
PD-L1 from EVs may be due to its low content relative 
to the surface PD-L1. Therefore, targeting PD-L1 on EVs 
with current immune-checkpoint therapies and applying 
more effective small molecules seems to be a crucial strat-
egy. Alternatively, up-regulation of PD-L1 on EVs makes 
it more prone to the action of the delivered antibody. Tar-
geting HCC-derived TEXs expressing PD-L1 by antibod-
ies and application of combination components may help 
to improve the treatment efficacy in liver cancer. Moreo-
ver, HCC-derived TEXs can provide a source of multiple 
antigens to amplify the DCs-mediated immunotherapeutic 
effects in an HCC mouse model and human HCC cells. 
Importantly, HCC-derived TEXs not only produce tumor-
specific cytolysis in DCs but also provide cross-protection 
for other types of HCC cells [77].

α-fetoprotein (AFP)-expressing DC-derived EVs (DEX-
AFP) have been studied to show the association between the 
tumor-immune niche and HCC inhibition. The study dem-
onstrated that DEXAFP could induce an effective antigen-
specific immune response in an ectopic or an orthotopic 
HCC murine model. Because of the boosted response of 
CD8+ T-cells, the expression levels of IFN-γ and IL-2 were 
up-regulated, whereas CD25+Foxp3+ Treg cells, IL-10, and 
TGF-β levels were declined at the tumor sites. DC-derived 
EVs can obviously impede the HCC proliferation and 
increase the survival rate in a murine model [84].

Studies have shown that EVs derived from hepatoma 
cells can promote the migration and invasion of recipient 
cells, down-regulate the E-cadherin expression, increase the 
vimentin expression, and promote the epithelial-mesenchy-
mal transition (EMT) in cells. Moreover, those effects are 
more remarkable in highly invasive hepatoma-cells-derived 
EVs than in low-invasive hepatoma and normal liver cells 
EVs [85]. HCC-derived EVs could redirect the metastasis 
of tumor cells which lack the capacity to metastasize to a 
specific organ via generating a pre-metastatic niche [86]. 
EVs can facilitate the metastasis by transporting bioactive 
molecules. Studies have found that EVs can act as regulators 
of the tumor microenvironment to influence the tumor cell 
invasion and EMT [87]. These findings indicate the impor-
tance of EVs in the pathogenesis of HCC, both as a target for 
the treatment and a vehicle for drug delivery [86].

A substantial body of evidence highlighted the role of EVs 
as delivery vehicles [88, 89]. The efficacy and indication of 
drug delivery by EVs depend on the type of a donor cell, 
therapeutic agent, use of targeting peptides, loading method, 
and routes of administration [90]. The microRNAs (miRNAs) 
within TEXs have a significant role in regulating the cancer 
progression, possibly through facilitating the tumor devel-
opment, metastasis, and angiogenesis, so they are attractive 
targets for the therapy [89]. It has been demonstrated that co-
culture of stellate cells with HCC cells down-regulates miR-
335-5p in both cells, which inhibits the HCC cell proliferation 
by delivering EVs. However, up-regulating the expression of 
miR-335-5p in stellate cell-derived EVs can inhibit the growth 
and invasion of HCC cells and lead to the tumor shrinkage 
in a murine model [91]. Another study showed that adipose 
tissue-derived-MSC-EVs, which were effectively transfected 
with miR-122 plasmids and transferred to HCC cells, signifi-
cantly rendered HCC cells sensitive to chemotherapy agents 
(e.g.,5-FU and sorafenib) [92]. Similarly, adipose tissue-
derived MSCs were used to deliver miRNA-199a (miR-199a) 
for improving the HCC chemosensitivity [93]. Experimental 
studies showed that TEX-miR-199a significantly sensitized 
HCC cells to doxorubicin by targeting and inhibiting the 
mTOR pathway [93].

HepG2-EVs have tetraspanin cell membrane proteins such 
as CD9, CD63, and CD81 on their surface, allowing cognate 
antibodies to bind [94]. Tetraspanin-8 (TSPAN8) has been 
described as a significant contributor in many tumors of the 
gastrointestinal system such as colorectal, hepatic, esophageal, 
and pancreatic cancer, and is associated with a poor prognosis 
[95, 96]. TSPAN8 also elevates the growth and invasion poten-
tial of tumors by stimulating angiogenesis and cell migration 
[95, 97]. In HCC, TSPAN8 is up-regulated and plays a role 
as an independent prognostic factor for the recurrence-free 
survival (RFS) and overall survival [95]. Targeting TSPAN8 
with radiolabeled antibodies appears an effective anti-tumoral 
therapy. Two radiolabeled anti-TSPAN8 mAbs (Ts29.1 and 
Ts29.2) with Indium-111 (111In) have been investigated so 
far. High specificity of 111In-Ts29.2 in TSPAN8-expressing 
pancreatic tumors has been demonstrated in a murine model 
of both SW480-Co29/SW480 tumors [94]. Additionally, 
TSPAN8 is expressed on the surface of circulating EVs [97], 
and targeting them will be of interest as these vesicles facilitate 
the metastasis.

More investigations on exosomes’ biology will be the key to 
progress in the application of exosomes as a novel therapeutic 
target and drug delivery platform for RIT.
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The future prospective and limitations 
of extra‑vesicles as drug delivery tools 
for radioimmunotherapy in hepatocellular 
carcinoma

During recent years, different disciplines for efficient drug 
delivery approaches emerged. However, we are far from 
an ideal approach regarding efficiency, tolerability, and 
targeted drug delivery tools. EVs as intercellular commu-
nication system, have shown promising results in practical, 
non-immunogenic, and efficient drug delivery platform. 
A number of useful features qualified them as an alter-
native strategy for drug delivery such as their wonderful 
biocompatibility, ability to cross physical barriers, exploit 
natural intracellular cross-talk, and their inherent targeting 
features [98].

Bioengineering paternal cells can provide enough 
conjugating targeting moieties for EVs in RIT applica-
tions. However, more basic and preclinical studies should 
be made in order to translate this technique in the clinic. 
Scale-up production of EVs and making their production 
cost–benefit are major challenges in their clinical transla-
tion. Batch-to-batch variation in the industrial production 
of EVs is the other obstacle in broad application of EVs in 
approved therapeutic protocols [99]. EVs could be used in 
RIT as well in order to boost therapeutic efficacy of medi-
cal settings. However, learning the molecular machinery 
which controls cellular production and characteristics of 
EVs in terms of physiology and pathophysiology of bio-
logical processing is critical in translational studies [100].

Clinical studies

Sorafenib is an oral multi-kinase inhibitor which acts 
through inhibiting the activity of Raf kinase, the VEGF-
Receptor, and the Platelet-Derived Growth Factor Recep-
tor (PDGF-R) [101]. Although sorafenib has remained the 
recommended choice for the first-line systemic therapy in 
advanced HCC, the therapeutic results were not satisfac-
tory [102].

On the other hand, despite the promising effects of 
immunotherapy in some HCC patients, a significant 
number of patients did not attain a clinically significant 
and durable improvement [103]. Recently, a phase III 
clinical trial reported that the overall survival rate did 
not significantly differ between the HCC patients who 
underwent selective internal radiotherapy (SIRT) with 
90Y-resin microspheres and those who received sorafenib 
(NCT01482442) [102]. Moreover, in a phase lll clinical 
trial, the application of sorafenib in the adjuvant setting 

following the surgical resection did not present an effec-
tive treatment in HCC patients [104]. This unsatisfactory 
response to the sorafenib monotherapy in the conditions 
of a heterogeneous tumor microenvironment suggests the 
use of combinational strategies. Recently, more research 
and clinical studies have been designed to assess the syn-
ergistic effects of ICIs and radiotherapy in various cancers 
such as melanoma, head and neck, colorectal, sarcoma, 
and renal cancer [105]. The therapeutic potential of RIT 
in HCC is still under investigation in several clinical trials. 
The registered trials at www.​Clini​calTr​ials.​gov are listed 
in Table 2.

PD-L1/PD-1 and CTLA-4 are the main immune check-
points extensively inhibited with targeted therapies that leads 
to remarkable clinical improvements in HCC patients [70]. 
Nivolumab, an anti-PD-1 antibody, was reported to be well-
tolerated by patients who were treated for other malignan-
cies [106, 107]. Nivolumab also led to a durable response in 
patients irrespectively of their hepatitis B or C viral status, 
compared to sorafenib as a primary treatment [108]. Cur-
rently, a phase I trial is recruiting patients with advanced 
HCC for a combination therapy using nivolumab and 90Y 
with the intent for resection (NCT03812562). Another 
clinical trial has also been designed to evaluate the efficacy 
and tolerability of simultaneous application of nivolumab 
and 90Y (NCT02837029) [109]. Despite the disappoint-
ing results, pembrolizumab is still under investigation in 
HCC patients as an adjunctive treatment for trans-catheter 
arterial chemoembolization (TACE) in a phase II/III study 
[28]. Interestingly, more clinical trials are currently under-
way combining a regional therapy of 90Y radioemboliza-
tion with pembrolizumab (phase I, NCT03099564) [110] 
or nivolumab (phase I, NCT03812562) [110]. Moreover, 
a phase II trial evaluating 90Y radioembolization with 
nivolumab has been initiated (NCT03033446). Currently, 
the combination of a novel anti-PD-1 antibody, SHR-1210 
and apatinib, a tyrosine kinase inhibitor selectively acting on 
VEGF receptor 2, is under investigation (NCT03463876). 
In 2018, the phase 1 trial of this combination was com-
pleted and showed acceptable tolerability and the response 
rate of 38.9%, with a median progression-free survival of 
7.2 months for 18 patients with HCC. Overall, adverse 
events were relatively tolerable. A phase II trial of SHR-
1210 combined with apatinib is currently ongoing in the 
USA, comparing this combination to systemic chemotherapy 
in advanced HCC (NCT02942329) [111].

According to the preclinical and early phase I/II clini-
cal trials, a combination of durvalumab and tremelimumab, 
anti-PD-L1 and anti-CTLA-4, respectively, enhanced the 
anti-tumor activity compared to the monotherapy and pro-
posed acceptable safety and a durable objective response 
rate (NCT02519348) [112]. Thus, a phase III trial is cur-
rently underway (NCT03298451) [28]. The initial results 

http://www.ClinicalTrials.gov
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of a clinical trial on administration of tremelimumab with 
subtotal TACE or radiofrequency ablation (RFA) in patients 
with advanced HCC showed that the treatment was safe and 
feasible, as well (NCT01853618) [113] and a phase I/II trial 
is currently underway in the USA [42]. In addition, clinical 
trials are also conducted on the use of external beam pho-
ton stereotactic body radiotherapy (SBRT) in combination 
with nivolumab (Phase II, NCT03316872) or ipilimumab 
(Phase I, NCT03203304). In metastatic breast cancer, treme-
limumab appears to be safe when combined with palliative 
radiotherapy [114]. Despite a large number of antibodies 
against CTLA-4 in HCC patients, the efficiency of com-
bining ICIs and radiotherapy needs more investigations. 
Therefore, clinical trials are expected to closely monitor the 
safety profile of RIT by targeting CTLA-4. The administra-
tion of 131I-metuximab has also been studied as an adjuvant 
therapy after the liver resection in HCC patients and resulted 
in improvement of the 5-year RFS [115]. Promising anti-
recurrence efficacy of treatment with 131I-metuximab has 
also been reported after the liver transplantation and early 
HCC ablation [50]. Following the injection of 27.75 MBq/
kg in 106 patients, the half-life of 131I-metuximab in the 
blood was 90.56–63.93 h and the survival rate was 44.54%. 
Additionally, in a phase II trial (NCT00819650) the role 
of 131I-metuximab as an adjuvant treatment has been stud-
ied after hepatectomy for HCC patients. Accordingly, the 

patients who underwent one trans-arterial injection of 
131I-metuximab within 4–6 weeks after hepatectomy exhib-
ited an improved 5-year RFS [116]. Similarly, in 2007, 131I 
metuximab was reported as a promising drug for preventing 
the tumor recurrence in advanced HCC after the liver trans-
plantation. The combination of a trans-hepatic arterial injec-
tion of 131I-metuximab and TACE has also showed promis-
ing results and is well-tolerated in patients with advanced 
and unresectable HCC [117]. Thus, these findings have dem-
onstrated that 131I-metuximab has effective targeting proper-
ties and allows one to achieve the maximum protection with 
significantly reduced side effects.

The therapeutic efficacy of 131I-anti-CD105 RIT has been 
investigated in a mouse model of HCC, and remarkable inhi-
bition of the tumor growth has been reported [68]. Moreover, 
a combination of 131I-anti-CD105 RIT and 5-FU was effec-
tive in the HCC mouse model [52]. Although CD105 is a 
promising target of anti-angiogenic therapy in solid tumors, 
the number of clinical trials using this potential target in 
advanced HCC is limited [53]. In some clinical trials, the 
safety and efficacy of CD105 monotherapy (TRC105) has 
been assessed [118]. Moreover, an anti-CD105 antibody has 
been applied in combination with different drugs including 
bevacizumab [119] or sorafenib [120]. A combination of 
TRC105 and sorafenib showed encouraging results (25% 
partial response) in HCC patients (NCT01806064) [121]. 

Table 2   Clinical trials of monoclonal antibodies in combination with loco-regional therapies for hepatocellular carcinoma

SBRT, Stereotactic body radiotherapy; SIRT, Selective internal radiation therapy; TACE, trans-arterial catheter chemoembolization; RFA, radi-
ofrequency ablation; PD-1, programmed death 1; CTLA-4, cytotoxic T lymphocyte associated protein 4; PD-L1, programmed death-ligand1

Monoclonal Antibody Targeted antigens Loco-regional treatment ClinicalTrials.
gov identifier

Study design

Licartin CD147 131I metuximab NCT00819650 Phase II trial
Licartin CD147 131I metuximab & TACE NCT00829465 Phase IV trial
Nivolumab &
Ipilimumab

PD-1
CTLA-4

SBRT NCT03203304 Phase I trial

Tremelimimab CTLA-4 RFA/TACE/SBRT/Cryoablation NCT01853618 Pilot
Nivolumab PD-1 90Y SIRT NCT03812562 Phase I trial
Pembrolizumab PD-1 90Y SIRT NCT03099564 Phase I trial
Nivolumab PD-1 90Y SIRT NCT02837029 Phase I/Ib trial
Nivolumab PD-1 90Y radioembolization NCT03033446 Phase II trial
Pembrolizumab PD-1 SBRT NCT03316872 Phase II trial
Tremelimumab & Durvalumab CTLA-4/PDL-1 Radiation therapy NCT03482102 Phase II trial
Tremelimumab & durvalumab CTLA-4/PD-L1 RFA/TACE/Cryoablation NCT02821754 Phase II trial
SHR-1210 PD-1 FOLFOX4 regimen (consisting of 5-FU, leucovorin, 

oxaliplatin)
NCT03605706 Phase III trial

Camrelizumab PD-1 FOLFOX4 (infusional fluorouracil, leucovorin and 
oxaliplatin) or GEMOX (gemcitabine and oxaliplatin) 
chemotherapy

NCT03092895 Phase II trial

Pembrolizumab PD-1 90Y radioembolization NCT03099564 Phase I trial
Sintilimab PD-1 SBRT vs. Sintilimab + SBRT NCT04167293 Phase II/III trial
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Owing to the insufficient efficacy of TRC105 monotherapy 
in phase I/II clinical trials [53], further studies are required 
to assess the effectiveness of RIT using TRC105 in HCC 
patients.

The role of hepatitis infection 
in the treatment of HCC 
with immunotherapy

Regarding the role of HBV and HCV infection in the devel-
opment of HCC, various clinical studies looked at how 
these viral agents reacted to immunotherapeutic therapies 
[122]. Throughout the CheckMate 040 trial, the objective 
response rate (ORRs) with nivolumab in patients infected 
with HCV and HBV were 20% and 14%, respectively, but 
ORRs in patients with no viral infection were 22% [30]. In 
addition, the 6- and 9-month OS rates in HBV and HCV-
positive patients were 84%, 70%, 85%, and 81%, respec-
tively, compared to 74% in the whole population. ORR 
indicated no statistically significant difference between 
HCC cases with HBV+, HCV+, and uninfected patients in 
the KEYNOTE-224 trial, which employed pembrolizumab 
(13% vs 13% vs 20%, respectively) [123]. A previous clinical 
trial (NCT02702401) has shown that tumor size reductions 
ranged from 50% in all individuals to 57% in HBV+ and 39% 
in HCV+ patients. Moreover, pembrolizumab was shown to 
be 18% effective in the KEYNOTE-240 trial, compared to 
4% effective in the placebo group. Interestingly, a substantial 
benefit for HBV+ patients compared to the placebo group 
has been identified in terms of overall survival [HR 0.57 
(CI 0.35–0.94)], but no meaningful benefit was detected for 
HCV+ patients. The combination of atezolizumab and beva-
cizumab resulted in a longer median PFS in HCC patients 
with HBV infection as compared to sorafenib therapy, but 
not in non-viral HCC patients (median PFS, HBV+ HCC: 
6.7 vs. 2.8 months; non-viral HCC: 7.1 vs. 5.6 + months). In 
both conditions, a meta-analysis evaluating the effectiveness 
of PD-1/PD-L1 inhibitors as monotherapy or in combination 
with other treatment drugs found no significant difference 
in ORR between the two groups [124]. In both arms, the 
authors found no improvement in ORR and disease control 
rates (DCRs) in HCV patients. Additionally, ICIs may be 
less effective for HCC caused by nonalcoholic fatty liver 
disease (NAFLD) than for HCC caused by viruses [125].

Future prospective

While the surgery is considered the treatment of choice 
for advanced HCC, no effective systemic therapy has 
been approved so far. Sorafenib is the only standard 

FDA-approved medicine for advanced HCC, and the disease 
progression is common in patients [126].

In HCC, the heterogeneous tumor microenvironment 
interacts with various immune cells to sustain the growth. A 
comprehensive understanding of tumor-immune interactions 
led to the development of ICIs as a new therapeutic strategy. 
However, targeting the immune-checkpoint molecules rein-
vigorates the anti-tumor immunity by restoring exhausted 
T-cells, and many immunosuppressive mechanisms can limit 
the efficacy of ICIs monotherapy in HCC [127, 128].

On the other hand, radiotherapy is an essential therapeu-
tic modality for HCC and has gained an extensive attention 
as promising in combination with ICIs. RIT may enhance 
the endogenous anti-tumor responses compared to the cur-
rent monotherapies. The efficacy of RIT has been well-
documented in numerous preclinical and clinical studies on 
various types of cancers, but the literature related to HCC 
in this context is very limited [6].

Regarding the therapeutic potential of RIT in HCC, many 
challenges remain to be addressed. First, application of ICIs 
should not be considered the best associate treatment with 
radiotherapy in HCC. Other immunotherapeutic strategies 
such as cytokine-induced killer cells or gene therapy using 
adenoviral vectors have already been assessed in HCC 
patients. Moreover, the optimized radiotherapy technique 
in combination with ICIs has not been established yet [129].

Furthermore, the evaluation of HCC patients’ suitability 
for RIT by next-generation sequencing-based profiling of the 
tumor mutation burden, immune gene expression signatures, 
T-cell receptor repertoire, and T-cell-inflamed gene expres-
sion could be helpful. Further efforts are needed to identify 
novel biomarkers to guide the selection of appropriate HCC 
patients for RIT [130, 131].

One of the most important RIT challenges is that most 
HCC patients suffer liver cirrhosis and the combination 
of medications may increase the liver toxicity resulting in 
adverse consequences [132]. In the new clinical setting, it 
is crucial to ensure a safe liver toxicity profile when using 
combinatory approaches. Moreover, in patients with chronic 
hepatitis B, hepatitis C, human immunodeficiency virus or 
tuberculosis, the T-cell or NKC-mediated antiviral or anti-
bacterial immune response is attenuated [133]. Due to the 
risk of viral reactivation, it is important to monitor the dif-
ferential responses to RIT in HCC patients with HBV or 
HCV. A further experimental research and clinical studies 
are necessary on the interplay of HCC and viral hepatitis in 
patients receiving RIT [126]. RIT is also valuable in target-
ing both primary and secondary tumors, besides the residual 
tumor margins after resection [18].

Furthermore, an anti-angiogenic therapy has been 
developed based on the rationale that reduction in the 
tumoral vascular network can result in a hypoxic microen-
vironment [134]. The recent advances include combining 
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ICIs with anti-angiogenic agents to treat advanced HCC 
[135]. Besides sorafenib, several anti-angiogenic drugs 
including lenvatinib, regorafenib, cabozantinib, and ramu-
cirumab have been investigated in the first-line clinical 
trials with the aim of developing molecular targeted agents 
showing a better efficacy than sorafenib [136–140]. How-
ever, hypoxia as a potential side effect induced by anti-
angiogenic drugs may increase the invasiveness of tumor 
cells and accelerate the metastasis [53]. One way to over-
come these limitations is developing new types of anti-
angiogenic therapy of HCC using different approaches, 
such as a combination of numerous anti-angiogenic com-
pounds with other treatment regimens [141].

Conclusion

The combinatorial approaches and optimized targeting a 
heterogeneous, immunosuppressive tumor are expected to 
be the main avenue of the HCC treatment in the future. 
RIT is highly targeted and destructive to tumor tissues 
and causes as little injury as possible to normal tissues 
compared to chemotherapy or radiotherapy. These features 
enable one to increase the survival and decrease the recur-
rence rate. Since RIT provides a high binding affinity, it 
promotes a selective uptake of energy in tumoral tissues. 
There are few relevant clinical studies on the efficacy of 
RIT in the literature which mostly involve a small number 
of HCC patients. Until now 131I-metuximab has been the 
only confirmed RIT approach in the clinical trials which 
have the efficacy and acceptable safety in the HCC treat-
ment. The efficacy and safety of RIT as applied to HCC 
still requires high-quality, evidence-based randomized 
controlled studies.
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