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Abstract
Increasing evidence indicates that anoikis resistance is a critical process for metastasis of cancer cells, making it the attractive 
therapeutic target for cancer benefit. Anoikis resistance is widely regulated by various factors, such as signaling pathways, 
integrins switch, and non-coding RNAs (ncRNAs). ncRNAs composed of microRNAs (miRNAs), long non-coding RNAs 
(lncRNAs), and circular RNAs (circRNAs), are frequently dysregulated in a variety of human malignancies and are closely 
related to anoikis resistance of cancer cells. Based on the available literature, we reviewed the molecular basis underlying 
ncRNAs modulating cancer cells anoikis resistance, which may contribute to a better understanding of cancer metastasis 
and provide new beneficial therapeutic strategies against cancer.
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Introduction

Anoikis resistance is a crucial cellular program that enables 
carcinoma cells to escape apoptosis in the absence of attach-
ment to extracellular matrix (ECM) or upon cell adhesion to 
an inappropriate location [1–3]. The ability to resist apop-
tosis under the loss of ECM attachment endows cancer cells 
to detach from the primary tumor site, invade a distant site 
and establish a metastatic lesion [3, 4]. Therefore, it has been 
believed that anoikis resistance is a critical process for tumor 

cell metastasis [5], and overcoming anoikis resistance may 
have important therapeutic value for cancers [3, 6].

Previous studies have shown that cancer cells can achieve 
anoikis resistance through multiple factors or mechanisms 
including integrins switch, growth proteins, oxidative stress, 
autophagy, epithelial-mesenchymal transition (EMT), 
metabolism, and signaling pathway [3, 5, 7]. For instance, 
the interplay between integrin-α2β1/-α5β1 and EGFR 
enhanced anoikis resistance in colon cancer cells through 
activating downstream effectors ERK and AKT and sup-
pressing Caspase-3 activation [8]. Upregulation of LC3B 
induced by oxidative stress attenuated anoikis resistance in 
contrast to regulating autophagy in ovarian cancer cells [9]. 
Moreover, CPT1A-mediated fatty acid oxidation activation 
led to colorectal cancer cells resisting anoikis and increase 
metastatic capacity [10]. These studies suggest that anoikis 
resistance in cancer cells is far more complicated than 
expected and warrants further investigation.

Non-coding RNAs (ncRNAs), such as microRNAs 
(miRNAs), long non-coding RNAs (lncRNAs), and circu-
lar RNAs (circRNAs), are a group of RNA transcripts that 
do not own the protein-coding ability but are involved in 
the regulation of physiological and pathological functions 
[11–13]. Ample evidence indicated that ncRNAs have been 
identified as oncogenic drivers or tumor suppressors in 
various malignancies [14]. Notably, multiple ncRNAs are 
associated with anoikis resistance in various cancers [1]. 
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Considering the rapid development of the ncRNA field, a 
more detailed understanding of the molecular mechanisms 
underlying ncRNAs modulating cancer cells anoikis resist-
ance is urgently needed. In this review, we focused on the 
critical roles of ncRNAs in modulating anoikis resistance 
in cancers.

Discussion

MiRNAs and anoikis resistance

MiRNAs are a kind of ~ 22-nucleotide, evolutionarily con-
served ncRNAs, which modulate target gene expression 
through binding to the 3’-untranslated region (3’-UTR) of 
target mRNA molecules at the posttranscriptional level [15, 
16]. Amounting evidence has shown that miRNA is involved 
in various processes, such as cell growth, metastasis, therapy 
resistance, and immune escape [17–19]. Interestingly, a vari-
ety of miRNAs can be oncogenic or tumor-suppressive and 
have repeatedly been implicated for their roles in regulating 
anoikis resistance [1, 20].

MiRNAs act as positive regulators of anoikis 
resistance

A growing body of evidence shows that aberrant miRNAs 
enhanced anoikis resistance of cancer cells through the 
regulation of pathways, adhesion molecules, or apoptosis-
associated proteins (Table 1, Fig. 1).

Emerging data have indicated that several signaling path-
ways are abnormally activated or inactivated in cancers, 
and are vital mediators and drivers in anoikis resistance [7]. 
The Hippo signaling, tumor-suppressive signaling, has been 
frequently identified to be inactivated in multiple cancers, 
and the inactivation of Hippo signaling exerts a pleiotropic 
role in the progression and metastasis of cancers [21]. A 
previous study showed that miR-424-5p overexpression 

promoted, while miR-424-5p knockdown inhibited, anoikis 
resistance and lung metastasis of thyroid cancer cells in vitro 
and in vivo by inactivating the activity of Hippo signaling 
via directly targeting WWC1, SAV1, and LAST2[21]. As a 
key node of the Hippo signaling pathway, Yes-associated 
protein 1 (YAP1) has been implicated to regulate anoikis. 
Yu et al. noted that miR-200a overexpression promoted 
whereas miR-200a inhibition suppressed anoikis resistance 
in breast cancer cells by the downregulation of YAP1, which 
resulted in decreased pro-apoptotic protein expression [22]. 
Recent research showed that enforced expression of miR-
141 enhances cell proliferation, anchorage-independent 
capacity, anoikis resistance, tumor growth and peritoneal 
metastases of ovarian cancer cells through the regulation 
of KLF12/Sp1/survivin axis [23]. What’s more, MiR-G-10, 
a novel miRNA identified in G-rich RNA sequence bind-
ing protein (GRSF1) complex, promote migration/invasion 
and anoikis resistance in vitro and lung metastasis in vivo, 
by upregulating PIK3R3 expression to activate the AKT/
NF-κB signal pathway and suppressing TIMP3/MMP9 path-
way [24]. Hida et al. used a public tumor endothelial cell 
microarray database and found that miR-145, increased in 
tumor endothelial cell, signifiacntly elevated cell adhesion 
and anoikis resistance in human microvascular endothelial 
cells by enhancing the BCl-2 and Bcl-xL expresion via the 
ERK1/2 pathway [25].

Cell surface adhesion molecules have been implicated 
in the acquisition of anoikis resistance of cancer cells [26, 
27]. Penna et al. found that miR-214 was involved in the 
modulation of survival to anoikis in melanoma [28]. Using 
a melanoma metastatic model, miR-214 was found to be 
highly expressed in metastatic (high) cells compared with 
parental (low) cells. Moreover, the introduction of miR-214 
expression contributed to melanoma cell movement and sur-
vival to anoikis in vitro as well as extravasation from blood 
vessels and lung metastasis formation in vivo through target-
ing TFAP2C, which is a member of the AP-2 transcription 
factor family and involved in the activation or repression of 

Table 1   MiRNAs promote 
anoikis resistance in cancers

miRNAs Type of cancer Target/axis References

miR-145 Esophageal adenocarcinoma – [29]
miR-145 Esophageal adenocarcinoma c-Myc/integrin [30]
miR-145 Tumor endothelial cells ERK1/2/Bcl-2/Bcl-xl [25]
miR-424-5p Thyroid cancer WWC1, SAV1, LAST2 [21]
miR-200a Breast Cancer YAP1 [22]
miR-141 Ovarian cancer KLF12 [23]
miR-G-10 Cervical cancer PIK3R3/AKT/NF-κB; TIMP3/

MMP9
[24]

miR-214 Melanoma TFAP2C/miR-148b [28, 88]
miR181a Breast cancer Bim [32]
miR-21 Esophageal adenocarcinoma PDCD4, PTEN [33]
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cell movement and adhesion molecules [28]. Additionally, 
miR-145 overexpression obviously enhanced cell invasion 
and anoikis resistance of esophageal adenocarcinoma cell 
lines (OE33, FLO-1, SK-GT-4) [29]. Moreover, upregula-
tion of miR-145 induced resistance to anoikis and invasion 
potential in esophageal adenocarcinoma cells was associated 
with the downregulation of c-Myc, which led to the integrins 
subunits α5 and β3 expression [30].

Given that anoikis is a special form of apoptosis, the dys-
regulation of apoptosis-associated genes is observed to play 
a pivotal role in anoikis resistance of cancer cells [31]. Dys-
regulated TGF-β signaling was demonstrated to drive late-
stage breast cancer metastasis. MiR-181a induced by TGF-β 
promoted epithelial-mesenchymal transition, migration, and 
invasion in breast cancer cells [32]. Mechanistically, miR-
181a down-regulation significantly increased the expres-
sion of Bim, a proapoptotic protein molecule that sensitized 
metastatic cells to anoikis [32]. Zhao et al. hypothesized 
that miR-21, one of the most commonly observed aberrant 
miRNAs in human cancers, could contribute to tumor metas-
tasis by regulating anoikis in human esophageal adenocar-
cinoma. In fact, transfection of miR-21 mimics significantly 

enhanced the resistance to anoikis in esophageal adenocar-
cinoma cells by targeting PDCD4 and PTEN, which were 
involved in the regulation of many basic cellular functions 
including cell apoptosis [33].

MiRNAs act as negative regulators of anoikis 
resistance

Next, we reviewed the effect of miRNAs, function as tumor 
suppressor gene, on anoikis resistance in cancers (Table 2, 
Fig. 1).

Experimental evidence reported that tumor-suppressive 
miRNAs also can modulate anoikis resistance of cancer 
cells via triggering or inhibiting signaling pathways [1, 20]. 
For example, the introduction of miR-525-5p, which acts 
as a tumor suppressor gene, dramatically hampered anchor-
age-independent growth and anoikis resistance of cervical 
cancer cells via blocking ubiquitin-conjugating enzyme 
E2C (UBE2C)/ZEB1/2 signal axis [34]. In pancreatic 
cancer, miR-137 was decreased in pancreatic cancer cells 
(AsPC-1 and PANC-1 cell) after the induction of anoikis 
in time-dependent. Overexpression of miR-137 reduced the 

Fig. 1   microRNA (miRNA) 
regulates anoikis resistance in 
cancers via different mecha-
nism. It is described in Tables 1 
and 2
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resistance to anoikis in pancreatic cancer cells in vitro and 
in vivo by negatively modulating paxillin (PXN), which 
resulted in the activation of the AKT signaling pathways 
[35]. MiR-133a-3p and miR-133b were frequently low 
expression in various types of cancers and were reported to 
be tumor suppressors [36, 37]. In prostate cancer, upregula-
tion of miR-133a-3p suppressed cancer stem cell-like phe-
notypes and attenuated anoikis resistance of prostate can-
cer cells by directly targeting multiple cytokine receptors, 
including EGFR, FGFR1, IGF1R, and MET, which further 
inhibited PI3K/AKT signaling [38]. Also, in esophageal 
squamous cell carcinoma, miR-133b negatively modu-
lated anoikis resistance and anchorage-independent growth 
through the regulation of EGFR-mediated ITGB4/FAK/
Grb2, AKT, and ERK signaling [39]. Zhang and collabo-
rators verified that decreased in gastric cancer specimens, 
miR-204 reduced cell invasion and anoikis resistance in gas-
tric cancer cells via modulating the SIRT1-LKB1 pathway 
[40]. Additionally, the miR-204 levels were significantly 
down-regulated in an anoikis pattern of epithelial ovarian 
cancer cells. Furthermore, restored expression of miR-204 
enabled cells to acquire more sensitivity to anoikis through 
the inhibition of BDNF, contributing to the inactivation of 
the PI3K/AKT signaling pathway [41]. Besides, miR-296 
was involved in the inhibitory effects of epigallocatechin 
gallate (EGCG), the most active and abundant polyphenol 
in green tea, on anoikis-resistant nasopharyngeal carcinoma 
cells through the downregulation of STAT3 activation [42]. 
MiR-200c, an important member of the miR-200 family that 
emerged as a potent regulator of epithelial to mesenchymal 

transition, has been implicated in the resistance to anoikis in 
various cancers. Howe et al. identified, using a microarray 
profiling, several direct targets of miR-200c, including the 
genes encoding fibronectin 1 (FN1), moesin (MSN), neuro-
trophic tyrosine receptor kinase type 2 (NTRK2 or TrkB), 
leptin receptor (LEPR), and Rho GTPase activating protein 
19 (ARHGAP19) [43]. Among these targets, TrkB was a 
tyrosine kinase receptor that contributed to the ability of 
miR-200c to suppress anoikis resistance [43]. In ovarian 
cancer, restoration of miR-200c resulted in decreasing the 
resistance to anoikis and adherence to biologic substrates 
in ovarian cancer cells by targeting TrkB, a tyrosine kinase 
receptor [44]. Moreover, miR-200c overexpression enhanced 
anoikis sensitivity through the regulation of an NF-κB up-
regulated TrkB/NTF3 autocrine signaling loop in triple-
negative breast cancer [45]. All these data indicated that 
miRNAs as tumor suppressor genes and regulate the cancer-
associated signaling axis, leading to abnormal anoikis of 
tumor cells.

As transmembrane receptors, integrins are well known 
as adhesion molecules, which mediate cell-ECM interaction 
and exert important roles in regulating anoikis resistance 
[46, 47]. The study by Sa et al. showed that overexpression 
of miR-124 attenuated the anoikis resistance in colorectal 
cancer cells by targeting integrin alpha 3 (ITGA3), a mem-
ber of integrins [48]. In addition, miR-363-3p was found to 
suppress anoikis resistance of papillary thyroid carcinoma 
cells (B-CPAP cells) by negatively modulating its target 
gene integrin alpha 6 (ITGA6)[49]. Moreover, decreased in 
hepatocellular carcinoma tissues, miR-424-5p suppressed 

Table 2   MiRNAs inhibit 
anoikis resistance in cancers

miRNAs Type of cancer Target/axis References

miR-525-5p Cervical cancer UBE2C [34]
miR-137 Pancreatic cancer PXN [35]
miR-133a-3p Prostate cancer EGFR, FGFR1, IGF1R and MET; 

PI3K/AKT
[38]

miR-133b Esophageal squamous cell carcinoma EGFR [39]
miR-204 Gastric cancer SIRT1 [40]
miR-204 Epithelial ovarian cancer BDNF [41]
miR-296 Nasopharyngeal carcinoma STAT3 [42]
miR-200c – FN1; MSN; LEPR; ARHGAP19 [43]
miR-200c Ovarian cancer TrkB [44]
miR-200c Triple negative breast bancer NF-κB; TrkB/NTF3; [45]
miR-124 Colorectal cancer ITGA3 [48]
miR-363-3p Papillary thyroid carcinoma integrin alpha 6 [49]
miR-424-5p Hepatocellular carcinoma ICAT​ [50]
miR-10a Colorectal cancer MMP14; ACTG1 [51]
miR-30a Hepatocellular carcinoma Beclin 1;Atg5 [54]
miR-6744-5p Breast cancer NAT1 [57]
miR-26a Esophageal adenocarcinoma Rb1 [58]
miR-1827 Lung adenocarcinoma caveolin-1 [59]
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anoikis resistance in anchorage-independent hepatocellular 
carcinoma cells by targeting ICAT/CTNNBIP1, a potent 
b-catenin inhibitor [50]. MiR-10a, inversely correlated with 
distant metastasis and invasion depth of colorectal cancer, 
decreased cell adhesion and anoikis resistance activities by 
targeting matrix metalloproteinase 14 (MMP14) and actin 
gamma 1 (ACTG1). Furthermore, MMP14 is an ECM 
remodeling protein; while ACTG1 is involved in muscle 
contraction, cell motility, cell adhesion, and cell shape main-
tenance [51].

Autophagy, an evolutionarily conserved process, has 
been reported to be involved in the modulation of anoikis 
resistance in hepatocellular carcinoma [52, 53]. MiR-30a, 
decreased in hepatocellular carcinoma and cell lines, was 
proved to inhibit Beclin 1 and Atg5-dependent autophagy, 
and further suppress autophagy-mediated anoikis resistance 
and metastasis in hepatocellular carcinoma cells [54].

Reactive oxygen species (ROS) is verified to partici-
pate in the anoikis resistance [55, 56]. N-acetyltransferase 
1 (NAT1), a xenobiotic-metabolizing enzyme, has been 
unraveled to inhibit anoikis by suppressing ROS. Moreover, 
NAT1-mediated inhibitory effects on anoikis resistance were 
abolished by miR-6744-5p in both luminal A and triple-neg-
ative breast cancer cell lines [57].

Other mechanisms including cell cycle protein engaged 
in anoikis resistance of cancer cells. Zhang et al. reported 
that the suppression of miR-26a contributed to the anoikis 
resistance acquisition of esophageal adenocarcinoma cells. 
Also, the authors found that Rb1 was the direct target of 
miR-26a, and revealed that the reduction of miR-26a expres-
sion leads to increased Rb1 protein level and thus inhibits 
the function of E2F1, by which it influences the phenotypes 
of cell cycle and anoikis [58]. Guo and collaborators showed 
that the levels of miR-1827 were decreased in non-small cell 
lung cancer tumor tissues and cells, and were associated 
with tumor grade and lymph node metastasis. The upregula-
tion of miR-1827 suppressed anchorage-independent growth 
and anoikis resistance of lung adenocarcinoma A549 cells 

through negatively regulating the expression of caveolin-1 
(CAV-1)[59], an important regulator in anoikis resistance 
of cancer cells [60].

Impact of lncRNAs in anoikis resistance

LncRNAs are a type of ncRNA with > 200 nucleotides in 
length, which had not the ability of protein-encoding [12, 61, 
62]. It has been shown that lncRNAs function as important 
tumor modulators and participate in cancer pathogenesis, 
such as cell growth, metastasis, stemness, and drug resist-
ance [63–65]. An increasing body of research has suggested 
that dysregulation of lncRNAs played crucial roles in the 
modulation of anoikis resistance in various cancers [1].

LncRNAs act as positive regulators of anoikis 
resistance

Accumulating evidence documents that lncRNAs can also 
modulate anoikis resistance of cancer cells via regulating 
pathways, apoptosis-associated proteins, or other molecules 
(Table 3, Fig. 2).

The lncRNA HOTAIR, the HOX transcript antisense 
intergenic RNA, is upregulated and has been associated with 
poor prognosis, invasiveness, and aggressiveness of various 
cancer types [66, 67]. Small interfering RNA (siRNA)-medi-
ated knockdown of HOTAIR expression markedly reduced 
the abilities of anoikis resistance, migration, and invasion 
in the ovarian cancer cells under the suspension condition. 
Moreover, HOTAIR enhanced the anoikis resistance and 
spheroid forming ability of ovarian cancer cells by recruiting 
EZH2 and influencing H3K27 methylation [68]. In hepato-
cellular carcinoma, HOTAIR was also reported to be able 
to promote the escape from anoikis through downregulating 
c-Met signaling [69]. In addition, HOTAIR silencing mark-
edly decreased the anoikis resistance of gastric cancer cells 
[70]. Zhang and collaborators showed that lncRNA ANRIL 
was positively correlated with glioma grade. Silencing 

Table 3   The role of lncRNAs or 
circRNAs in regulating anoikis 
resistance in cancers

LncRNAs/CircRNAs Type of cancer Target/axis References

lncRNA HOTAIR Ovarian cancer EZH2/H3K27 [68]
lncRNA HOTAIR Hepatocellular carcinoma c-Met [69]
LncRNA ANRIL Glioma miR-203 [71]
LncRNA APOC1P1-3 Breast cancer miR-188-3p/Bcl-2 [72]
LncRNA MALAT1 Ovarian cancer RBFOX2/KIF1B [73]
LncRNA VAL Lung adenocarcinoma Trim16/Vimentin [74]
LncRNA FOXD2-AS1 Thyroid carcinoma miR-7-5p/TERT [75]
LINC00958 Bladder tumor – [76]
LncRNA-MAPK8IP1P2 Thyroid cancer miR-146b-3p [79]
CircSIPA1L1 Osteosarcoma miR-411-5p/RAB9A [85]
CircUBAP2 Lung cancer – [86]



1376	 Molecular and Cellular Biochemistry (2022) 477:1371–1380

1 3

lncRNA ANRIL obviously attenuated anoikis resistance and 
induced cell cycle arrest in G0/G1 phase, while regulating 
the activity of caspase-3/8/9 and the AKT signaling path-
way in glioma cells. Moreover, overexpression of miR-203a 
could partially reverse these functions [71].

The study by Lu et al. indicated that lncRNA APOC1P1-3 
was upregulated in malignant cell lines of breast cancer and 
was negatively associated with the survival rate of patients 
with breast cancer. Also, lncRNA APOC1P1-3 significantly 
enhanced the capacity of anoikis resistance of breast cancer 
cells by specifically binding to miR-188-3p to block the inhi-
bition of Bcl-2[72]. High lncRNA MALAT1 was shown to 
be associated with increased stage, recurrence, and reduced 
survival in ovarian cancer. The expression of lncRNA 
MALAT1 was markedly increased in multiple anoikis-resist-
ant ovarian cancer cell lines. Moreover, lncRNA MALAT1 
suppression resulted in decreased proliferation, invasion, 
anchorage-independent growth, and increased anoikis by 
regulating RBFOX2-mediated alternative splicing of the 
pro-apoptotic isoform of KIF1B [73]. These data suggest 
that lncRNA plays a key role in anoikis resistance by affect-
ing the expression of apoptosis-associated proteins.

Interestingly, lncRNA VAL induced by AKT signaling 
was found to promote cell adhesion, invasion, and anoikis 
resistance in lung adenocarcinoma through directly binding 
to Vimentin and competitively abrogating Trim16-depend-
ent Vimentin polyubiquitination and degradation [74]. 
LncRNA FOXD2-AS1, upregulated in thyroid carcinoma 
tissues and cells, promoted cancer stem cell-like phenotypes 
and enhanced the anoikis resistance in vitro by sponging 

miR-7-5p and up-regulating the expression of telomerase 
reverse transcriptase (TERT) [75]. Lastly, LINC00958 
was identified to be significantly upregulated in bladder 
tumor samples compared with normal samples. In addition, 
LINC00958 knockdown significantly attenuated anoikis 
resistance of bladder cancer cells [76].

LncRNA acts as negative regulators of anoikis 
resistance

As a crucial signaling pathway in cancers, inactivation of 
Hippo signaling is found to contributes to tumor progression 
and metastasis [77, 78]. LncRNA-MAPK8IP1P2, decreased 
in the thyroid cancer tissues with lymphatic metastasis, 
inhibited anoikis resistance in vitro and lymphatic metasta-
sis of thyroid cancer cells in vivo through the activation of 
Hippo signaling by sponging miR-146b-3p [79].

The role of circRNAs in anoikis resistance

CircRNAs are a kind of endogenous ncRNA that are sin-
gle-stranded closed-loop RNA molecules lacking termi-
nal 5' caps and 3' poly(A) tails [80, 81]. Emerging studies 
showed the key roles of circRNAs in regulating tumor pro-
gression [82–84], which also are involved in the regulation 
of anoikis resistance (Table 3, Fig. 2). CircSIPA1L1 was 
highly expressed in osteosarcoma tissue samples and cell 
lines. Knockdown circSIPA1L1 impaired the capacities of 
invasion, migration, proliferation, and survival of osteosar-
coma cells by regulating the RAB9A signaling pathway via 

Fig. 2   Long non-coding RNAs 
(lncRNAs) and circular RNAs 
(circRNAs) regulate anoikis 
resistance in cancers via differ-
ent mechanism. It is described 
in Table
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sponging miR-411-5p [85]. Yin et al. found that the expres-
sion of circUBAP2 was higher in lung cancer tissue samples 
than that in normal tissue samples. Moreover, circUBAP2 
silencing obviously reduced the anoikis resistance of lung 
cancer cells [86].

Conclusions

Given that anoikis resistance is the hallmark of invasive-
ness, metastasis, therapy resistance, and relapse of cancer 
cells [7], anoikis resistance provides an attractive target for 
cancer therapeutic benefit. It has been reported that aberrant 
ncRNA expression is associated with anoikis resistance in 
several types of human cancers [1], suggesting that targeting 
ncRNA-based therapeutic strategies may obviously suppress 
anoikis resistance of tumor cells and further reduce the inci-
dence of metastasis and recurrence. Anoikis resistance has 
been identified to be modulated by several factors including 
signaling pathways, cell adhesion, growth/apoptosis pro-
tein, oxidative stress, stemness, autophagy, and metabolic 
reprogramming [7]. Although ncRNAs exert the regulatory 
effects on anoikis resistance via multiple mechanisms, the 
role and mechanisms of ncRNA in the modulation of anoikis 
resistance remain to be resolved. For example, the Warburg 
effect, more specifically, diminished glucose oxidation, pro-
moted anoikis resistance and metastasis in cancers [7, 87], 
but which and how ncRNA is involved in anoikis resistance 
by regulating the Warburg effect remains unclear. Hence, it 
is of great importance to in-depth investigate the role and 
mechanisms of ncRNA in anoikis resistance at the current 
stage. Based on our knowledge from the available literature, 
the role of miRNAs in anoikis resistance has been relatively 
demonstrated, but the effect of lncRNA and circRNA in the 
mechanism of anoikis resistance still largely stay in the early 
stage. For instance, only two circRNAs, circSIPA1L1 and 
circUBAP2, were verified to participate in the regulation 
of anoikis resistance in osteosarcoma or lung cancer [85, 
86]. Therefore, further investigation is warranted to deter-
mine how specific lncRNA or circRNA influence the role 
of anoikis resistance in cancers. Although some problems 
remain for the relationship between ncRNAs and anoikis 
resistance, verify the detailed function and mechanism of 
ncRNA on anoikis resistance, which may contribute to a 
better understanding of cancer metastasis and provide new 
insights into the treatment of this disease.
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