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Abstract
Myocardial infarction (MI) is a myocardial necrosis disease caused by continuous ischemia and hypoxia. Abnormal expres-
sion of aldolase A (ALDOA) has been reported in cardiac hypertrophy, heart failure and other cardio-cerebrovascular 
diseases. The present study aims to explore the effects of ALDOA on hypoxia/reperfusion (H/R)-induced oxidative stress, 
and investigate the underlying mechanisms. ALDOA was expressed at a low level in blood samples from MI patients and 
H/R-induced H9C2 cardiomyocytes. Overexpression of ALDOA suppressed H/R-induced oxidative stress and apoptosis. 
Using co-immunoprecipitation and protein blots, we demonstrated that ALDOA modulates the Notch 1–Jagged 1 signalling 
pathway by upregulating VEGF. Taken together, our data reveal that ALDOA protects cardiomyocytes from H/R-induced 
oxidative stress through the VEGF/Notch 1/Jagged 1 axis, and should be investigated as a therapeutic target for the treat-
ment of MI in future.
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Introduction

Myocardial infarction (MI) is a cardiovascular disease of 
myocardial necrosis caused by continuous ischemia and 
hypoxia [1]. Oxidative stress is implicated in the patho-
genesis of MI [2]. MI dramatically influences the cardio-
vascular, respiratory and digestive systems of patients, and 
even leads to devastating injury [3]. To date, the common 
therapeutic strategies for MI include intensive care, drug 
therapy, antiarrhythmic activity and reperfusion therapy 
[4]. Despite dramatic improvements in MI treatment, the 
incidence and prevalence of MI continue to increase [5]. 
Therefore, it is of value to illuminate the potential effects of 
pathogenesis-related genes on MI and investigate the under-
lying mechanisms.

Aldolase A (ALDOA) plays pivotal roles in energy bal-
ance, gluconeogenesis and glycolysis [6]. Abnormal expres-
sion of ALDOA results in cardiac hypertrophy, heart fail-
ure and other cardio-cerebrovascular diseases [7]. Previous 
studies revealed that ALDOA is dramatically upregulated in 
hypertrophic hearts [8, 9], and silencing of ALDOA inhibits 
cardiac hypertrophy in vivo [8]. Furthermore, ALDOA con-
tributes to the myocardial stress-gene response [10]. Over-
expression of ALDOA strengthens resistance to myocardial 
injury in rats [6]. A recent study revealed that ALDOA is 
differentially expressed in patients during MI compared to 
control [11]. However, the role of ALDOA in MI and the 
underlying mechanisms are poorly understand.

Vascular endothelial growth factor (VEGF) is a key 
mediator of angiogenesis, and participates in cell growth, 
apoptosis and the immune-inflammatory response [12]. 
Anoxia, surgery and myocardial ischemia reperfusion 
injury trigger the VEGF cascade and activate the Notch 
signalling pathway, thus promoting apoptosis and oxidative 
stress [13]. Inhibition of VEGF protects mice against renal 
ischemic–reperfusion (I/R)-induced injury [14]. Activation 
of the VEGF/Notch 1 signalling pathway attenuates cellular 
senescence in H9C2 cardiomyocytes [15]. Furthermore, it 
has been reported that ALDOA decreases the mRNA level 
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of VEGF, and downregulation of VEGF leads to a dramatic 
exacerbation of MI [16, 17].

In the current study, we detected ALDOA expression 
levels in blood samples from MI patients and hypoxia/rep-
erfusion (H/R)-induced H9C2 cells, and assessed the effects 
of ALDOA on H/R-induced oxidative stress and apoptosis. 
Furthermore, the underlying mechanism of ALDOA in the 
mediation of H/R-induced MI was also explored.

Materials and methods

Blood sample collection

The blood samples from 24 patients with myocardial infarc-
tion and 28 healthy subjects who were admitted more than 
24 h after the onset of chest pain were collected from Xi’an 
No 5 hospital (Shaanxi, China) between August 2017 and 
December 2018. These participants included 22 males and 
30 females, aged from 40 to 56 years. Myocardial infarc-
tion was diagnosed based on the Framingham Heart Study. 
Serum samples were separated by centrifugation at 1000×g 
for 10 min. Each serum supernatant was collected and stored 
at − 80 °C until use. The study was approved by the ethics 
committee of Xi’an No 5 hospital, and informed consent was 
obtained from all subjects.

Cell culture

The H9C2 cell line was purchased from the Chinese Type 
Culture Collection (Shanghai, China) and cultured in Dul-
becco’s Modified Eagle’s Medium (DMEM) at 37 °C, 5% 
CO2. The H/R model of cardiomyocytes was constructed 
by oxygen‐glucose deprivation/recovery (OGD/R) assay. In 
brief, ALDOA-treated H9C2 cell line was cultured in serum‐
free DMEM at 37 °C in a hypoxia chamber with 94% N2, 5% 
CO2 and 1% O2 (OGD) for 10 h, then glucose and 10% FBS 
(Gibco, Carlsbad, CA, USA) were added to the culture plate. 
Cells were then cultured under normal growth conditions for 
an additional 12 h.

Transfection experiments

HepG2-ALDOA (ALDOA), pcDNA-VEGF (VEGF), si-
VEGF and negative control (NC) were synthesised by 
Ribobio (Guangzhou, China). H9C2 cells were plated into 
a 6-well plate at a concentration of 5 × 105 cells/ml and cul-
tured for 24 h at 37 °C. Subsequently, H9C2 cells were trans-
fected with 0.15 μg of these plasmids using Lipofectamine 
2000 (Invitrogen) according to the manufacturer’s protocol. 
All luciferase assays were repeated in three independent 
experiments. The cells were harvested by trypsinisation 48 h 
post transfection and firefly and Renilla luciferase activity 

were measured using the Dual-Luciferase Reporter Assay 
System (Promega). All firefly luciferase values were nor-
malised to Renilla luciferase activity.

RNA extraction and RT‑qPCR

Total RNA was isolated from serum or H9C2 cells using 
TRIzol reagent (Invitrogen; Thermo Fisher Scientific, Inc.), 
followed by reverse transcription reaction using the Revert 
Aid cDNA Synthesis kit (Transgen Biotech; Beijing). The 
RT‐qPCR was performed using qPCR SYBR-Green Master 
Mix (Takara, Dalian, China) in a DNA Engine Opticon™ 
system (MJ Research, Waltham, MA). β-actin was used as 
the references for the DNA template. The 2−ΔΔCt method 
was applied to quantify gene expression. Each sample was 
analysed in triplicate.

Enzyme‑linked immunosorbent assay (ELISA)

Serum samples were separated by centrifugation at 1000×g 
for 10 min. The level of ROS generation, malondialdehyde 
(MDA) and superoxide dismutase (SOD) activity were 
detected using appropriate ELISA kits (Abcam, Cambridge, 
UK) according to the manufacturer’s protocols. The absorb-
ance was measured at 450 nm under a microplate reader 
(Olympus, Tokyo, Japan). The concentration of ALDOA 
was obtained from a calculation based on the standard curve.

Annexin V assay

Transfected cells were plated into a 6-well plate at a con-
centration of 5 × 105 cells/ml and cultured for 24 h at 37 °C. 
Then, 6 µl of annexin-V-FITC was added to the trypsinised 
cells. After storing at room temperature for 25 min away 
from light, 400 μl PBS/well was added. Apoptosis was sub-
sequently assessed using a fluorescence microscope (Olym-
pus, Tokyo, Japan).

Western blotting

H9C2 cells were lysed with RIPA lysis buffer (Solarbio, 
Beijing, China) containing a protease inhibitor mixture 
(Solarbio, Beijing, China). The concentration of proteins 
were determined with the BCA assay (Pierce, Rockford, 
IL). Lysates were denatured with loading buffer at 100 °C 
for 5 min. Then, equal protein amounts were loaded on 
SDS-PAGE (12%) and transferred onto PVDF mem-
branes, eliminating non-specific staining with blocking 
reagents. The member was probed with primary Abs 
(1:1000) at 4  °C overnight, followed by a PBS wash, 
incubation with an HRP-labelled secondary Abs (1:2000) 
and development using ECL (Luminata Forte, Millipore, 
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USA). The protein bands were quantified using Image J 
(National Institutes of Health, USA).

Co‑immunoprecipitation

H9C2 cells were lysed with RIPA lysis buffer (Solar-
bio, Beijing, China). Protein A/G-agarose was diluted to 
the working concentration of 50% with PBS. Then, the 
solution was added to samples (100 µl/ml) and shaken 
for 10 min at 4 °C. After centrifugation at 14,000×g for 
10 min, the supernatant was collected in a new centrifu-
gal tube. The concentration of proteins were determined 
with the BCA assay (Pierce, Rockford, IL). The primary 
Abs were added and incubated at 4 °C overnight. Sam-
ples were then centrifuged at 14,000×g for 5 min and the 
supernatant was collected for subsequent studies.

Statistical analysis

The expression of ALDOA in blood samples and H9C2 
cells was evaluated with Mann–Whitney test. The effects 
of ALDOA on H/R-induced oxidative stress and apoptosis 
were analysed by the Kruskal–Wallis test, followed by 
Dunn’s Test. The experiments performed in this study 
were repeated at least three times and data are expressed 
as standard error of mean (SEM). p < 0.05 was consid-
ered significant. The software used was SPSS version 22 
(SPSS Inc, Chicago, IL).

Results

ALDOA is downregulated in MI patients 
and H/R‑induced cardiomyocytes

As shown in Fig. 1a, the expression of ALDOA in blood 
samples of MI patients were dramatically lower than in 
the healthy group. Furthermore, the mRNA expression of 
ALDOA was decreased in H/R-induced H9C2 cells com-
pared with the control (Fig. 1b). ALDOA mimic transfection 
effectively overexpressed ALDOA (Fig. 1b).

ALDOA suppresses H/R‑induced oxidative stress 
and apoptosis

We next investigated the effects of ALDOA on oxidative 
stress and apoptosis in H/R-induced H9C2 cells. The results 
reveal that treatment with H/R significantly promoted apop-
tosis (Fig. 2a), elevated the protein expression of cleaved 
caspase-3 and Bax, and inhibited Bcl-2 protein expression 
(Fig.  2b). Overexpression of ALDOA suppressed H/R-
induced apoptosis (Fig. 2b). ELISA showed that H/R treat-
ment led to increased ROS and MDA levels, and decreased 
SOD activity (Fig. 2c–e).

ALDOA positively regulates VEGF protein expression

Accumulating evidence demonstrates that VEGF plays vital 
role in H/R-induced apoptosis and oxidative stress [18, 19]. 
Our results show that the protein and mRNA expression 
of VEGF were inhibited by H/R treatment, and ALDOA 

Fig. 1   Expression of ALDOA detected in the H/R-induced H9C2 
cells and blood samples from patients with MI. Serum samples were 
separated by centrifugation at 1000 × g for 10 min. Each serum super-
natant was collected and stored at − 80 °C until use. a The expres-
sion of ALDOA in MI blood samples was measured by RT-qPCR. 

*p < 0.05 compared with healthy. b The expression of ALDOA in the 
H/R-induced H9C2 cells were determined by RT-qPCR. *p < 0.05 
compared with control. The results are presented as mean ± SEM 
from three independent experiments
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reversed the inhibitory effect of H/R on VEGF expres-
sion (Fig. 3a, b). The luciferase reporter assay showed that 
HEK293T cells co-transfected with WT VEGF 3′UTR 
luciferase reporter plasmids and ALDOA has a significant 
decrease in luciferase activity, whereas the mutant groups 
had no influence on luciferase activity (Fig. 3c). Moreover, 
VEGF was found to co-precipitate with ALDOA (Fig. 3d). 
The expression of VEGF was lower in blood samples of MI 
patients than healthy participants (Fig. 3e). The Pearson cor-
relation analysis indicated that a positive correlation exists 
between ALDOA and VEGF (Fig. 3f).

ALDOA activates the Notch pathway by regulating 
VEGF

VEGF has been shown to be involved in regulating the Notch 
signalling pathway in endothelial cells and human pluripo-
tent stem cells [20, 21], but whether ALDOA modulates the 
Notch pathway through VEGF is unclear. The efficiency of 
pcDNA-VEGF and VEGF siRNA is shown in Fig. 4a. VEGF 
dramatically promoted Notch 1 and Jagged 1 protein expres-
sion, and si-VEGF treatment showed the opposite results 
(Fig. 4b–d). Moreover, the protein expression of p-STAT3/
STAT3 and p-JAK2/JAK2 underwent no significant change 
with VEGF or si-VEGF transfection (data not showed).

VEGF modulates the Notch pathway and reverses 
the effects of ALDOA on H/R‑induced oxidative 
stress and apoptosis

We next studied the involvement of VEGF in H/R-induced 
H9C2 cells. The results show that VEGF siRNA further 
elevated the H/R-induced expression of cleaved caspase-3, 
Bax, ROS and MDA (Fig. 5a–d), and inhibited Bcl-2 protein 
expression and SOD activity (Fig. 5e). Moreover, transfec-
tion with VEGF siRNA abolished the inhibitory effect of 
ALDOA on H/R-induced H9C2 cells (Fig. 5c–e). Similarly, 
treatment with the Notch inhibitor carvacrol also abolished 
the inhibition effect of ALDOA on oxidative stress and 
apoptosis in H/R-induced H9C2 cells. (Fig. 5a–e).

Discussion

ALDOA is a key regulator of cytokine signal transduction 
and plays important roles in cell proliferation, invasion and 
other molecular events [22]. Previous studies have revealed 
that ALDOA is expressed in acute coronary syndrome at a 
low level [23, 24], and that treatment with ALDOA effec-
tively moderates the severity of chronic heart failure [25]. 
Moreover, aberrant expression of ALDOA is closely related 

Fig. 2   ALDOA reduces H/R-induced oxidative stress and apoptosis. 
After treatment with H/R, cells were respectively transfected with the 
NC or ALDOA. a The apoptotic rate was detected by the Annexin V 
assay. b The protein expression of cleaved caspase-3, Bcl-2 and Bax 

were determined by western blotting. c–e ROS generation, MDA lev-
els and SOD activity were detected by ELISA. The results are pre-
sented as mean ± SEM from three independent experiments. *p < 0.05
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to the occurrence of hypertension, cardiac hypertrophy and 
ventricular arrhythmia [8]. High expression of ALDOA sug-
gests the incidence of cardiac inflammation and fibrosis [26, 
27]. Knockdown of ALDOA inhibits isoproterenol-induced 
cardiomyocyte hypertrophy [8]. A recent study showed 
that ALDOA is dramatically decreased in MI rats [11]. In 
accordance with these results, we confirmed that ALDOA is 
downregulated in MI patients and H/R-induced H9C2 cells, 
and has a protective effect against MI.

Oxidative stress in cardiomyocytes during the develop-
ment of cardiac injury has increasingly drawn attention 
[28]. Previous studies have reported that oxidative stress is 
associated with the level of ROS, MDA and SOD activity 
in angiocardiopathy [29, 30]. Accumulation of ROS causes 

cardiac inflammation and apoptosis, ultimately resulting in 
myocardial injury [31]. MDA contributes to lipid peroxida-
tion and mitochondrial metabolism [32]. Moreover, restor-
ing the balance of SOD alleviates cardiac function in mice 
with heart failure [33]. The occurrence of oxidative stress 
aggravates myocardial necroptosis [34]. In the current study, 
ALDOA was found to decrease ROS and MDA levels, and 
protected cardiomyocytes against H/R-induced apoptosis 
and oxidative stress. As a part of multi-enzyme glycolytic 
complexes that attached to mitochondria [35], ALDOA may 
contribute to the biogenesis of ATP [36], and thus decrease 
the oxidative stress [37].

The involvement of the Notch pathway in oxidative stress 
has been described in previous studies [38, 39]. Activation 

Fig. 3   ALDOA directly regulates VEGF. Cells were respectively 
transfected with the NC mimic or ALDOA mimic. Samples were 
collected after transfection for 48 h. The mRNA (a) and protein (b) 
expression of VEGF were detected in H9C2 cells. c The luciferase 
activity of the VEGF 3′UTR luciferase reporter vector was deter-
mined using the luciferase reporter assay. d The ALDOA–VEGF 

interaction was investigated by co-immunoprecipitation. e The levels 
of VEGF in MI patients were detected by RT-qPCR. f The relation-
ship between ALDOA and VEGF was determined by Pearson analy-
sis. The results are presented as mean ± SEM from three independent 
experiments. *p < 0.05
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of Notch 1 contributes to production of ROS and promotes 
mitochondrial oxidative phosphorylation [40]. Translation 
of VEGF has a promoting effect on the Notch 1 signalling 
pathway [20]. Moreover, Notch 1 protects the heart from I/R 
injury by counteracting oxidative/nitrate stress and increas-
ing endothelial NOS phosphorylation [41]. A recent study 
showed that inhibiting VEGF blocks the Jagged 1/Notch 
1 signalling pathway, counteracting the antisenescence 
effects on Dox-induced cardiomyocytes [42]. The data in 
the current study show that ALDOA upregulates VEGF and 

triggers the Notch 1 pathway, inducing a cardioprotective 
effect in H/R-induced H9C2 cells.

In conclusion, our study revealed that ALDOA is 
expressed at low levels in blood samples from MI patients 
and H/R-induced H9C2 cells, and overexpression of 
ALDOA attenuates H/R-induced oxidative stress and apop-
tosis. Moreover, VEGF contributes to the activation of the 
Notch 1 signalling pathway, and ALDOA modulates H/R-
induced oxidative stress and apoptosis by the VEGF/Notch 
1 pathway. ALDOA may act as a potential target for the 
development of therapeutics against MI.

Fig. 4   VEGF regulates the Notch pathway in H9C2 cells. After stim-
ulation with H/R, cells were respectively transfected with the NC, 
VEGF siRNA (si-VEGF) or pcDNA-VEGF (VEGF). a The protein 

expression of VEGF, Notch 1 and Jagged 1 were detected using west-
ern blotting. b–d The protein expression of VEGF, Notch 1 and Jag-
ged 1 were quanlifited. *p < 0.05
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