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Abstract
Bilateral ovariectomy is the best characterized and the most reported animal model of human menopause. Ovariectomized 
rodents develop insulin resistance (IR) and visceral obesity, the main risk factors in the pathophysiology of metabolic syn-
drome (MS). These alterations are a consequence of hypoestrogenic status, which produces an augment of visceral fat, high 
testosterone levels (hyperandrogenism), as well as inflammation, oxidative stress, and metabolic complications, such as dys-
lipidemia, hepatic steatosis, and endothelial dysfunction, among others. Clinical trials have reported that menopause per se 
increases the severity and incidence of MS, and causes the highest mortality due to cardiovascular disease in women. Despite 
all the evidence, there are no reports that clarify the influence of estrogenic deficiency as a cause of MS. In this review, we 
provide evidence that ovariectomized rodents can be used as a menopausal metabolic syndrome model for evaluating and 
discovering new, safe, and effective therapeutic approaches in the treatment of cardiometabolic complications associated to 
MS during menopause.
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Introduction

The sex‑bias in basic and clinical research 
and the vulnerability of menopausal women

Sex is the main determinant of our physical attributes, the 
structure of our brains, our behavior, the susceptibility, 
progression, and response to diseases, and our own con-
ception of self [1]. Despite this sexual identity, biomedical 
scientists have ignored the clear and important differences 
between males and females [2], i.e., analysis of the scien-
tific literature in numerous disciplines shows that there is an 
indisputable sex-bias: “males are studied much more than 
females, in both animal and human research”. In fact, drug 

development is based on research on males, even for diseases 
that are more frequent in females, and despite evidence that 
drug metabolism and efficacy differ in the two sexes [1]. For 
this reason, the National Institutes of Health in the United 
States recently ordered the inclusion of both sexes in clini-
cal trials and basic research [3], with the aim of promoting 
gender-specific therapies that can contribute to developing 
individualized therapies in the future [2].

Sexual identity is highly influenced by hormones. Hor-
mones are the most amazing molecules in biochemistry, i.e., 
they are the only ones that can achieve the formation, grow-
ing, differentiation, functioning, behavior, and reparation of 
an entire organism, acting at minimal concentrations [4–7]. 
Moreover, sex hormones are responsible for sexual differ-
entiation (phenotype and behavior), and participate impor-
tantly in the maintenance of metabolic homeostasis [8, 9]. 
Among sex hormones, estrogens distinguish themselves for 
their protector role on cardio-metabolism, playing a very 
important function in the regulation of body fat distribu-
tion, and maintenance of metabolic health through several 
mechanisms, like (1) reduction in food intake maintaining 
an anorexigenic tone and improving satiety signals [10, 
11], (2) regulating body fat distribution, favoring the sub-
cutaneous and gluteal-femoral fat depot and preventing the 
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visceral storage [10, 12], (3) promoting browning of adipose 
tissue, increasing the catabolism of fatty acids and glucose 
[10, 13, 14], while improving insulin and leptin sensitiv-
ity [15, 16], (4) acting as anti-inflammatory and antioxi-
dant agents that prevent endothelial dysfunction, vascular 
inflammation and atherosclerosis [17–21], and (5) stimulat-
ing the release of calcitonin gene-related peptide (CGPR) 
from perivascular nerves, and nitric oxide production in 

blood vessels promoting anti-hypertensive actions [22–24] 
(Fig. 1). Considering all these positive effects of estrogens 
on cardio-metabolism, it seems reasonable to suppose that 
a hypoestrogenic state could promote the development of 
metabolic syndrome (MS) through several mechanisms, like 
visceral obesity development, and the resulting inflamma-
tory and oxidative states, which together with atherogenic 
dyslipidemia contributes and/or aggravates a simultaneous 

Fig. 1  Estrogen pathways for metabolic regulation and body weight 
maintenance. Acting mainly by estrogen receptors alpha (ERα), 
estrogens reduce food intake increasing leptin sensitivity, and the 
potency of anorectic signals like cholecystokinin (CCK) and pro-
opiomelanocortin (POMC), at the same time estrogens reduce the 
signaling of orexigenic molecules like neuropeptide Y (NPY) and 
ghrelin, also modulate brown adipose tissue (BAT) thermogenesis 
through AMPK → β3 → UCP1 pathway, and promote mitochondrial 
biogenesis. In subcutaneous adipose tissue (AT), estrogens increase 
the expression of the antilipolytic α2 adrenoceptors, and augment the 
activity of lipoprotein lipase (LPL) promoting the uptake and storage 
of fatty acids, meanwhile in visceral adipose tissue increase lipolytic 
β1-2 adrenoceptors and reduce LPL activity, increasing lipolysis and 
preventing the visceral storage of fat in the abdominal cavity. Estro-
gens, also promote hyperplasic adipose tissue expansion (related with 
an increase in insulin sensivity) over hypertrofic procces (related to 

oxidative stress, fibrosis and immflamation). Regarding energetic 
metabolism, estrogens increase insulin sensitivity improving glucose 
uptake through specific transporters, and aughmenting glucose catab-
olism by activation of key enzymes, also increase lipid catabolism by 
lipolysis and β-oxidation, and reduce total colesterol and LDL frac-
tion, preventing the development of atherogenic dyslipidemia. Estro-
gens can act as scavengers of free radicals by it self, but their anti-
oxidants effects also are mediated by ERα activation and upregulation 
of enzymatic and no enzymatic antioxidant defenses, reduction of 
reactive species oxygen (ROS) production by renin-angiotensin sys-
tem (RAS)/NADPH oxidase inhibition, and indirectly, promoting a 
decrease in the expression of iNOS, and levels of inflammatory mark-
ers (TNFα, IL-1β, IL-6, MCP-1). Finally, estrogens promote vascular 
relaxation through PI3K/Akt/eNOS pathway activation and calcitonin 
gene-related peptide (CGPR) release
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development of insulin resistance. All these conditions can 
lead to endothelial dysfunction and hypertension, which in 
turn promotes complications such as myocardial infarction 
and stroke, or the development of other chronic diseases 
like type two diabetes (T2D), which increase the risk of 
mortality in menopausal women [11, 15] (Fig. 2). In this 
way, estrogens have been assigned as main responsible for 
prolonged life span and cardiometabolic health in premeno-
pausal women, and represent the main biological advantage 
in nature compared to males.

Among estrogens, 17β-estradiol (E2) is the most abundant 
and potent in humans [24], its production in females before 

the hormonal decline mainly occurs in the ovaries after the 
aromatization of androgenic precursors by aromatase. After 
estrogenic deficit and in males, estradiol is synthesized in 
extragonadal sites, such as the adipose tissue, where it acts 
locally as a paracrine or intracrine factor [12]. The protec-
tor effects of estrogens result from their interaction with 
classical estrogen receptors (ERs), ERα and ERβ, as well 
as the more recently identified G-protein coupled recep-
tor 30 (GPER30)/G-protein estrogen receptor 1 (GPER1), 
and exert their actions via both genomic and non-genomic 
mechanisms [17]. However, the majority of cardiometabolic 
protector effects for estrogens are mediated by ERα, which 
is in higher proportion than ERβ in key tissues for meta-
bolic regulation; indeed, estrogen receptor alpha knockout 
(ERαKO) mice show severe alterations in their metabolism 
suggesting that the beneficial effects of E2 are mainly medi-
ated by this receptor and not by ERβ since ERβKO mice 
do not show important alterations in these parameters [11, 
15]. Like the other sex hormones, E2 is transported from 
circulation to target tissues by sex-hormone binding globulin 
(SHBG), whose diminished concentrations during estrogenic 
deficiency (menopause, Poly Cystic Ovary Syndrome) are 
highly related with insulin resistance and MS development 
[25]. Actually, it has been amply reported that the risk for 
developing chronic diseases such as central obesity, T2D, 
hypertension, hepatic steatosis, and cardiovascular disease 
or MS is higher in males than in females just before estro-
genic deficiency, and it is well known that this prevalence 
shifts during the menopausal transition and after that. Clini-
cal consequences of cardiovascular disease usually manifest 
7–10 years later in women than in men when the protector 
effects of estrogens are lost. In this condition, the risk of 
metabolic disturbances and cardiovascular events, such as 
myocardial infarction and stroke, increase importantly and 
tend to have a more severe prognosis and a higher mortality 
in women [26–28].

Unfortunately, despite menopause and its metabolic and 
cardiovascular consequences affect all women, some of them 
for decades, there is not an urgent and priority concern in 
the agenda of governments’ health services or in the research 
field to face this growing problem [11, 26]. Hence in this 
review, we propose the use of an animal model that ade-
quately represents the contribution of estrogenic deficiency 
in the pathophysiology of MS, this model will allow the 
research and development of new and safe therapeutic strate-
gies for metabolic syndrome during menopause, an increas-
ing public health problem that affects a large segment of the 
female population.

Fig. 2  The reduction of estrogens signaling promotes the develop-
ment of metabolic syndrome and increases mortality. Hypoestrogen-
ism promotes the development of metabolic syndrome (MS) through 
visceral obesity development, and the resulting inflammatory and 
oxidative states, which together with atherogenic dyslipidemia, con-
tributes and/or aggravates a simultaneous development of insulin 
resistance. All these conditions can lead to endothelial dysfunction, 
hypertension, cardiovascular disease (CVD), stroke, or type 2 dia-
betes (T2D), increasing the risk of mortality in menopausal women 
seriously



264 Molecular and Cellular Biochemistry (2020) 475:261–276

1 3

Metabolic syndrome during menopause

Menopause is an inevitable component of aging in women; it 
is defined as the permanent cessation of the menstrual cycle 
owing to the loss of ovarian reproductive function, either 
occurring spontaneously by follicular atresia or secondary to 
other conditions such as the removal of the ovaries or chem-
otherapy [26]. The transition to menopause is characterized 
by metabolic changes that promote the development of MS 
[29]. The MS is related to a set of cardiovascular, renal and 
hepatic risk factors that favor the development of T2D. In 
general, there is a consensus to obtain a clinically useful 
definition that includes the presence of at least three of the 
following factors: abdominal obesity, fasting hyperglycemia, 
hypertension, dyslipidemia, and insulin resistance [30–33]. 
Currently, oxidative stress, chronic low-grade inflamma-
tion, and a prothrombotic state have also been considered 
[34–36], as well as a decrease in SHBG [37, 38]. Observa-
tional studies have shown that the prevalence of MS is lower 
in women at reproductive age in comparison with men of 
the same age. However, this advantage disappears along the 
transition stage to the establishment of menopause [38, 39], 
where the incidence of MS increases 2–3fold [40, 41]; even 
several reports show that cardiovascular risk and mortal-
ity for coronary heart disease increase up to 4–5 times in 
postmenopausal women [42, 43], indicating that the loss of 
estrogens is fundamental in the development of the main risk 
factors associated with MS. Accordingly, evidence suggests 
that estrogenic deficiency in menopause is a predictor of 
MS independent of aging [43]. These issues are especially 
important because women will spend at least a third of their 
lives in a postmenopausal state.

The changes that promote the development of MS during 
and after the menopausal transition are a consequence of 
hypoestrogenic status which produces an increase in android 
body fat, a decrease in muscle mass, and an important pre-
disposition to develop insulin resistance [44–46]; thereby, 
the increase in visceral adipose tissue contributes to the rise 
in the production of cytokines and the establishment of a 
pro-inflammatory state (Fig. 2) [47]. In this regard, when 
all MS factors are adjusted for age in women, only abdomi-
nal obesity and insulin resistance were associated signifi-
cantly with a postmenopausal status, and it is independent 
of general adiposity before postmenopausal state [41, 48]. 
In addition, if women are overweight at the time of entering 
menopause, there is a higher probability of developing MS 
over the years [37].

In menopausal women the prevalence of MS is higher 
in those subjected to ovariectomy, compared with who had 
natural menopause [49], probably the removal of ovaries in 
women under 45 years promotes an acute reduction of estro-
gen that causes the accelerated appearance of menopause, 

along with the development of obesity, an increase in the 
production of atherogenic lipoproteins, and oxidation of 
LDL [50, 51]; there is also an elevation in arterial vascular 
tone as a consequence of the reduction of vasodilator pep-
tides, and a rise in vasoconstrictor peptides [52]. Likewise, 
these women have a higher risk of developing T2D and car-
diovascular disease compared with their counterparts in the 
general population [51]. Therefore, the sudden change in the 
hormonal status resultant from surgery promotes the devel-
opment of cardiovascular risk factors such as obesity, hyper-
tension, dyslipidemia, and insulin resistance [44, 53, 54]. On 
the other hand, the decrease in estrogen production during 
menopause has been associated with increased androgen 
production (testosterone), which promotes the elevation of 
blood pressure, triglycerides, and increased risk of develop-
ing insulin resistance favoring the manifestation of MS [37, 
38, 55]. Notwithstanding, visceral obesity, and hypertriglyc-
eridemia, in addition to the metabolic implications that have 
in menopause, are also associated with the appearance of 
other factors, for example, dry skin, depression, and lack of 
sexual desire [56]. Thus, in summary, menopause is associ-
ated with the onset and progression of the main components 
of MS and other factors that significantly affect the quality 
of life of women in a hypoestrogenic state.

Inflammatory markers and their 
involvement in Metabolic Syndrome (MS) 
development

Inflammation is one of the main risk factors recently consid-
ered as a big contributor in the physiopathology of metabolic 
syndrome; indeed, its role as the link between obesity, insu-
lin resistance, atherogenic dyslipidemia, and cardiovascu-
lar disease begins to emerge as a key in the promotion and 
development of several diseases [57–60]. Obesity promotes 
a low-grade activation of the innate immune system and the 
development of inflammation that contributes significantly 
to the onset of alterations present in MS [57, 58]. The main 
source of proinflammatory cytokines in MS are adipocytes 
and macrophages, where the latter may have a change in 
their phenotype that makes them more proinflammatory, and 
together with leading to an overproduction of proinflamma-
tory cytokines that initially promote localized inflammation 
and subsequently propagates to systemic level [57–59]. In 
this way, adipocytes and macrophages can produce proin-
flammatory cytokines such as interleukin-1 beta (IL-1β), 
interleukin-6 (IL-6) and the tumor necrosis factor-alpha 
(TNF-α) that have been closely associated with the patho-
physiology of MS. These proinflammatory cytokines can act 
paracrine or autocrine manner, promoting their own release 
through positive feedback that allows them to initiate and 
maintain the inflammatory state for long periods of time 
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[59]. The main molecular mechanisms through which IL-1β, 
IL-6 and TNF-α exert their effects have been mainly associ-
ated with the activity of transcription factors such as NF-κB, 
JNK, and STAT, related with the proinflammatory effects 
of obesity, development of insulin resistance, and endothe-
lial dysfunction which also have played a central role in the 
development of metabolic disorders such as T2D [57–60].

Use of estrogenic dysfunction models 
in the study of factors associated 
with the metabolic syndrome

Currently, there is a wide need to understand the pathophysi-
ology of various metabolic disorders present in large part 
of the population worldwide, mainly those associated with 
MS and T2D. For this reason, it is important to develop 
animal models that mimic these pathologies and provide 
information on their development, progression, and preven-
tion. Thereby, experimental models of metabolic altera-
tions induced by the consumption of hypercaloric diets 
[61], transgenic models, and drugs, especially in rodents, 
have been widely used to understand their relationship with 
several alterations associated with MS and its subsequent 
complications [62, 63]. In this sense, these models allowed 
to scrutinize a wide variety of diseases related to MS, such 
as hypertension, cardiomyopathy, atherosclerosis, kidney 
damage, hepatic steatosis, Alzheimer and insulin resist-
ance [64–69]. Notably, due to the importance of estrogens 
in metabolism, the use of animal models for loss, deficiency 
or resistance to estrogens, like ovariectomized rats and mice, 
aromatase knockout (ARKO) mice, and ERαKO mice has 
been used to evaluate many of the factors associated with 
MS (Table 1) [14].

Ovariectomized rats and mice develop the majority 
of metabolic syndrome risk factors

After ovariectomy, there is an increase in visceral adipose 
tissue storage, which promotes serious metabolic distur-
bances that include insulin resistance, dyslipidemia, hyper-
leptinemia, and lower adiponectin concentrations; these 
metabolic derangements also occurring during menopause 
and may trigger cardiovascular disease in women [70]. Sup-
porting this evidence, there are several ovariectomy-induced 
hypoestrogenic animal models, which reported that ovariec-
tomy per se promotes the development of obesity, glucose 
intolerance, insulin resistance, atherogenic-dyslipidemia, 
oxidative stress and inflammation, mimicking the features 
of the MS during menopause [71, 72]. On the other hand, 
the estrogenic dysfunction animal models such as the obese 
ARKO mice [73–75], or the ERαKO mice only develop 
some of the MS factors, and frequently they must combine 

with the administration of a hypercaloric diet to promote or 
aggravate the development of all metabolic syndrome risk 
factors [14, 76, 77] (Table 1). By this way, is clear that ova-
riectomy model develop most of the MS risk factors (Fig. 3 
and Table 1), which signal it as one of the most representa-
tive models of metabolic syndrome during a hypoestrogenic 
state like menopause.

Ovariectomy as a menopausal metabolic 
syndrome model

Among those models of hypoestrogenism or menopause 
are: (1) Natural reproductive senescence, (2) Ovariectomy, 
and (3) Ovotoxins to accelerate ovarian failure; all are used 
depending on the stage along with the establishment of 
menopause that it wants to study [78, 79].

Similar to menopause in women, rodent natural repro-
ductive senescence (estropause) shows a dysregulation in 
hypothalamic-pituitary–gonadal (HPG) axis, morphofunc-
tional ovarian changes, gonadal hormone fluctuations and 
irregular fertility [79]. However, only 25% of estropause 
rodents show a similar hormonal profile with menopausal 
women, the rest of animals maintain a constant estrus state 
characterized for high and sustained levels of estradiol and 
progesterone, contrary to the low levels maintained during 
menopause [78]. Another important difference between 
aging female rodents and women is the presence of mature 
ovarian follicles in estropause rodents, while in menopausal 
women the ovarian failure is complete [79]. In fact, many 
researchers finally conduct an ovariectomy in aged rodents 
to avoid these discrepancies [78]. Additionally, for the high 
rates of mortality, and because the model needs a long time 
for implementation, it requires rat strains with high longev-
ity such as the Fischer-344, Sprague Dawley or Long Evans 
[79].

Other model more recently reported, and implemented 
is the 4-vinylcyclohexene diepoxide, or VCD, considered 
as a model of transitional menopause because it selectively 
depletes the non-growing ovarian follicle pool via atresia, 
resulting in follicular depletion, and eventual ovarian failure. 
This model shows an ovarian, and hormone profile more 
similar to the majority of women undergoing menopause 
and retain their reproductive organs in the post-reproduc-
tive life stage, the animals also present some neurologic and 
cardiometabolic alterations associated with hypoestrogenic 
state during menopause. However, its implementation has 
important disadvantages, in first place, VCD is toxic at high 
doses, and the regimen of VCD administration requires 
around fifteen series of intraperitoneal injections ranging 
from 80 to 160 mg/kg, which also result stressing for the 
animals, even it was reported a reduction in body weight 
during injections, another consideration is the elevated costs 
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of implementation since VCD is used in high and repetitive 
doses [78, 79].

Finally, the model considered as the “gold standard” in 
the study of hypoestrogenism or menopause is that induced 
by ovariectomy [79], since it has several advantages over 
others, among them the easy implementation, cost reduc-
tion, rapid manifestation of hypoestrogenism, and the most 
important, ovariectomy itself is the most effective model of 
hypoestrogenism in promoting the development of the main 
risk factors of MS, compared to the natural senescence or 
chemical models that present the development of few MS 
factors. i.e.; ovariectomy promotes the development of vis-
ceral obesity, insulin resistance, oxidative stress, inflamma-
tion, atherogenic dyslipidemia, hepatic steatosis and hyper-
tension [71, 80–83] (Table 1). Ovariectomized rats also 
develop other complications present in menopausal women 
like atherosclerotic lesion [84–87], osteoporosis, and cogni-
tive decline [78, 79]. On the contrary, it has the drawback 
that it does not contemplate the menopause transition period 
because the hormonal change is very sudden, and the loss of 
the ovaries reduces the production of hormones such as tes-
tosterone. Nevertheless, as mentioned before, hypoestrogen-
ism induced by ovariectomy shares the main characteristics 
of human menopause, such as a similar hormonal profile, 
HPG axis dysregulation, as well as cognitive and cardio-
metabolic alterations that are present in menopausal women 
that maintain their reproductive system intact [78, 79].

Among the different models of metabolic syndrome [61, 
63, 68], and in humans [88], high-caloric diets, sedentarism, 
and obesity are independently associated with MS, in con-
trast to hypoestrogenism (ovariectomy model) that per se 
generates metabolic syndrome (this proposal). However, due 
to the wide use of ovariectomy in combination with hyperca-
loric diets to develop metabolic disorders, most authors have 
dismissed the results offered by ovariectomy itself; given 
more importance to the combination with hypercaloric diets 
for MS development [89–94]. However, hypoestrogenism-
induced MS could yield interesting and necessary data in 
understanding metabolic complications originated by meno-
pause, because estrogens play a crucial role in regulating 
metabolic-energetics, while their loss leave the body “unpro-
tected” favoring the development of MS independently of 
the diet used. Accordingly, the success of hypoestrogenism 
induced by ovariectomy as a MS model could depend on 
several factors that need a deeper evaluation, like (1) rodent 
species: Wistar and Sprague–Dawley rats present the great-
est development of MS factors, (2) age of the animals at the 
time of surgery: pre-puber, young, adult or old; an adult age 
is the best to perform the surgery and achieve the successful 
establishment of MS, (3) time in which the animals are in 
hypoestrogenic state: after 12 weeks the main factors associ-
ated with MS do appear (Table 1). Therefore, a combination 
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Fig. 3  Ovariectomized rodents as a menopausal metabolic syndrome model. Estrogenic deficit promotes the development of main risk factors of 
metabolic syndrome

of all these variables could allow the effective achievement 
of a MS model.

Conclusion

As mentioned, MS-induced by hypercaloric diets can pro-
mote the display of multiple pathologies [62, 63]; in this 
sense, it should be noticed that ovariectomy-induced MS 
favors the manifestation of pathologies similar to those with 
hypercaloric diets or a combination of both; for example, 
cardiomyopathy, hepatic steatosis, kidney damage, inflam-
matory state and hypertension [65, 70, 71, 81, 83, 95–98], 
which also have been described in menopause, and that 
could be a consequence from a predominant hypoestro-
genic state [29, 99–101]. Taken together, we suggest that 
ovariectomy per se can be used as a "menopausal meta-
bolic syndrome model", mainly because the physiopathol-
ogy of MS that develops in menopause could be different 
to the one with radical changes in diet; even the main fea-
tures of menopausal metabolic syndrome could be com-
pared with other MS models. In this way, a more accurate 
approximation should be made to the development of MS in 

postmenopausal women, which might imply the search for 
more specific treatments for this population.
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