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Abstract
Cardiovascular disease has become the leading cause of death in the world. Metastasis-associated lung adenocarcinoma 
transcript 1 (MALAT1) plays an important role in cardiovascular disease, such as stroke. However, the role of MALAT1 
in hypoxia (HYP)-induced vascular endothelial cells (VECs) remains unclear. In the present study, HYP-treated human 
umbilical vein endothelial cells (HUVECs) were utilized to simulate HYP-induced VEC injury. It was found that after HYP 
treatment, the levels of MALAT1 and hypoxia-induced factor-1 (HIF-1α) in HUVECs were upregulated, while the level 
of miR-19b-3p was downregulated. Knockdown of MALAT1 with siRNA significantly reduced the HIF-1α level induced 
by HYP. In addition, MALAT1 knockdown inhibited HYP-induced HUVECs apoptosis, autophagy and inflammation. The 
overexpression of HIF-1α overcame the effect of MALAT1 knockdown. Mechanism analysis showed that MALAT1-targeted 
miR-19b-3p and then regulated downstream HIF-1α. MALAT1 knockdown increased the level of miR-19b-3p in cells, and 
increased miR-19b-3p further inhibited the expression of HIF-1α, thereby reducing the HYP-induced HUVECs apoptosis, 
autophagy and inflammation. Taken together, these results suggest that MALAT1 may be a potential target for mitigating 
HYP-induced endothelial cell injury.
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Introduction

Abnormalities of the heart or blood vessels lead to the devel-
opment of cardiovascular disease [1]. In recent years, car-
diovascular diseases have been the leading cause of death in 
the world. Hypoxia (HYP) induces various stress responses 
in endothelial cells, such as cell proliferation [2], migration 

[3], inflammation [4], and apoptosis [5]. Vascular endothe-
lial cells (VECs) are the most common cells in the heart and 
cerebrovascular that play an important role in the process of 
hypoxic heart injury [6]. Myocardial HYP-induced endothe-
lial cells apoptosis can cause myocardial dysfunction, such 
as heart failure, myocardial ischemia and myocardial infarc-
tion (MI) [7]. Therefore, it is of crucial significance to inves-
tigate the molecular mechanism of HYP-induced VECs dif-
ferentiation for the treatment of cardiovascular diseases.

Long non-coding RNAs are involved in many biological 
effects associated with human diseases, such as autophagy, 
apoptosis, and inflammation [8, 9]. Metastasis-associated 
lung adenocarcinoma transcript 1 (MALAT1) plays an 
important role in cardiovascular disease [10, 11]. Studies 
have shown that MALAT1 was significantly elevated during 
HYP and controlled the phenotypic transition of endothelial 
cells [12]. Additionally, MALAT1 also promoted pyroptosis 
of human endothelial cells [13], regulated angiogenesis [14, 
15], autophagy [16] and inflammation [17]. However, the 
role of MALAT1 in HYP-induced VECs is still unknown.
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MicroRNAs (miRNAs, 18–22 nt) play an important role 
in a variety of genes and cellular processes by binding to the 
3′ non-coding region (3′UTR). MiR-19b-3p is abnormally 
expressed in various cancers, such as clear cell renal cell 
carcinoma [18], melanoma [19], lung cancer [20], and breast 
cancer [21]. It has been reported that miR-19b-3p associates 
with HYP adaptation. Under HYP conditions, miR-19b-3p 
could induce apoptosis of great tit embryonic fibroblasts and 
regulate cell cycle [22]. However, whether miR-19b-3p can 
respond to hypoxic-induced VEC injury is far from being 
fully revealed.

Hypoxia inducible factor-1 (HIF-1) and its associated 
signaling pathways play an important role in HYP-induced 
injury [23]. HIF-1 α is a HIF subunit existed in the cyto-
plasm, which associated the response to oxidative stress 
[24]. HYP-induced endothelial cell injury and apoptosis 
by upregulating the expression of endothelin-1 (ET-1) and 
HIF-1α [25]. It has been found that HIF-1α was involved in 
the angiogenesis of myocardial infarction [26].

In the present study, we investigated the role of MALAT1 
in hypoxic-induced VEC injury and the corresponding 
molecular mechanism. The results suggested that MALAT1 
affected HYP-induced VEC injury and autophagy by regu-
lating miR-19b-3p/HIF-1α axis.

Materials and methods

Cell culture and treatment

Human umbilical vein endothelial cells (HUVECs) were 
purchased from the American Type Culture Collection 
(ATCC® PCS-100–013™, Manassas, VA) and stored in 
DMEM medium supplemented with 10% fetal bovine serum 
(FBS, Sigma-Aldrich, St. Louis, MO, USA) and 1% penicil-
lin/streptomycin. The cells were cultured at 37 °C for 0, 6, 
12 or 24 h in an airtight modular incubator (Billups-Roth-
enberg, San Diego, California, USA) under hypoxic condi-
tionss (1% O2, 5% CO2 and 94% N2). All transfection was 
conducted performed using lipofectamine-2000 according 
to the manufacturer’s instructions.

RT‑qPCR

HUVECs were incubated at 37 °C for 0, 6, 12 or 24 h under 
hypoxic conditions. The mRNA level of MALAT1, miR-
19b-3p and HIF-1α was evaluated by RT-qPCR. Total RNA 
was isolated from HUVECs using TRIzol® reagent (Takara 
Bio, Inc., Otsu, Japan) and reverse-transcribed into cDNA 
using Revert Aid first‐strand cDNA synthesis Kit (Thermo 
Fisher Scientific, Guangzhou, China). qPCR was performed 
using BioRad CFX96 Sequence Detection System (BioRad, 
Berkeley, CA, USA) with SYBR Premix ExTaq II (Takara, 

Dalian, China) according to the instructions of the manual. 
β-ACTIN was employed as an internal reference, and the 
mRNA level of MALAT1, miR-19b-3p and HIF-1α was 
evaluated with 2−ΔΔCt method. Primer were as follows:

MALAT1: forward 5′-TGC​AAT​GCA​CTC​AGC​ATG​C-3′, 
reverse 5′-CCG​ACA​TTA​CGA​CGT​ATT​CG-3′;

miR-19b-3p: forward 5′-TGC​TAA​CGA​TGT​ACT​ACG​ 
CG-3′, reverse 5′-TAC​TTA​CGC​TGC​TGC​CAT​GC-3′;

HIF-1α: forward 5′-ATG​GCT​CGA​ACC​GCT​CAG​T-3′, 
reverse 5′-CTC​GAG​AAC​TGC​TGC​TAC​G-3′;

Β-ACTIN: forward 5′-GCC​TGT​GTC​ACT​CGC​TAC​GT-3′, 
reverse 5′-GGC​TAC​TCG​ACT​CGA​TCG​CG-3′.

Western blot

The protein levels of HUVECs treated with HYP were meas-
ured using western blotting. The cells were lysed with pre-
chilled RIPA buffer (Thermo Scientific, Guangzhou, China) 
supplemented with a protease inhibitor. Nucleocapsid pro-
tein was extracted using the Nuclear and Cytoplasmic Pro-
tein Extraction Kit according to the manufacturer’s instruc-
tions (Beyotime, Shanghai, China). Then, the protein was 
then isolated with 10% SDS-PAGE and transferred to the 
PDFV membrane (BioRad, Beijing, China). Thereafter, the 
membrane was incubated with blocking buffer and combined 
with primary antibodies for LaminB (#13435, 1:1000, Cell 
Signaling Technology, Beijing, China), HIF-1α (#36169, 
1:1000, CST, Beijing, China), Cleaved caspase 3 (#9654, 
1:1000, CST, Beijing, China), LC3II/I (ab51520, 1:5000, 
Abcam, Beijing, China), p-p62 (ab155686, 1:1000, 1:5000, 
Abcam, Beijing, China), Bcl-2 (#3498, 1:1000, CST, Bei-
jing, China), Bax (#2772, 1:1000, CST, Beijing, China), 
p65 (#8242, 1:1000, CST, Beijing, China), and GAPDH 
(#5174, 1:1000, CST, Beijing, China). Subsequently, the 
primary antibody-incubated membrane was then incubated 
with corresponding secondary antibodies (Beijing Dingguo 
Changsheng Biotechnology Co, Ltd, Lincoln, NE). Then, the 
bands were visualized with densitometry (BioRad, Hercules, 
CA). Protein levels were quantified by Image-Pro Plus.

MALAT1 knockdown

MALAT1-specific siRNAs (si-MALAT1-1, si-MALAT1-2 
and si-MALAT1-3) were designed and synthesized by 
Thermo Fisher Scientific (Guangzhou, China). Then, siR-
NAs were introduced into pEnter4-N-Flag (Addgene, 
Wuhan, China) to construct recombinant plasmids (pEn-
ter-si-MALAT1-1, pEnter-si-MALAT1-2 and pEnter-
si-MALAT1-3). Then, according to the manufacturer’s 
instructions, three recombinant plasmids were transfected 
into HUVECs that had been HYP-treated for 24 h with lipo-
fectamine-2000 to knockdown MALAT1.
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Hoechst 33258 staining

HUVECs were fixed with 4% paraformaldehyde and stained 
with 5  mg/L Hoechst 33258 for 30  min at 37 °C. The 
enriched and ruptured apoptotic cells were then examined 
with a fluorescent microscope (TE-2000 ‘Nikon’ Japan).

ELISA

The levels of ROS, TNF-α and IL-6 in HUVECs were meas-
ured using the corresponding ELISA kits according to the 
manufacturer’s instructions (CUSABIO, Shanghai, China).

Immunofluorescence assay

Nuclear translocation of NF-κB p65 was detected by immu-
nofluorescence analysis. Briefly, HUVECs were fixed with 
4% formaldehyde, sealed with 0.3% Triton™ X-100, and 
incubated overnight with anti-NF-κB p65 (#8242, 1:400 
dilution, CST, Beijing, China) at 4 °C. The cells were then 
washed with PBS, incubated with anti-Rabbit IgG (H + L) 
(1:500 dilution, CST, Beijing, China) at 37 °C for 40 min, 
and stained with DAPI (#8961, CST, Beijing, China). Images 
were generated using a laser confocal scanning microscope 
and fluorescent intensity was calculated using Leica Appli-
cation Suite Advanced Fluorescence 4.0.

Determination of autophagy activity

GFP-LC3 plasmid was implemented to detect autophagy 
activity. Briefly, HUVECs were transfected with GFP-LC3 
using FuGENE HD® Transfection Reagent according to the 
manufacturer’s instructions (Sigma, MO, USA). After trans-
fection for 24 h, the transfection efficiency was assessed by 
fluorescence microscopy. The average number of puncta was 
equal to autophagy activity. The experiment was repeated 
five times in each group, and the data were used to compare 
the groups.

Pull‑down assay

HUVECs were cleaved and incubated with biotin-labeled 
DNA oligomers corresponding to MALAT1. The mixture 
was incubated with streptavidin-coupled agarose beads (Inv-
itrogen) for 4 h at 4 °C. The beads were washed and resus-
pended in TRIzol to extract RNA for qPCR.

Dual luciferase reporter assay

The target sites between MALAT1, miR-19b-3p and HIF-1α 
were predicted with miRDB and TargetScan. The target 
relationship between miR-19b-3p and HIF-1α was verified 
by Dual luciferase reporter assay. Briefly, HIF-1α-wt and 

HIF-1α-mut were introduced into luciferase reporter plas-
mid pGMERSE-Lu (Genomedtech, Shanghai, China) to 
construct recombinant plasmids (pGMERSE-HIF-1α-wt and 
pGMERSE-HIF-1α-mut). The recombinant plasmids were 
then co-transfected into HUVEC with miR-19b-3p or miR-
NC using Lipofectamie 2000 (Invitrogen, Beijing, China). 
After transfection for 48 h, luciferase activity was measured 
using the Dual-Luciferase Reporter assay system (Promega, 
Madison, WI).

Statistical analysis

Results are expressed as the mean ± SD. Statistical analyzes 
was performed using GraphPad Prism 5 (San Diego, CA, 
USA). Differences between groups were assessed by one-
way ANOVA and Newman–Keuls multiple comparison test. 
p < 0.05, the difference was statistically significant.

Results

MALAT1 knockdown inhibited HYP‑induced injury 
and autophagy by suppressing HIF‑1α expression

First, the role of MALAT1 in HYP-induced VEC injury was 
investigated. As shown in Fig. 1a, the level of HIF-1α in 
HUVECs was increased in a time-dependent manner after 
HYP treatment for 6, 12 and 24 h, respectively. Similarly, 
the level of MALAT1 in HUVECs was further increased in a 
time-dependent manner under the same treatment (Fig. 1b). 
When MALAT1 was knocked down with three different 
siRNA, the level of MALAT1 in cells was significantly 
reduced, indicating that siRNA could effectively knock 
MALAT1 down (Fig. 1c). Besides, we found that HIF-1α 
in the si-MALAT1 + HYP group was significantly lower in 
mRNA and protein level than that in the HYP group and the 
si-NC + HYP group (Fig. 1d, e). Besides, the present study 
found that the low expression of MALAT1 reversed the 
HYP-induced increase in ROS level and autophagy activity 
(Fig. 1f–i). However, no significant change was observed 
in the si-NC + HYP group compared with the HYP group. 
Notably, HIF-1α agonist (CoCl2) overcame the effects of 
MALAT1 knockdown (Fig. 1j–l). These results indicate 
that MALAT1 knockdown inhibits HYP-induced injury and 
autophagy by suppressing HIF-1α expression.

MALAT1 knockdown‑inhibited HYP‑induced 
apoptosis and inflammation by inhibiting HIF‑1α 
expression

Studies found that low expression of MALAT1 reversed 
HYP-induced increases in Bax and cleaved caspase 3, 
as well as reduction in Bcl-2 (Fig. 2a–c). As expected, 
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Hoechst staining showed that HYP-induced HUVECs 
apoptosis (Fig. 2d). No significant change was observed in 
the si-NC + HYP group. Notably, HIF-1α agonist (CoCl2) 
overcame the effects of MALAT1 knockdown (Fig. 2e). 
In addition, HYP also increased the level of inflamma-
tory factors (TNF-α and IL-6) in HUVECs and pro-
moted nuclear translocation of p65. However, MALAT1 

knockdown apparently counteracted the effect of HYP on 
cellular inflammation. No significant change was observed 
in the si-NC + HYP group (Fig. 2f–h). Likewise, HIF-1α 
agonist (CoCl2) overcame the effects of MALAT1 knock-
down (Fig. 2i). These results demonstrate that MALAT1 
knockdown inhibited HYP-induced apoptosis and inflam-
mation by inhibiting HIF-1α expression.

Fig. 1   MALAT1 knockdown inhibited HYP-induced injury and 
autophagy by suppressing HIF-1α expression. a, b HUVECs were 
incubated at 37  °C for 0, 6, 12 or 24  h under hypoxic conditions 
(1% O2, 5% CO2 and 94% N2). a The protein level of HIF-1α was 
measured by western blotting (*p < 0.05 vs control; #p < 0.05 vs HYP 
6 h; &p < 0.05 vs HYP 12 h). b The mRNA level of MALAT1 was 
measured by RT-qPCR (*p < 0.05 vs control; #p < 0.05 vs HYP 6 h; 
&p < 0.05 vs HYP 12  h). c HUVECs were transfected with si-NC, 
si-MALAT1-1, si-MALAT1-2 and si-MALAT1-3, respectively. The 
mRNA level of MALAT1 was measured by RT-qPCR (*p < 0.05 
vs control; #p < 0.05 vs si-NC). d–h HUVECs were divided into 
four groups: Control group, HYP group, si-MALAT1 + HYP group, 
si-NC + HYP group. d The protein level of HIF-1α was meas-
ured by western blotting. GAPDH was used as an internal refer-
ence (*p < 0.05 vs control; #p < 0.05 vs HYP). e The mRNA level of 

HIF-1α was measured by q-PCR. GAPDH was used as an internal 
reference (*p < 0.05 vs control; #p < 0.05 vs HYP). f ROS produc-
tion was detected by ELISA assay (*p < 0.05 vs control; #p < 0.05 
vs HYP). g, h The protein levels of LC3II/I and p-p62 were meas-
ured by western blotting (*p < 0.05 vs control; #p < 0.05 vs HYP). i 
Autophagy activity was determined by immunofluorescence assay 
(*p < 0.05 vs control; #p < 0.05 vs HYP). j, k HUVECs were divided 
into four groups: Control group, HYP group, si-MALAT1 + HYP 
group, CoCl2 (150  μM) + si-MALAT1 + HYP group. j The pro-
tein level of LC3II/I was measured by western blotting (*p < 0.05 
vs control; #p < 0.05 vs HYP; &p < 0.05 vs si-MALAT1 + HYP). 
k Autophagy activity was determined by immunofluorescence 
assay (*p < 0.05 vs control; #p < 0.05 vs HYP; &p < 0.05 vs si-
MALAT1 + HYP)
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MALAT1 may partially regulate HYP‑induced 
autophagy, apoptosis, and inflammation 
by targeting miR‑19b‑3p

The target of MALAT1 was predicted by miRDB (Fig. 3a). 
The level of miR-19b-3p was measured by RT-qPCR. As 
shown in Fig. 3b, the level of miR-19b-3p in HUVEC 
after HYP treatment was decreased in a time-dependent 
manner. However, low expression of MALAT1 signifi-
cantly increased the level of miR-19b-3p in HUVECs 
(Fig. 3c). Pull-down assay showed that MALAT1 specifi-
cally regulated the expression of miR-19b-3p (Fig. 3d). 
Further analysis showed that miR-19b-3p overexpression 
partially reversed the HYP-induced decrease in p-p62 
level and the increase in ROS level (Fig. 3e, f). Interest-
ingly, miR-19b-3p overexpression partially rescued HYP-
induced apoptosis and prevented p65 nuclear transloca-
tion (Fig. 3g, h). No significant change was observed in 
the mimic-NC + HYP group. These results suggest that 
MALAT1 may partially regulate HYP-induced autophagy, 
apoptosis, and inflammation by targeting miR-19b-3p.

miR‑19b‑3p regulated HYP‑induced autophagy, 
apoptosis and inflammation by targeting HIF‑1α

Downstream target protein of miR-19b-3p was predicted 
by TargetScan (Fig. 4a). The level of HIF-1α was meas-
ured by RT-qPCR. As shown in Fig. 4b, HIF-1α level was 
significantly decreased in HUVECs transfected with miR-
19b-3p mimics, but no significant change was observed in 
the NC-mimics group. Dual luciferase reporter assay was 
further employed to verify the target relationship between 
miR-19b-3p and HIF-1α (Fig. 4c). Meanwhile, this study 
investigated the effects of miR-19b-3p and HIF-1α inter-
action on HUVECs autophagy, apoptosis and inflamma-
tion. As shown in Fig. 4d–f, miR-19b-3p mimics signifi-
cantly inhibited the apoptosis and autophagy of HUVECs 
induced by HYP, and prevented the nuclear translocation 
of p65. The HIF-1α agonist (CoCl2) counteracted the 
effects of miR-19b-3p mimics. These results suggest that 
miR-19b-3p regulates HYP-induced autophagy, apoptosis, 
and p65 nuclear translocation by targeting HIF-1α.

Fig. 2   MALAT1 knockdown inhibited HYP-induced apopto-
sis and inflammation by inhibiting HIF-1α expression. HUVECs 
were divided into four groups: Control group, HYP group, si-
MALAT1 + HYP group, si-NC + HYP group. a–c The protein levels 
of cleaved caspase 3, Bcl-2 and Bax were measured by western blot-
ting. GAPDH was employed as an internal reference (*p < 0.05 vs 
control; #p < 0.05 vs HYP). d Apoptosis was measured by Hochest 
3342 staining (*p < 0.05 vs control; #p < 0.05 vs HYP). e HUVECs 
were divided into four groups: Control group, HYP group, si-
MALAT1 + HYP group, CoCl2 (150  μM) + si-MALAT1 + HYP 
group. Apoptosis was measured by Hoechst 3342 staining (*p < 0.05 

vs control; #p < 0.05 vs HYP; &p < 0.05 vs si-MALAT1 + HYP). f, g 
The levels of inflammatory cytokines (TNF-α and IL-6) were meas-
ured by ELISA assay (*p < 0.05 vs control; #p < 0.05 vs HYP). h The 
protein level of p65 in the nucleus was measured by western blotting. 
LaminB was employed as an internal reference (*p < 0.05 vs control; 
#p < 0.05 vs HYP). i HUVECs were divided into four groups: Control 
group, HYP group, si-MALAT1 + HYP group, CoCl2 (150 μM) + si-
MALAT1 + HYP group. The protein level of p65 in the nucleus was 
measured by western blotting. LaminB was employed as an internal 
reference (*p < 0.05 vs control; #p < 0.05 vs HYP; &p < 0.05 vs si-
MALAT1 + HYP)
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Discussion

HYP plays an important role in cardiovascular diseases 
(CVDs) such as MI, CF and CHD [7, 27]. Vascular 
endothelial dysfunction caused by myocardial HYP is 
related to the pathogenesis of several cardiovascular dis-
eases [28]. VECs are the cells that respond directly to HYP 
[29]. Numerous studies suggest that it is essential to pro-
tect VECs from HYP-induced injury [30–32]. Lee et al. 
confirmed that Ang II participated in the occurrence of 
cardiovascular disease by inducing lipid peroxidation in 
human VECs [33]. Chang et al. reported that root extract 
could prevent endothelial cell death and apoptosis caused 
by HYP and protect cells from oxidative stress [34]. In the 
present study, HUVECs under hypoxic conditions were 
applied to simulate HYP-induced VEC injury. The result 
showed that the low expression of lncRNA MALAT1 
could alleviate the HUVECs injury induced by HYP by 
targeting the regulation of miR-19b-3p/HIF-1α axis.

It has been reported that MALAT1 is closely related 
to cell function [10, 35]. Wang and Zhou reported that 
MALAT1 promoted the inflammatory response of micro-
glia cells through the MyD88/IRAK1/TRAF6 pathway 
[36]. Similarly, MALAT1 was highly expressed in HUVECs 
exposed to HYP in this study, which reduced the level of 
miR-19b-3p in cells and activated the expression of HIF-1α. 
MALAT1 knockdown significantly attenuated HYP-induced 
HUVECs apoptosis, autophagy and p65 nuclear transloca-
tion. MiR-19b-3p mimics showed the same effect, while the 
HIF-1α activator CoCl2 showed the opposite effect. Col-
lectively, these results demonstrate that MALAT1 promoted 
the injury of VECs induced by HYP.

Recent studies have suggested that miR-19b-3p plays an 
important in acute myocardial infarction and myocardial 
fibrosis [37, 38]. Xue et al. found that miR-19b-3p targeted 
and negatively regulated peroxisome proliferator-activated 
receptor γ coactivator 1α (PGC-1α), thereby inducing mito-
chondrial dysfunction and apoptosis [39]. Wang et al. found 
that the levels of miR-19b-3p, miR-134-5p and miR-186-5p 

Fig. 3   MALAT1 may partially regulate HYP-induced autophagy, 
apoptosis, and inflammation by targeting miR-19b-3p. a The target 
site between MALAT1 and miR-19b-3p was predicted by miRDB. b 
HUVECs were incubated at 37 °C for 0, 6, 12 or 24 h under hypoxic 
conditions (1% O2, 5% CO2 and 94% N2). The mRNA level of miR-
19b-3p was measured by RT-qPCR (*p < 0.05 vs control; &p < 0.05 vs 
HYP 12 h). c HUVECs were transfected with si-NC, si-MALAT1-1, 
si-MALAT1-2 and si-MALAT1-3, respectively. The mRNA level 
of miR-19b-3p was measured by RT-qPCR (*p < 0.05 vs control; 
#p < 0.05 vs si-NC). d The target relationship was further confirmed 

by pull-down assay (*p < 0.05 vs Mut-Bio-MALAT1). e The pro-
tein level of p-p62 was measured by western blotting. GAPDH was 
employed as an internal reference (*p < 0.05 vs control; #p < 0.05 vs 
HYP). f ROS production was detected by ELISA assay (*p < 0.05 vs 
control; #p < 0.05 vs HYP). g Apoptosis was measured by Hochest 
3342 staining (*p < 0.05 vs control; #p < 0.05 vs HYP). h The pro-
tein level of p65 in the nucleus was measured by western blotting. 
LaminB was employed as an internal reference (*p < 0.05 vs control; 
#p < 0.05 vs HYP)
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in the early stage of acute myocardial infarction (AMI) were 
significantly increased, which could be used as new mark-
ers for early diagnosis of AMI [38]. However, this study 
found that miR-19b-3p was downregulated in HYP-treated 
HUVECs. The overexpression of miR-19b-3p significantly 
inhibited HYP-induced HUVECs apoptosis, autophagy, and 
p65 nuclear translocation by reducing HIF-1α level. This 
study suggests that miR-19b-3p may be used as a novel vas-
cular protectant in the future.

HIF-1 is a key transcription factor for HYP adaptation 
[40]. HIF-1 overexpression is associated with inflamma-
tion and HYP-induced endothelial cell injury [41]. HIF-1α 
is rapidly degraded by acrylated hydroxylase under normal 
oxygen and is abnormally accumulated during acute HYP 
[42, 43]. Current studies have shown that HIF-1α level 
was increased significantly in mRNA and protein levels in 
HUVECs after HYP treatment. Besides, further mechanism 
analysis indicated that MALAT1 promoted HYP-induced 

HUVECs autophagy, apoptosis and p65 nuclear trans-
location by targeting the adsorption of miR-19b-3p and 
upregulation of HIF-1α expression. In addition, inflamma-
tory cytokines (TNF-α and IL-1β) can also induce HIF-1α 
accumulation [44]. We found that HYP-induced increases 
in TNF-α and IL-1β further promoted the accumulation of 
HIF-1α in HUVECs, thus aggravating HYP-induced VEC 
injury.

Autophagy plays an important role in cardiovascular 
diseases, such as inhibiting myocardial remodeling [45], 
improving myocardial function [46], regulating advanced 
plaques of AS [47] and responding to cardiac stress [48]. 
Wang et al. reported that MALAT1 enhanced the expression 
of Beclin-1 through adsorption of miR-216a-5p to neutralize 
the inhibitory effect of miR-216-5p on autophagy and sur-
vival of cells [16]. Duan et al. found that PM could reduce 
hypertension, atherosclerosis and myocardial infarction by 
down-regulating the level of miR-19a-3p [49]. HYP-induced 

Fig. 4   miR-19b-3p regulated 
HYP-induced autophagy, 
apoptosis and inflammation 
by targeting HIF-1α. a The 
target site between miR-19b-3p 
and HIF-1α. b HUVECs were 
transfected with mimic-NC or 
miR-19b-3p mimic. The protein 
level of HIF-1α was measured 
by western blotting. GAPDH 
was employed as an internal 
reference (*p < 0.05 vs control). 
c Target relationship was further 
confirmed by the dual luciferase 
reporter assay (*p < 0.05 vs 
NC + WT-HIF-1α-3′UTR). d–f 
HUVECs were divided into four 
groups: Control group, HYP 
group, mimic + HYP group, 
CoCl2 (150 μM) + mimic + HYP 
group. d Autophagy activity 
was determined by immuno-
fluorescence assay (*p < 0.05 
vs control; #p < 0.05 vs HYP; 
&p < 0.05 vs mimic + HYP). 
e Apoptosis was measured 
by Hoechst 3342 stain-
ing (*p < 0.05 vs control; 
#p < 0.05 vs HYP; &p < 0.05 vs 
mimic + HYP). f The protein 
level of p65 in the nucleus was 
measured by western blotting. 
LaminB was employed as an 
internal reference (*p < 0.05 
vs control; #p < 0.05 vs HYP; 
&p < 0.05 vs mimic + HYP)
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autophagy of tumor cells by upregulating the level of 
HIF-1α. Huang et al. believed that the HIF-1α/miR-224-3p/
ATG5 axis affected cell motility and chemotherapeutic sen-
sitivity by regulating HYP-induced autophagy in glioblas-
tomas and astrocytomas [50]. Consistent with these results, 
we found that HYP induced the expression of HIF-1α, and 
the overexpression of HIF-1α promoted ROS accumulation 
and autophagy. Notably, low expression of HIF-1α abolished 
the promotional effect. After MALAT1 was knocked down 
by siRNA, the level of miR-19b-3p in the cells was signifi-
cantly increased, while the level of HIF-1α was significantly 
decreased. Reduced HIF-1α further inhibited HYP-induced 
autophagy in HUVECs. In short, these results indicate that 
si-MALAT1 inhibit HYP-induced autophagy by upregulat-
ing the level of HIF-1α via targeting miR-19a-3p.

Conclusion

In conclusion, current studies have explored the effects of 
MALAT1 on HYP-induced VEC injury and its potential 
molecular mechanisms. The results showed that low expres-
sion of MALAT1 suppressed HYP-induced HUVECs apop-
tosis, autophagy and p65 nuclear translocation by regulating 
miR-19b-3p/HIF-1α axis. Collectively, these results demon-
strate that MALAT1 may be a potential target for relieving 
HYP-induced endothelial cell injury.
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