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Abstract
Renal cell carcinoma (RCC) is a kind of malignant tumor with high recurrence, and it is urgent to find molecular markers for 
diagnosis and prognosis of RCC. Our study investigated the expression and function of integrin αMβ2 in RCC cells, aiming 
to understand the role of integrin αMβ2 in RCC and develop new therapeutic target for RCC. Overexpression and knockdown 
of lymphoid enhancer-binding factor 1 (LEF1) were performed using vector containing full-length cDNA and via siRNA 
technology, respectively. The expressions of mRNA and protein were detected by RT-PCR and Western blot, respectively. 
Proliferation of RCC cell was analyzed using WST-1 assay, and metastasis of RCC cell was evaluated using the transwell 
system. Our results demonstrated that LEF1 and integrin αMβ2 were up-regulated in RCC cells via TGF-β1-dependent 
mechanism, and LEF1 together with β-catenin directly increased integrin αMβ2 level. On the other hand, TGF-β1-induced 
proliferation, migration and invasion were suppressed by function-blocking antibody against integrin αMβ2 in RCC cells. In 
addition, integrin αMβ2 is crucial for LEF1 mediated cell invasion by regulating MMP-2, MMP-9 and calpain-2 secretion in 
RCC cells. LEF1/integrin αMβ2 expression was regulated by TGF-β1, and LEF1/integrin αMβ2 was involved in TGF-β1’s 
improvement effects on the proliferation and metastasis of RCC. Blocking integrin αMβ2 activity could be a therapeutic 
option for patients with advanced RCC.
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Introduction

Renal cell carcinoma (RCC) accounts for approximately 
2–3% of all malignancies and is the 12th most common can-
cer worldwide [1–3]. Currently, the only potential curative 
treatment for localized RCC is surgery; however, 20–30% 
of patients with RCC experience local or distant recurrence 
within 5 years after radical nephrectomy [4]. This is a major 
factor limiting patient survival; therefore, identification of 
new molecular markers to predict patient survival and tumor 
relapse remains to be a subject of fundamental importance. 

At present, studies concerning novel molecular targets in 
RCC were very limited.

Integrins are heterodimeric transmembrane receptors that 
could mediate interactions of cells with the extracellular 
matrix (ECM) [5]. Integrins are formed by specific nonco-
valent associations between different α and β subunits [6], 
and each subunit contains a cytoplasmic tail, a transmem-
brane and an extracellular region [7, 8]. The integrin family 
is classified according to the associated β-subunit, mainly 
including β1 (CD29) and β2 (CD18) [9, 10]. The β2 integrin 
family has a common β2 chain paired with homologous α 
subunits and consists of the following four members: αMβ2 
(CD11b/CD18, or Mac-1); αLβ2 (CD11a/CD18, or LFA-1); 
αDβ2 (CD11d/CD18); and αXβ2 (CD11c/CD18).

Integrins exhibit a very broad ligand-binding specificity 
with the component of ECM, which allows for its diverse 
cell functions, such as cell interactions, adhesion and migra-
tion [11, 12]. Abnormal expression of integrins often cor-
relates with irregular processes like inflammation or tumor. 
Integrin αMβ2 is mainly expressed in myeloid, NK and T 
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cells [6], which not only participate in regulating monocyte 
differentiation and mediating adhesive reactions of leuko-
cytes during the inflammatory response [7, 13, 14], but also 
take part in the maintenance of tolerance and control of 
inflammation [15, 16]. However, the specific roles of integ-
rin αMβ2 in the progression of tumor cells remain unclear.

Our previous study inspired us that LEF1 and the integrin 
αMβ2 may be related to RCC cells, which still needs to be 
confirmed in further study [17, 18]. LEF1, initially iden-
tified as a pre-B and T lymphoid-specific gene belonging 
to the family of high-mobility group transcription factors 
[19, 20], contains a strong DNA binding domain near the 
C terminus and a domain at the N terminus that binds the 
transcription activator, β-catenin [21]. Chang et al. indicated 
that β-catenin could regulate integrin α5β1 expression, and 
LEF1 binding sites in the promoter regions of integrin α5/β1 
were also confirmed [22]. Thus, whether LEF1 is involved 
in the regulation of integrin αMβ2 in RCC should be further 
investigated.

The TGF-β signaling pathway has been confirmed to 
modulate numerous physiologic processes, including pro-
liferation, migration and invasion of tumors [23–25], and 
TGF-β1 is involved in promoting the proliferation of RCC 
cells [26–28]. Moreover, Lebdai et al. identified and vali-
dated TGF-β1 as a promising prognosis marker of clear cell 
renal cell carcinoma [29], and Huang et al. found TGF-β1 
could induce Fascin1 to promote cell invasion and metas-
tasis of human 786-0 RCC cells [30]. Previous study dem-
onstrated that Smad7 interacted with β-catenin and LEF1/
TCF, transcriptional regulators in Wnt signaling, in a TGF-
β-dependent manner [31]. Also, integrin signaling was 
found to potentiate TGF-β1 with important implications for 
epithelial to mesenchymal transition (EMT) in RCC [32]. 
However, it is still unknown whether TGF-β1 participated 
in regulating LEF1/integrin αMβ2 expression in RCC cells. 
In this study, we tried to figure out whether integrin αMβ2 is 
associated with RCC and its detail role in the development 
of RCC. We assume that TGF-β1 may employ LEF1/integrin 
αMβ2 to further enhance the proliferative and metastatic 
potential in human renal cell.

Material and method

Cell culture and agents

Four commercially available human RCC cell lines (ACHN, 
Caki-1, NC 65 and A498) were obtained from the ATCC 
(Manassas, VA, USA). All cells were incubated with 
complete medium, consisting of 10% heat-inactivated 
fetal bovine serum and supplemented with RPMI-1640, 
2 mM l-glutamine, 1% nonessential amino acids, 25 mM 
HEPES and penicillin (100 U/ml)/streptomycin (100 μg/

ml) (Sigma-Aldrich, St. Louis, MO, USA). RCC cell lines 
were cultured as a monolayer in an incubator at 37 °C with 
a humidified atmosphere of 5%  CO2. TGF-β1 was pur-
chased from Sigma-Aldrich, St Louis, MO, USA, and RCC 
cells were treated with TGF-β1 (10 ng/ml) in the following 
experiments.

Reverse transcription‑PCR

Total RNA of RCC cells was isolated using Trizol reagent 
(Invitrogen, Carlsbad, CA, USA). First-strand cDNA syn-
thesis was performed using a cDNA synthesis kit (Applied 
Biosystems, Carlsbad, CA, USA). The cDNA was amplified 
by PCR using TaqMan gene expression assays, and the PCR 
conditions were set according to the manufacturer’s instruc-
tions (Applied Biosystems). The PCR product was separated 
by 3% agarose gel electrophoresis, and GAPDH was used as 
the internal control. All primer sequences in this study are 
shown in Table 1.

Western blot and immunoprecipitation

Total protein was extracted with protease inhibitor (Roche, 
Basel, Switzerland) and cell lysis buffer (Cell Signaling, 
Cambridge, UK). Protein (60 mg/well) was separated by 
SDS–polyacrylamide gel electrophoresis; then, proteins 
were transferred to 0.2 μm nitrocellulose (Life Technolo-
gies, Carlsbad, CA, USA) and incubated with a blocking 
solution for 2 h at room temperature. The membranes were 
incubated with primary antibodies overnight at 4 °C. Integ-
rin αM/CD11B (D6X1N) rabbit mAb, integrin β2 (D4N5Z) 
rabbit mAb, LEF1 (C12A5) rabbit mAb, β-catenin (D10A8) 
 XP® rabbit mAb, mouse (G3A1) mAb IgG isotype control, 
matrix metalloproteinases (MMPs)-2 (D8N9Y) rabbit mAb 
and MMP-9 (D6O3H)  XP® rabbit mAb were purchased from 
Cell Signaling Technology. β-actin monoclonal antibody 
(ab6276) and calpain 2 antibody (ab39165) were purchased 
from Abcam (Cambridge, UK). The immune complexes 
were detected with an ECL system (Amersham, Aylesbury, 
UK) according to the manufacturer’s instructions. Integrin 
function-blocking monoclonal antibodies (CD18 (CBL158) 
and CD11b (CBL145)) were obtained from Chemicon 
(Temecula, CA, USA).

RNA interference and transfection

The siRNA oligonucleotide or scrambled siRNA (negative 
control) was designed using siDirect software. The oligo-
nucleotides used in this study are shown in Table 1. RCC 
cells were seeded at the density of 1 × 105 cells per well 
into a 6-well culture dish and incubated until confluence 
reached 50–60%; then, cells were transfected with siRNA 
oligonucleotides by Lipofectamine 2000 reagent (Invitrogen, 
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Carlsbad, CA, USA). The cDNA coding sequence of LEF1 
was cloned, as previously described [33]. RCC cell lines 
were also transfected with LEF1 vector containing full-
length cDNA for LEF1 or with a blank vector without insert-
ing the LEF1 by Lipofectamine 2000. RCC monoclonal cell 
lines were selected by G418, and the expression of LEF1 
was detected using Western blot analysis.

Cell viability assay

The proliferative ability of RCC cells was analyzed using 
WST-1 assay. Briefly, RCC cells were seeded into 96-well 
plates at a density of 0.5 × 104 cells per well. After 48 h 
of continuous incubation, 20 μL of WST-1 reagent (Roche, 
Penzberg, Germany) was added to each well. Following 
incubation for 2 h at 37 °C, the viable cells were detected by 
measuring absorbance at 450 nm using an absorbance reader 
(Immunoreader NJ-2000; Japan Intermed, Tokyo, Japan).

Cell migration and invasion assays

For the migration assays, chemotaxis was detected using 
a Transwell system (Poretics Corp., Livermore, CA, USA) 
containing 8-μm pore polycarbonate membrane filters. The 
invasion assay was analyzed using a Transwell system incor-
porating a polycarbonate filter membrane (Corning, NY, 
USA). Briefly, 1 × 105 RCC cells were selected in 100 μL 
of serum-free medium and seeded into the upper chamber. 
After continuous incubation at 37 °C for 48 h, the invading 
cells on the bottom of each well and the migrating cells in 
the lower chamber were fixed with methyl alcohol, and the 
number of RCC cells was counted by a CX23 microscope 
(Olympus Corporation, Tokyo, Japan) in five randomly 
microscopic fields.

Statistical analysis

Statistical analysis was performed using SPSS 16.0 (SPSS, 
Inc., Chicago, IL, USA). All results in this study were 
shown as the mean ± standard deviation (SD). Compari-
sons between two groups were made by unpaired or paired 
Student’s t tests. All statistical tests were 2-tailed, and p 
value < 0.05 was regarded as significant different.

Results

RCC cells possess higher expression of LEF1 
and integrin αMβ via TGF‑β1‑dependent mechanism

We employed RT-PCR and Western blot to detect the 
expression of LEF1, integrin αMβ2 and TGF-β1 in four 
pairs of RCC and corresponding normal kidney tissue. Our 
results demonstrated that the expression of LEF1, integrin 
αMβ2 and TGF-β1 was up-regulated in RCC compared 
to normal kidney tissue (Fig. 1), which suggested their 
involvement in RCC development. Of the four RCC cell 
lines, the result was consistent, and ACHN and Caki-1 
were selected for following experiments (Fig. 2a, b). To 
determine whether TGF-β1 exerts its affection on LEF1 
and integrin αMβ2, TGF-β1  (10  ng/ml for 48  h) was 
added to ACHN and Caki-1 for further detection of pro-
tein expression. The results showed that TGF-β1 could 
significantly up-regulate the expression of LEF1 and inte-
grin αMβ2 in RCC cells (Fig. 2c). These findings sug-
gested that TGF-β1-dependent mechanism in RCC cells 
may contribute greatly to the up-regulation of LEF1 and 
integrin αMβ2.

Table 1  Primer sequences and siRNA oligonucleotides used in this study

Primers Forward primer (5′–3′) Reverse primer (5′–3′) Length of PCR 
products (bp)

Integrin αM CTG AAC GTC ACT CTT GTG CA CCT CTT GAG GAC ACC CTC GG 110
Integrin β2 GGT AGT AGA CGA GTC CCG AC GCT CAC AGT TGA TGG TGT CA 120
LEF1 GGT CGG ACT GAG TGT GTG TG AGT TTT TGC CGG CAA GCG CG 132
TGF-β1 TCT GGG AAA GAG GAGGT CTC AGT ATC CCA CGG AAA TA 120
GAPDH GAA GGT GAA GGT CGG AGT C GAA GAT GGT GAT GGG ATT TC 226

siRNA Sense oligonucleotide (5′–3′) Antisense oligonucleotide (5′–3′) Target gene 
sequence 
(5′–3′)

LEF1 AAG AGA AAG AGA AGU UUG CC GCA AAC UUC UCU UUC UCU UCC TGG CAA ACT 
TCT TTC 
TCT TCT 

Negative control GUA CCG CAC GUC AUU CGU AUC UAC GAA UGA CGU GCG GUA CGU 
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LEF1 may interact with β‑catenin and regulate 
the expression of integrin αMβ2

We investigated the relationship among LEF1, integrin 
αMβ2 and TGF-β1 to see how the three proteins affect 
each other. Firstly, overexpression and knockdown of 
LEF1 in RCC cells were achieved by different vectors, and 
Western blot was used to detect the change of three protein 
expression. As demonstrated, the protein level of integ-
rin αMβ2 was significantly increased in RCC cells with 
high expression of LEF1, whereas markedly decreased in 
LEF1 knockdown RCC cells. Meanwhile, the expression 
of TGF-β1 was not affected by LEF1 transfections in RCC 
cells. In addition, RCC cell lines with varying expression 
of LEF1 were subjected to immunoprecipitation test to 
evaluate the interaction of LEF1 and β-catenin. Although 
LEF1 did not affect β-catenin expression, higher amount of 
LEF1/β-catenin complex was detected in RCC cells with 
high expression of LEF1 (Fig. 3). These findings suggested 
that LEF1 may interact with β-catenin and regulate the 
expression of integrin αMβ2 in human RCC cells.

LEF1 enhances the proliferation and metastasis 
of RCC cells

The proliferation and metastasis are considered as important 
steps in the development of RCC, so the proliferative and 
metastatic potential of RCC cells were evaluated concerning 
the LEF1 status. As shown in Fig. 4a, the effect of LEF1 on 
the proliferation of RCC cells was analyzed by the WST-1 
assay. RCC cell lines with overexpressed LEF1 showed 

Fig. 1  The expression of LEF1, integrin αMβ2 and TGF-β1 was 
detected by RT-PCR (a) and Western blot (b) in RCC and normal 
kidney with four pairs of samples shown

Fig. 2  The expression of LEF1 and integrin αMβ2 was detected by 
RT-PCR (a) and Western blot (b), and TGF-β1 increased the expres-
sion of LEF1 and integrin αMβ2 in RCC cells (C)
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increased proliferative ability compared to the control cells, 
but significantly reduced proliferative ability upon knock-
down of LEF1. In addition, RCC cells with lower expression 
of LEF1 had less capacity for migration and invasion than 
those cell lines with higher expression of LEF1 (Fig. 4b, 
c). These results suggested that LEF1 was involved in the 
proliferation and metastasis of RCC cells.

Integrin αMβ2 is necessary for TGF‑β1‑induced 
proliferation and metastasis of human RCC 

TGF-β1 plays an important role in the carcinogenesis of 
RCC; however, whether its function depends on integrin 
αMβ2 is unclear, so blocking antibody against integrin 
αM or β2 was used to detect the effect that integrin αMβ2 
exerts on TGF-β1 function. As shown in Fig. 5a–c, RCC 
cells treated with TGF-β1 (10 ng/ml) for 48 h significantly 
improved cell growth and enhanced cell migration and inva-
sion capacity. But administration of blocking antibodies sig-
nificantly decreased proliferative ability of untreated cells 
and TGF-β1 treated cells (Fig. 5a), and similar results were 
found in regard as cell migration and invasion capacity.

These findings indicated that integrin αMβ2 was neces-
sary for TGF-β1-induced proliferation and metastasis of 
human RCC.

Integrin αMβ2 is crucial for LEF1 up‑regulating 
the expression of MMPs and calpain‑2

The effect of LEF1 and integrin αMβ2 on regulation of 
MMP2, MMP9 and calpain-2 expression was evaluated in 

this study, which aimed to further investigate the molecular 
mechanism of LEF1/integrin αMβ2 involved in the metasta-
sis of RCC cells. Our results found that the amount of LEF1 
was positively associated with the expression of MMPs and 
calpain-2, mainly embodied by overexpression of LEF1 
with increased MMPs and calpain-2 expression, and knock-
down of LEF1 with decreased MMPs and calpain-2 expres-
sion (Fig. 6a). However, MMPs and calpain-2 expression 
could be suppressed after treatment with blocking antibody 
against integrin αM or β2 (1 µg/ml) for 48 h in LEF1 highly 
expressed RCC cells (Fig. 6b). These findings suggested 
that LEF1 enhanced the metastatic potential depending on 
the regulation of MMPs and calpain-2 secretion by integrin 
αMβ2 in human RCC.

Discussion

Our study gained a new finding that integrin αMβ2 posi-
tively promoted RCC development, based on its up-regula-
tion in RCC cells and facilitating proliferative and metastatic 
potential of RCC cells. This helped to amplify function of 
integrin αMβ2 besides its regulation on inflammation and 
shed light on understanding and control of RCC.

The positive correlation between integrin αMβ2 expres-
sion and LEF1 suggested that LEF1 may directly act as the 
transcription factor for αMβ2 to govern αMβ2 expression, 
and this should be more definite if the evidence that LEF1 
has binding sites in the promoter regions of integrin αMβ2 
is added. As known, LEF1 asks for other transcription acti-
vators to exert its function, and LEF1/β-catenin complex 

Fig. 3  LEF1 regulated the 
expression of integrin αMβ2 
in RCC cells, and the expres-
sion of LEF1 was detected by 
Western blot and immunopre-
cipitation after transfection with 
LEF1 siRNA oligonucleotide 
and a vector containing full-
length cDNA for LEF1
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is confirmed to act downstream of the Wnt/β-catenin 
signaling [34, 35], which is regarded as great contribu-
tion for tumor cells progression [36]. Here in our study, 
accordingly, LEF1 formed complex with β-catenin to up-
regulate integrin αMβ2 in RCC cells. Consequently, as 
the key component of Wnt/β-catenin pathway, LEF1 could 
enhance the proliferation, migration and invasion of RCC 
cells, largely owning to its up-regulation of genes related 
to these processes, of course, including integrin αMβ2.

Interestingly, we also found that TGF-β1 stimulation 
could up-regulate the expression of LEF1 and integrin αMβ2 
in RCC cells, which may point out the cross talk between 
TGF-β1 and Wnt/β-catenin pathway just as reported [37]. 
As known, TGF-β mainly exerts its functions through clas-
sical SMAD-dependent mechanism. Reports showed that 
SMAD3 jointed the complex of LEF1/β-catenin upon TGF-
β1 stimulation, and triggered up-regulation of β1 integrin 
gene expression [33, 38]. Similarly, the complex of LEF1/β-
catenin/SMAD7 leads to the up-regulation of LEF1 itself 
[39]. Here, in RCC cells, it could be deduced that TGF-β1 
signaling promotes Wnt/β-catenin pathway, leading to up-
regulation of transcription factor LEF1, which served as a 
positive feedback, and enlarges targeted genes related to 
tumor progression, including LEF1 itself and integrin αMβ2.

Fig. 4  LEF1 played an important role in the proliferation (a), migra-
tion (b) and invasion (c) of RCC cells. All experiments were per-
formed in triplicate, and the error bar represents the SD. *p < 0.05 vs 
control

Fig. 5  TGF-β1 induced the proliferation (a), migration (b) and inva-
sion (c) depended on the activity of integrin αMβ2 in RCC. All 
experiments were performed in triplicate, and the error bar represents 
the SD. *p < 0.05 vs 1. Control vs 2. TGF-β1
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Integrin αMβ2, as a transmembrane receptor itself, has 
cross talk with TGF-β1 signal. To be noted, integrins could 
extracellularly activate TGF-β1 which is secreted in a latent 
form failing to trigger receptor mediated TGF-β signaling 
[40]. I interacts with TGF-β receptor (TβR) type II, and the 
interaction enhances TGF-β stimulation of MAPKs and 
Smad2/3-mediated gene transcription, thereby significantly 
promoting TGF-β induced EMT in tumor cell [41]. Addi-
tionally, cross talk between TGF-β and integrin signaling 
can also occur on downstream receptors, mainly through 
affecting the common signal molecules related to the two 
pathways [42, 43]. All the above information may inspire 
that TGF-β signaling up-regulates the expression of integrin 
αMβ2, and then αMβ2 served as a positive feedback, aim-
ing to facilitate and enhance TGF-β stimulated signaling. 
Finally, the fact in our study that blocking antibody against 
integrin αMβ2 suppressed TGF-β1’s effects on RCC cells, 
may be clearly due to the blocker attenuated αMβ2 facilitat-
ing TGF-β1 induced EMT, a key index featuring migration 
and invasion of tumor cells.

Apart from assisting TGF-β signal, integrins govern 
pathways mediated by its own to transduce the extracellular 
survival and invasion signal [43]. Though lack of kinase 
activity, when activated by ligand in ECM, integrin could 
recruit diverse kinases, including focal adhesion kinase, 
integrin linked kinase and the SRC kinase family, to induce 

the cascade signal transduction involving Raf-ERK/MAPK 
and PI3K/AKT pathway. MMP2 and MMP9 are included in 
gelatinases belonging to MMPs. Previous studies indicated 
that MMP2 could mediate migration of vascular smooth 
muscle cell [44] and enhance pericellular proteolysis and 
invasion [45]. Downregulation of MMP2 and MMP9 was 
involved in the inhibition of migration and invasion in RCC 
cells [46]. Also, calpain-2 has been reported to mediate the 
invasion of glioma cells and possibly regulate MMP2 [47]. 
MMPs could just be the targeted prey of integrins through 
the mentioned pathways [48–50], who belong to protein-
ase family with biological functions in tumor migration and 
invasion [45, 51–53]. This is in accordance with our finding 
that expression of MMP2 and MMP9 is quite dependent on 
the status of integrin αMβ2 despite of the overexpression 
of LEF1. Taken the fact that TGF-β meditating classical 
SMAD and nonclassical pathways largely contributes to the 
EMT related gene expression including MMPs [54], it could 
be deduced that TGF-β together with integrins should be the 
determinant factors toward EMT and invasion of tumor cells.

In conclusion, our study suggested that integrin αMβ2 
up-regulation in RCC cells was dependent on combined 
effect of TGF-β1 and Wnt/β-catenin pathway leading to high 
amount of LEF1. Also, we found that integrin αMβ2 played 
an essential and crucial role in the proliferation, migration 
and invasion of RCC cells, mainly through assisting TGF-β1 

Fig. 6  LEF1 enhanced the 
metastatic potential by up-
regulating MMP-2, MMP-9 and 
calpain-2 secretion depending 
on the activity of integrin αMβ2 
in RCC 
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stimulated signal and by its own. All supported the conclu-
sion that TGF-β1 strengthens proliferative and metastatic 
potential by means of up-regulating LEF1/integrin αMβ2 in 
human renal cell. These results also suggested that blocking 
integrin αMβ2 activity could be a new therapeutic option 
for patients with advanced RCC. Of course, the molecular 
mechanisms and the expression of integrin αMβ2 in RCC 
need further investigation.
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