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Abstract
Heart failure (HF) is considered one of the most common diseases and one of the major causes of death. The latest studies 
show that HF is associated with an increase in oxidative stress. The use of antioxidants as therapy is effective in animal mod-
els, but not in humans. In this review, we analyse some emerging markers related to oxidative stress, evaluating their possible 
use as therapeutic targets: galectin-3, a β galactoside associated with myocardial fibrosis, α1-antitrypsin, an antiprotease 
and lectin-like oxidized low-density-lipoprotein receptor-1, the major receptor for ox-LDL. The up-regulation of galectin-3 
appears to be associated with HF, atrial fibrillation, dilated cardiomyopathy, fibrogenesis and mortality, while in other cases it 
seems that galectin-3 may be protective in ischaemia–reperfusion injury. Serum α1-antitrypsin protein levels may increase in 
the presence of high concentrations of serum proteases, which are over expressed during reperfusion. The overexpression of 
α1-antitrypsin or the exogenous α1-antitrypsin treatment exhibits an anti-oxidative stress role, evaluated by increased eNOS 
expression and by decreased MMP9 expression, implicated in HF. The cardiac lectin-like oxidized low-density-lipoprotein 
receptor-1 is activated by oxidative stress in ischaemia–reperfusion injury, inducing apoptosis in cardiomyocytes through 
the deleterious NF-kB pathway, while the administration of anti-lectin-like oxidized low-density-lipoprotein receptor-1 
antibody suppresses apoptosis and reduces the extent of myocardial infarction. In conclusion, α1-antitrypsin and lectin-like 
oxidized low-density-lipoprotein receptor-1 seem to represent two good markers in HF and therapeutic targets, whereas 
galectin-3 does not.

Keywords  Biomarkers · Oxidative stress · Galectin-3 · α1-Antitrypsin · Lectin-like oxidized low-density-lipoprotein 
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Introduction

In recent decades, heart failure (HF) has become an epi-
demic in the western world.

HF is a pathological condition characterized by functional 
and structural cardiac changes, which progressively lead to 
mechanical cardiac dysfunction inducing multiple morpho-
logical, biochemical and molecular alterations referred to 
cardiac remodelling [1].

Many biological activities involved in this pro-
cess include the interactions between endothelial cells, 

monocyte–macrophages, cardiomyocytes, fibrocytes and 
the neuro-endocrine system. In particular, systemic condi-
tions such as diabetes, advanced age, hypertension, obesity, 
dyslipidemia and chronic kidney disease are involved in 
the onset of HF. These conditions increase oxidative stress 
through reactive oxygen species (ROS), leading to vascular 
endothelial damage, LV hypertrophy and heart interstitial 
fibrosis [2, 3].

Cardiac troponins and natriuretic peptides represent 
essential diagnostic biomarkers in HF [4]. A number of 
novel biomarkers are clinically available but not yet in rou-
tine use.

Here, we examine the biochemical events that character-
ize the initiation and progression of HF in relation to three 
markers sensitive to increased ROS as possible candidates 
in the diagnosis and treatment of HF: galactin-3 (GAL-3), 
α1-antitrypsin (AAT) and lectin-like oxidized low-den-
sity-lipoprotein receptor-1 (LOX-1). GAL-3 is involved in 
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pathological myocardial fibrosis [5], AAT is a potent serine 
protease inhibitor [6], and LOX-1 is the major receptor for 
ox-LDL in human endothelial cells [7] (Fig. 1).

Role of oxidative stress on HF

The main sources of ROS in the heart are the mitochondria, 
NADPH oxidases, xanthine oxidase and uncoupled nitric 
oxide synthase (NOS).

ROS are also produced by the increased expression and 
activity of NADPH oxidase due to pathological conditions 
leading to the increase in angiotensin II (Ang II), endothe-
lin-1 and TNF alpha [8, 9]. In patients with HF, the produc-
tion of xanthine oxidase is increased augmenting the ROS 
level [10]. In damaged heart tissue, NOS becomes structur-
ally unstable inducing uncoupling and further increment of 
ROS levels. The deleterious effects of oxidants are partially 
due to their ability to induce modifications in subcellular 
organelles such as sarcoplasmic reticulum (SR), mitochon-
dria and the nucleus, which are intimately involved in the reg-
ulation of cardiomyocyte Ca2+ homeostasis [11, 12]. Because 
contraction is mainly driven by Ca2+ released from the SR, 
this organelle plays a particularly important role in Ca2+ reg-
ulation, through the type two ryanodine receptors (RyR2), 

which are the major SR Ca2+ release channel in ventricular 
myocytes. Several studies showed that HF is associated with 
increased RyR2 activity and diastolic SR Ca2+ leak, leading 
to arrhythmias and contractile dysfunction [13–15] (Fig. 1).

Moreover, oxidative damage contributes to impairment 
of the electron transport chain in mitochondria inducing 
bio-energetic dysfunction by reduced ATP production and 
further accumulation of ROS [16].

Mitochondrial dysfunction has previously been reported 
in dilated cardiomyopathy and HF [17, 18]. However, several 
cellular strategies have evolved to limit or prevent mitochon-
dria damage; for example, in the presence of overload pres-
sure induced by left and right ventricular failure, the excessive 
mitochondrial ROS production [19] stimulates cardiomyo-
cytes to activate mitophagy against cellular damage [20, 21].

Early myocardial reperfusion is an efficient strategy to 
avoid cell damage and to improve clinical outcomes, but 
subsequently, it causes tissue damage due to powerful oxi-
dative stress. In fact after ischaemic events, oxidative stress 
can reduce the beneficial effects of the restored blood flow on 
the viability of cardiomyocytes inducing their death [22, 23]. 
Because of reperfusion injury, the incidence of cardiac fail-
ure is almost 10% at 1 year [24]. The generation of ROS can 
activate the intracellular proteolytic enzymes and induces cell 
death by initiating mitochondrial permeability transition [25].

Fig. 1   Effects of increased ROS in HF. The increment in ROS 
induced by altered metabolism, chronic kidney diseases and hyper-
tension leads to electrophysiological, contractile, mitochondrial dys-

function and apoptosis in cardiomyocytes, fibrosis, inflammation and 
vascular dysfunction in the extracellular matrix; all events that char-
acterize HF
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Normally, production of free radicals by cellular respira-
tion or by other biological processes in tissues is balanced by 
the presence of antioxidant molecules or enzymes.

As in other tissues, in the heart the main antioxidant 
components are catalase, superoxide dismutase (SOD), glu-
tathione peroxidase (GPx), nicotinamide adenine dinucleotide 
(NAD+) and glutathione (GSH), which some studies showed 
to be reduced in the presence of HF [26, 27]. In dilated left 
ventricle tissue, GSH levels were decreased by 54% relative 
to controls and were shown to correlate with HF severity [28]. 
Recently, a study has shown that nicotinamide mononucleo-
tide adenylyl transferase, a precursor of NAD+, is reduced in 
both a murine HF model and in patients affected by HF, sug-
gesting that NAD+ , like GSH, is an important component in 
the elimination of ROS and lipoperoxides [29].

Studies from animal models indicated that both the inhi-
bition of ROS-producing factors, the increase in antioxidant 
factors, such as vitamins, and the increase in antioxidant 
enzymes led to an improvement in the contractile capacity 
of myocardial tissue, a reduction in ventricular remodel-
ling and fibrosis, as well as a reduction in the necrotic area 
after myocardial infarction (MI) [30–37]. These promising 
results have prompted some investigators to perform trials 
on humans, but, unfortunately, the data obtained from a large 
population were not positive [37–39].

Role of GAL‑3 in HF

In HF, increased oxidative stress through ROS leads to car-
diac fibrosis, especially after reperfusion [3, 40]. GAL-3, a 
beta galactoside binding lectin, is closely associated with MI 
and myocardial fibrosis in HF [41].

GAL-3 is mainly found in the cytoplasm of various types 
of cell, but can easily cross cell membranes entering the 
nucleus and the mitochondria and it can also be abundantly 
excreted in the extracellular space [42]. In the cytosol and 
mitochondria, it interacts with anti-apoptotic factors such as 
Bcl-2 [43], while in the extracellular compartment, it seems 
to regulate cellular adhesion. According to some authors, 
GAL-3 plays an important role in various physio-patho-
logical processes such as in organogenesis, in the immune 
system and in tumour growth. These biological activities 
are due to particular interactions with various betagalac-
tosides containing glycans, through a recognition domain 
composed of 135 amino acids (CRD) [44]. Lactose is an 
effective inhibitor of GAL-3 biological functions, but the 
addition of a glucose residue to the reducing end of galactose 
increases the affinity for galectin-3 considerably [45, 46].

Moreover, in the lactose molecule, exchange of a 
hydroxyl group for the more hydrophobic acetamide group 
(N-acetyllactosamine) increases affinity for galectin-3 by 
over sixfold, while a hydrophilic gal residue addition to the 

3-hydroxyl group of lactose-N-acetyllactosamine increases 
the affinity for GAL-3 by over 23-fold [45].

Non-carbohydrate binding activities of GAL-3 include 
the interaction with the bacterial endotoxin lipopolysac-
charide and with insoluble elastin, an extracellular matrix 
protein [47–49].

GAL-3 binds to intracellular and extracellular glycopro-
teins and activates fibroblast to produce fibres of connec-
tive tissue inducing fibrosis [50, 51]. Several clinical and 
experimental studies showed that up-regulation of GAL-3 
was associated with HF, atrial fibrillation, dilated cardio-
myopathy, fibrogenesis and mortality, implicating GAL-3 
as a biomarker of heart disease [52–57]. GAL-3 has been 
shown to represent a strong predictive marker at 18 months 
if other risk factors, such as diabetes and renal insufficiency, 
are concurrent [58]. Moreover, some findings showed that 
low blood levels (< 11.8 ng/ml) of GAL-3 represent a good 
predictor of the absence of mortality and re-hospitalization 
at 6 months, whereas higher blood levels (> 17.8 ng/ml) indi-
cate increased risk of being readmitted (2–3 times) [59, 60]. 
It has been observed that a genetic deficiency of GAL-3 or 
use of its inhibitors, like modified citrus pectin, attenuates 
cardiac fibrosis and inflammation [61]. Indeed, in experi-
mental hyperaldosteronism, the increase in GAL-3 expres-
sion was associated with cardiac and renal fibrosis, and it 
was prevented by pharmacological inhibition (modified cit-
rus pectin) or GAL-3 genic silencing [62]. In keeping with 
these findings, Yu et al. [63] found that genetic and phar-
macological inhibition of GAL-3 prevents cardiac remod-
elling by interfering with myocardial fibrogenesis [63]. 
However, other studies are not in complete agreement with 
these observations. In fact, in an established mouse model 
of pressure-overloaded myocardium, a marked up-regulation 
of GAL-3 that correlated with adverse remodelling and dys-
function was found, but GAL-3 gene silencing had no effects 
on survival, systolic and diastolic dysfunction, or fibrosis 
[55]. Moreover, in a murine model with fibrotic cardio-
myopathy attributable to cardiac overexpression of human 
β2-adrenoceptors (β2-TG), the treatment with N-acetyllac-
tosamine which prevents GAL-3 upregulation did not reverse 
cardiac fibrosis, inflammation or cardiomyopathy [64].

Endomyocardial biopsies from HF patients revealed that 
the GAL-3 concentration in cardiac tissue did not reflect 
the concentration in plasma [53]. In many cases, the GAL-3 
blood levels in HF patients before and after heart transplan-
tation were unchanged, indicating that other organs were 
responsible for its high production [65].

Other hypotheses on the role of GAL-3 after ischae-
mia–reperfusion injury suggest that it could be protective. 
In fact, in GAL-3-KO rat group, troponin I and the proapop-
totic proteins, cleaved caspase 3, cytochrome c and annexin 
V, were significantly higher than in GAL-3 wild-type group, 
which showed a significant increment in the antiapoptotic 
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protein BCL2 and an increased antioxidant activity in the 
ischaemia reperfusion (IR)-injured myocardium [48].

Furthermore, after IR, heart immunohistochemically 
stained sections of the GAL-3 wild-type group showed 
higher expression of SOD, GSH reductase and catalase than 
those of the GAL-3 KO group [66, 67]. Glutathione and 
catalase specifically provide significant antioxidant protec-
tion of the myocardium against IR injury [68–71].

Regarding the relationship of ROS and GAL-3 in IR, 
Matarrese et al. [72] reported that GAL-3 might interfere 
with the early stages of cell death which are associated with 
perturbation of mitochondrial homeostasis and subsequent 
formation of ROS [72]. According to these data, the increase 
in GAL-3 in HF could be traced back to a compensatory pro-
tective mechanism. The contrasting findings present in the 
literature about the role of GAL-3 in HF reduce the possibil-
ity of using it as potential target for drug treatment [73–75].

For some authors, Gal-3 it is still an emerging marker 
[76], but for others it is not.

Recent findings suggested that GAL-3, in combination 
with apoptotic endothelial cell-derived microvesicles (MVs) 
CD31+/annexin V+ MVs, was the best predictor of reduced 
ejection fraction (HFpEF) [76], while another author reported 
that it was not able to distinguish between preserved ejection 
fraction (HFrEF) and HFpEF patients, even if it demonstrated 
a prognostic role in subjects with HFpEF [77].

Role of AAT in HF

The increase in ROS in HF is associated with inflammation, 
and it is also related to the presence of proteases. In fact, it 
has been observed that some cytokines, such as IL-1 beta 
and IL-6, play an important role in cardiac remodelling and 
induction of metalloproteases [78, 79]. Serum AAT protein, 
the major component of the α-1 protein (A1-Pr) fraction, is 
an antiprotease, whose levels may increase in the presence 
of high concentrations of serum proteases over expressed 
during inflammation [80], so some authors suggested that 
it represents a promising therapeutic marker in HF and MI 
[81]. AAT action was previously studied in relation to its 
genetic deficiency in patients with chronic obstructive pul-
monary disease, which did not show any protective protease 
activity and destruction of the elastin matrix within the lung, 
resulting in emphysema [82].

However, in addition to its presence in the lungs, circu-
lating AAT also binds to the endothelium, limiting vascular 
damage and inflammatory pathways [83–87].

In the vasculature, low levels of AAT could cause the 
local degradation of elastin and consequently increase col-
lagen deposition, contributing to arterial stiffness in athero-
sclerosis [83–87]. It is known that ROS plays a critical role 

in IR events. Indeed, during reperfusion the high production 
of ROS cannot be completely neutralized by antioxidant sys-
tems [88, 89].

Feng et al. [89] found that in HUVECs the overexpression 
of AAT or exogenous AAT treatment significantly increased 
the activity of SOD reduced by IR, whereas the knockdown 
of AAT did not [89]. Similarly, other findings showed that 
AAT exhibited an antioxidative stress role, evaluated by 
increased expression of eNOS and vascular endothelial 
growth factor-1 (VEGFR1) and by decreased expression of 
matrix metalloproteinase-9 (MMP-9) [90].

eNOS is known to protect cells against various injurious 
states, whereas the enhanced activity of MMP-9 is impli-
cated in a variety of cardiovascular pathological states, such 
as ischaemic heart disease and HF [91]. Other studies have 
shown that patients with a reduced increment of the anti-pro-
tease AAT after MI were more likely to die, or had a worse 
clinical outcome than patients who had a normal increase 
in anti-protease AAT [92]. In fact, in vivo, the increment in 
AAT is sufficient to inhibit the high concentration of pro-
teases [92]. However, it is known that AAT undergoes oxida-
tion in HF patients, leading to protein dysfunction and loss 
of its activity against elastase and other proteases, events 
that can induce myocardial damage [93]. Based on these 
observations, the overexpression of AAT could represent 
a compensatory response to the loss of AAT activity [94].

Our recent study showed that serum A1-Pr concentration, 
measured through serum protein electrophoresis (SPE), iden-
tified patients with clinically overt HF in NYHA class III [6].

Recently, in a large population of HF patients, we 
observed a high positive correlation between A1-Pr and 
AAT (unpublished data). Therefore, an increase in A1-Pr, 
observed during a simple SPE, might represent a warning 
signal in patients not yet identified as HF.

Finally, a series of preclinical studies have provided evi-
dence that AAT therapy is effective in several diseases, such 
as diabetes mellitus and organ transplant rejection, suggest-
ing that medical applications of AAT can be expanded to 
pathologies other than pulmonary emphysema [94]. Using 
a model wherein endothelial cell monolayers are exposed 
to IR, exogenous AAT was found to alleviate IR injury in 
a dose- and time-dependent manner, demonstrating that 
overexpression of AAT decreased cell apoptosis and pro-
moted proliferation via inhibition of Rac1/PAK/p38 signal-
ling and ROS production [90]. In a clinical study, a sin-
gle administration of Prolastin C, a plasma-derived AAT, 
given 12 h after reperfusion in patients with ST-Segment 
Elevation MI (STEMI), led to a significant inhibition of 
CK-MB, supporting the hypothesis that Prolastin C reduces 
the ischaemia–reperfusion injury time in STEMI patients. 
These preliminary data suggest that AAT treatment may 
be therapeutically beneficial to reduce IR-induced vascular 
injury [95].
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Role of LOX‑1 in HF

Reperfusion is associated with a large amount of ROS that 
converts LDL in ox-LDL and over-expression of LOX-1 in 
myocardial tissue. LOX-1 is considered the major receptor for 
ox-LDL in human endothelial cells, and it is also expressed in 
smooth muscle cells, cardiomyocytes and macrophages, in ath-
erosclerotic lesions and in plaque neovascularization [96–99]. 
Our previous studies showed that the measurement of soluble 
LOX-1 in serum could potentially be useful in predicting pro-
gression of atherosclerotic disease in humans, as it is closely 
correlated with atherosclerotic plaque formation [100].

In HF, LOX-1 levels were found to correlate directly 
with brain natriuretic peptide and inversely with the ejec-
tion fraction [101]. Supporting these observations, mice with 
LOX-1 gene deletion showed improvement in cardiac func-
tion, myocardial inflammation and fibrosis, after treatment 
with doxorubicin [102].

Moreover, the cardiac LOX-1 pathway was activated by 
oxidative stress in vitro and by IR injury in vivo, inducing 
apoptosis in cardiomyocytes, while the administration of 
anti-LOX-1 antibody was able to suppress apoptosis in vitro 
and to reduce the extent of MI in vivo [7, 103].

In addition, the up-regulation of this receptor increases 
the production of proteases that are involved in HF [104]. In 
fact, one of the characteristics of HF is the large accumula-
tion of collagen fragment induced by metalloproteinases, 
such as collagenases and gelatinases [104].

Hu et al. [105] reported the regulation of TGFbeta1-medi-
ated collagen formation by LOX-1 underlying signalling in 
mouse cardiac fibroblasts. Transfection of wild-type mouse 
cardiac fibroblasts with AAV/TGFbeta1 markedly enhanced 
the expression of NADPH oxidases (p22(phox), p47(phox) 
and gp91(phox) subunits), LOX-1, ROS and collagen syn-
thesis, concomitant with an increase in the activation of p38 
and p44/42 mitogen-activated protein kinases (MAPK). The 
TGFbeta(1)-mediated increase in collagen synthesis was 
markedly attenuated in cardiac fibroblasts from/of LOX-1 
knock-out mice, as well as in similar wild-type fibroblasts 
treated with an anti-LOX-1-specific antibody [105].

LOX-1 expression was markedly increased during IR. Simul-
taneously, the expression of MMP-1 and adhesion molecules 
(P-selectin, VCAM-1 and ICAM-1) was also increased in the IR 
area [106], together with leukocyte accumulation. Treatment of 
rats with LOX-1 antibody prevented IR-induced upregulation of 
LOX-1 and reduced MMP-1 and adhesion molecule expression, 
as well as leukocyte recruitment. These findings indicate that 
myocardial IR upregulates LOX-1 expression, which increases 
the expression of MMP-1 and adhesion molecules through p38 
MAPK activation. Inhibition of LOX-1 exerts an important 
protective effect against myocardial IR injury [106]. However, 
the utility of the serum LOX-1 assay was shown not only in 

the diagnosis of left ventricular systolic HF after episodes of 
post-ischaemic reperfusion, but also in the diagnosis of HF, for 
example in patients with ischaemic cardiomyopathy indicating a 
link between LOX-1 and HF in patients with chronic ischaemia 
supported by oxidative stress and inflammation [107].

In cultured neonatal rat cardiac myocytes, noradrenaline 
and endothelin were able to upregulate LOX-1 expression 
inducing apoptosis through p38 MAPK, a component of oxi-
dant stress-sensitive signalling pathways [103].

Moreover, in Dahl salt sensitive rats, with HF, it has 
been observed that eplerenone, a selective aldosterone 
blocker, stimulated endothelial eNOS through AKT and 
inhibited iNOS via nuclear factor kB(NF-kB) after activa-
tion of LOX-1 pathway, suggesting that the suppression of 
NF-kB- LOX-1 activation could improve cardiac function 
and remodelling [108].

Other data have shown that LOX-1 can also act on car-
diomyocyte contraction. This effect was observed by oxida-
tion of tropomyosin in cardiomyocyte culture. The inhibition 
of LOX-1 with antisense RNA voided this effect [107]. The 
intracellular increment of oxidative stress induced activation 
of the p38 MAP kinase, responsible for pro-protein convertase 
subtilisin/kexin-9 (PCSK9). The authors described that ox-
LDL significantly impaired contractile function via induc-
tion of PCSK9 [109]. The presence of LOX-1 has also been 
reported in fibroblasts of cardiac tissue, and its expression 
was induced by the increase in angiotensin II (Ang II levels), 
a neuro-hormone that contributes to cardiac remodelling [110, 
111]. The infusion of Ang II in wild-type mice induces car-
diac remodelling, while in mice with no-functioning LOX-1 
the effect was less evident [110]. The incorporation of LOX-1 
in cardiac fibroblast exposed to ox-LDL enhanced production 
of adhesion molecules and metalloproteinases [112].

Comments and criticisms on the use 
of GAL‑3, AAT and LOX‑1

In this review, we wanted to highlight the characteristics of 
GAL-3, AAT and LOX-1 as biomarkers for the diagnosis of 
HF and as potential targets of therapy.

In fact, precise early diagnosis could improve the life 
quality of these patients.

As we have described, few clinical studies have been 
performed on these markers regarding the diagnosis of 
HF. For GAL-3, enough data have been collected in clini-
cal studies [52–54, 58–60] even if they are sometimes 
contradictory. For AAT and LOX-1, the published clinical 
data are insufficient to affirm their validity.

Recently, regarding AAT serum levels, we evaluated 
the trend in affected patients by indirectly measuring the 
serum concentrations of α-1 protein [6]. Correlation with 
NT-pro-BNP, NYHA class and other significant data led us 
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to directly evaluate AAT in a larger population. However, 
some authors have already suggested in clinical studies that 
AAT represents a promising therapeutic marker in HF and 
in MI [82], and patients with low levels of AAT had a worse 
clinical outcome [92]. Several studies performed in animal 
models and in vitro suggest the implication of LOX-1 in HF, 
indicating the utility to investigate this relationship also in 
humans. Some clinical studies showed LOX-1 association 
with the development and progression of atherosclerotic 
plaques [101], and animal studies showed that LOX-1 levels 
correlated inversely with EF% and directly with natriuretic 
peptides [102]. LOX-1 association with apoptosis, inflam-
mation and fibrosis leads us to believe that it is an important 
factor in the development of HF.

There are numerous markers of oxidative stress and 
inflammation that could be implicated in the development 
of HF, which are widely described in the literature. However, 
few of them have been introduced into clinical practice. In 
fact, in addition to their involvement in the disease, a marker 
must be sensitive, specific and, above all, easily measurable. 
The markers previously mentioned have good analytical 
characteristics and are easy to apply in clinical laboratories. 
With the ELISA methods, it is possible to have very accurate 
data, and from our studies the A1-Pr electrophoresis analysis 
provides an accurate estimate of the significant increase in 
AAT for an immediate evaluation of subjects at risk.

MicroRNAs (miRNAs) have been shown to partici-
pate in a variety of cardiovascular diseases through post-
transcriptional regulation of target gene proteins: for 
instance, the miR-30 family can participate in ventricular 
remodelling through a variety of mechanisms, including 
autophagy, apoptosis, oxidative stress and inflammation. 

Although clinical studies can be performed by detecting 
miRNAs, not all clinical laboratories have molecular biol-
ogy technologies and the costs and times for this analysis 
would be much higher to those incurred with the previ-
ously mentioned methods [113].

Conclusion

In conclusion, there are some accepted valid markers, like 
NT-proBNP, for the diagnosis of HF, while others are still 
being studied such as those described in this review. Con-
sidering the contradictory findings of the literature, GAL-3 
does not appear to be a good marker in the diagnosis and 
characterization of HF, while in our experience, both 
A1-p, AAT and LOX-1 appear to be effective markers.

There are no studies on LOX-1 and AAT regarding 
HFpEF and HFrEF differentiation capacity. In our opinion, 
given the strong link that exists between these factors and 
the oxidative stress damage exerted on myocardial tissue 
in HF, a discriminatory capacity is to be expected. This 
evaluation will be considered in future studies.

Concerning the therapeutic use, being a non-specific 
method, antioxidant systems are not very effective, while 
therapies based on AAT treatment or on the inhibition of 
LOX-1 activity may be beneficial in reducing IR injury.

In particular, LOX-1 is susceptible to the presence of 
many macromolecules such as ox-LDL, Ang II, ROS and 
some cytokines, involved in several pathological processes 
(Fig. 2), by triggering the deleterious NF-kB pathway. 
Therefore, anti-LOX-1 antibodies could represent a use-
ful therapy for HF patients.

Fig. 2   Main effects of LOX-1 
overexpression in cardiomyo-
cytes. Activation of lectin-like 
oxidized low-density lipopro-
tein receptor-1 by ox-LDL and 
other stimuli leads to cascade of 
intracellular signalling pathways 
inducing cardiomyocytes injury 
and modification of extracel-
lular matrix; events that lead 
to HF
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