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Abstract
Lipotoxicity, an accumulation of intracellular lipid metabolites, has been proposed as an important pathogenic mechanism 
contributing to kidney dysfunction in the context of metabolic disease. Palmitic acid, a predominant lipid derivative, can 
cause lipoapoptosis and the release of inflammatory extracellular vesicles (EVs) in hepatocytes, but the effect of lipids on 
EV production in chronic kidney disease remains vaguely explored. This study was aimed to investigate whether palmitic 
acid would stimulate EV release from renal proximal tubular epithelial cells. Human and rat proximal tubular epithelial 
cells, HK-2 and NRK-52E, were incubated with 1% bovine serum albumin (BSA), BSA-conjugated palmitic acid (PA), and 
BSA-conjugated oleic acid (OA) for 24–48 h. The EVs released into conditioned media were isolated by ultracentrifugation 
and quantified by nanoparticle-tracking analysis (NTA). According to NTA, the size distribution of EVs was 30–150 nm 
with similar mode sizes in all experimental groups. Moreover, BSA-induced EV release was significantly enhanced in the 
presence of PA, whereas EV release was not altered by the addition of OA. In NRK-52E cells, PA-enhanced EV release 
was associated with an induction of cell apoptosis reflected by an increase in cleaved caspase-3 protein by Western blot 
and Annexin V positive cells analyzed by flow cytometry. Additionally, confocal microscopy confirmed the uptake of lipid-
induced EVs by recipient renal proximal tubular cells. Collectively, our results indicate that PA stimulates EV release from 
cultured proximal tubular epithelial cells. Thus, extended characterization of lipid-induced EVs may constitute new signaling 
paradigms contributing to chronic kidney disease pathology.
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Introduction

Chronic kidney disease (CKD) burdens 14% of the U.S. gen-
eral population with nearly half of individuals concurrently 
diagnosed with diabetes or cardiovascular disease [1]. In 
type 2 diabetes, there are limited indicators in loss of kid-
ney function in early stages. However, the progression of 
CKD is associated with symptoms including a reduction in 
glomerular filtration rate, persistent proteinuria, and hyper-
lipidemia [2, 3]. Of these, hyperlipidemia exacerbates con-
ditions in the kidney via insulin resistance, cell apoptosis, 

and inflammation augmenting kidney dysfunction over years 
[4–6].

At baseline, lipids are essential to cellular function as 
components of their biological membranes, a major form of 
energy storage and a vital part of cell signaling. However, 
accumulation of lipids, especially saturated fatty acids and 
their metabolites, in non-adipose tissue produces lipotoxicity 
resulting in significant cellular dysfunction and injury [7]. 
Non-esterified or free fatty acids in plasma are bound to car-
rier proteins, mostly albumin [8]. In a healthy kidney, nor-
mal glomerular filtration barrier prevents the permeation of 
albumin and albumin-bound fatty acids. In diabetic kidney 
disease, the glomerular filtration barrier is damaged expos-
ing tubular epithelial cells to high levels of albumin-bound 
fatty acids from circulation and filtrate. The increased cel-
lular internalization of dominant saturated fatty acids, such 
as palmitic acid (PA), has shown contributions to kidney 
deterioration through apoptosis, mitochondrial superoxide 
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generation and endoplasmic reticulum (ER) stress [9–11]. 
On the other hand, monounsaturated fatty acids, such as 
oleic acid (OA), exhibit anti-inflammatory properties and 
have the ability to regulate cell survival [12, 13]. The his-
tological changes associated lipotoxicity, an accumulation 
of intracellular lipids, drives severe kidney injury primarily 
in the proximal tubular cells [14]. Understanding the differ-
ences in PA and OA accumulation and function in proxi-
mal tubular cells may shed light on mechanisms of renal 
lipotoxicity.

In recent years, there has been rapid growth of interest 
in extracellular vesicles (EVs) proposing their role in nor-
mal and pathophysiological conditions. EVs are nanome-
ter-sized, membrane surrounded, cell-secreted molecules 
that carry special cargo utilized for signal transduction and 
intercellular communication. EVs have been established as 
efficient carriers of DNA, RNA, and proteins, with the abil-
ity to regulate cell function via gene expression in recipient 
cells [15]. It has been reported that lipid-induced toxicity in 
hepatocytes increases the release of EVs which activates an 
inflammatory phenotype in macrophages [16] and a fibrotic 
response in hepatic stellate cells [17]. Emerging research 
foreshadows EVs potential to communicate between cell 
populations; however, the characterization of EVs in lipid-
induced kidney injury remains unclear. Therefore, in the cur-
rent study, we investigated the effect of fatty acids on EV 
release from cultured renal proximal tubular cells.

Materials and methods

Reagents

Palmitic acid (PA), oleic acid (OA), bovine serum albumin 
(BSA, A7030, fatty acid free and essentially globulin free), 
and anti-β-actin antibody were purchased from Sigma-
Aldrich (St. Louis, MO). Cell culture medium and reagents 
were from Life Technologies (Carlsbad, CA).

Cell culture and fatty acid treatment

Normal renal proximal tubular cell lines from rat (NRK-
52E) and human (HK-2) were purchased from the American 
Type Culture Collection (Manassas, VA). The cells were 
cultured in DMEM/F12 supplemented with 5% fetal bovine 
serum, 100 U/ml penicillin, and 100 µg/ml streptomycin. 
Cells were subcultured (passage number < 30) once a week 
until reaching confluency.

For fatty acid treatment, BSA-conjugated PA and OA 
were prepared using a modified method described previ-
ously [18]. In brief, PA and OA were dissolved with etha-
nol and in serum-free DMEM/F12 medium containing 4% 
BSA. A final concentration of 1% BSA, 250–750 µM PA or 

OA conjugated with BSA, and 0.25% ethanol was achieved 
through further dilutions. Doses of PA and OA were based 
on previous in vitro studies [18, 19]. PA (500–750 µM) is 
two to three times higher than normal circulating levels of 
PA and more representative of elevated fatty acid levels 
seen in patients with insulin resistance and diabetes [20, 
21]. Control media prepared similarly contained ethanol 
in the absence (normal control), or presence of 1% BSA 
(BSA control). 90% confluent cells were then exposed to the 
experimental groups for 24–48 h.

MTT cell viability assay

NRK-52E cells were seeded into 96-well plates (5000 cells/
per well) until they reached 70–80% confluency. Conflu-
ent cells were exposed to control or fatty acids for 24 h. 
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-
mide from the Invitrogen Vybrant MTT Cell Proliferation 
Assay Kit (Carlsbad, California) was dissolved in phosphate 
buffer saline, added to each well and incubated for 4 h at 
37 °C. Dimethyl sulfoxide was added to each well for 10 min 
at 37 °C. Cell absorbency was analyzed at 570 nm using 
SpectroMax M5 from Molecular Devices (Sunnyvale, CA) 
and SoftMax Pro 6.2.2 software.

Annexin V positive assessment of apoptosis

NRK-52E cells were seeded into 12-well dishes until they 
reached 80% confluency. Cells were treated with experi-
mental groups and controls for 24 h. Cells were collected 
in 1.5 mL tubes and centrifuged at 1000 rpm for 5 min. 
The cell pellet was resuspended in Annexin V-FITC bind-
ing buffer, Annexin V-FITC and propidium iodide from the 
Annexin V-FITC Apoptosis Detection Kit (Sigma-Aldrich). 
Cells were incubated for 15 min in the dark at room tempera-
ture, and then subjected to apoptosis detection using Guava 
easyCyte flow cytometer and Guava Nexin software module 
from Millipore Sigma (St. Louis, MO).

EV isolation by ultracentrifugation

EVs were isolated from cell culture medium as previously 
described [22]. Briefly, conditioned medium was centri-
fuged at 2000 × g for 30 min to remove cells and debris. 
Supernatant fractions were filtered using 0.22-µm pore 
size filters. Filtered cell-free medium was ultracentrifuged 
at 120,000 × g for 120 min. The resulting EV pellet was 
washed once with PBS using the same ultracentrifugation 
conditions, followed by resuspension in PBS. EV protein 
concentration was assessed by the Bio-Rad DC protein assay 
(Richmond, CA).
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Nanoparticle‑tracking analysis (NTA)

Analysis of size distribution and concentration of EVs 
were performed using NanoSight LM10 with NTA2.3 from 
NanoSight Ltd. (Minton Park, UK) as previously described 
[23]. Particles were automatically tracked and sized based 
on Brownian motion and the diffusion coefficient. Control 
medium and filtered PBS were used as controls in this tech-
nique. The NTA measurement conditions were: tempera-
ture = 21.0 ± 0.5 °C; viscosity = 0.99 ± 0.01 Cp; frames per 
second = 25; measurement time = 30 s. The detection thresh-
old was similar in all samples. Two recordings were per-
formed for each sample.

Western blotting

Cell lysates and EV protein samples were denatured in 
sodium-dodecyl-sulfate polyacrylamide gel electrophoresis 
(SDS-PAGE) sample buffer by heating at 95 °C for 15 min. 
Criterion 4–20% TGX Precast Gels from Bio-Rad was used 
to separate the proteins and blotted as previously described. 
Blots were incubated with the primary antibodies, anti-Alix 
(Abcam, Cambridge, MA), anti-tumor susceptibility gene 
101 protein (TSG101, Abcam), anti-CD63 (Santa Cruz, 
Santa Cruz, CA), anti-HSP70 (BD, San Jose, CA), and anti-
cleaved caspase-3 (Cell Signaling, Danvers, MA), followed 
by goat or rat anti-Ig secondary antibodies. Specific bands 
were detected using enhanced chemiluminescent substrate 
from GE Healthcare (Piscataway, NJ) and visualized on the 
ImageQuant LAS 4000 imaging system from GE Health-
care. For total EV protein, Ponceau S red staining was used 
for loading control. β-actin was used as an internal control 
for cell lysates. Relative band intensity was measured den-
sitometrically using ImageJ software.

Fluorescence microscopy

To evaluate fatty acid accumulation in renal tubular cells, 
BODIPY 493/503 from Life Technologies was performed 
as described previously [24]. Briefly, NRK-52E cells were 
treated with BSA, PA (250 µM), or OA (250 µM) for 24 h. 
The cells were washed with PBS, fixed in 4% paraformal-
dehyde, and stained with BODIPY 493/503. Stained NRK-
52E cells were observed and imaged by a Leica confocal 
microscope.

To visualize the uptake of EVs into recipient cells, 
isolated EVs were resuspended in PBS. Approximately, 
1.5 × 108 EVs from HK-2 cells were fluorescently labeled 
with Exo-Green from System Biosciences (San Juan Cap-
istrano, CA) and EVs from NRK-52E were labeled with 
PKH26 (Sigma-Aldrich). HK-2 or NRK-52E recipient 
cells were cultured on a coverslip in a 6-well plate until 
they reached 70% confluency. Confluent cells were washed 

twice with serum-free medium, and then exposed to 100 μl 
of labeled EVs resuspended in serum-free medium for 16 h. 
Cells were fixed with 4% paraformaldehyde, stained with 
DAPI and imaged by a Leica confocal microscope.

Statistical analysis

Data are expressed as mean ± SEM. Student’s t test was used 
for comparison between two groups. Comparisons among 
multiple groups were performed by one-way ANOVA fol-
lowed by Newman–Keuls post hoc test. Statistical signifi-
cance was set at P < 0.05.

Results

Intracellular lipid accumulation in NRK‑52E cells 
treated with fatty acids

Unsaturated and saturated fatty acids have been reported 
to differentially influence membrane composition and 
lipid droplet formation in nonfat cells [25, 26]. Therefore, 
NRK-52E cells were first stained with BODIPY 493/503 
for neutral lipids to visualize intracellular lipid droplets and 
to determine their size following OA or PA treatment. As 
shown in Fig. 1a, fluorescence microscopy revealed that 
OA increased the number of lipid droplets significantly 
more than PA, though PA also slightly increased lipid drop-
let numbers compared to BSA control in NRK-52E cells. 
Moreover, cells with perinuclear large lipid droplets were 
found almost exclusively in the OA treatment. In contrast, 
PA-treated cells displayed increased small intracellular lipids 
scattered throughout the cytoplasm (Fig. 1a).

PA but not OA induces apoptosis in NRK‑52E cells

Because an accumulation of fatty acids and their metabo-
lites within cells has been associated with cellular injury 
and dysfunction, we examined the effects of OA and PA on 
apoptosis in NRK-52E cells. As depicted in Fig. 1b, Western 
blot analysis showed a dose-dependent increase in cleaved 
caspase-3 in NRK-52E cells treated with PA (250–750 µM). 
PA-induced apoptosis was further confirmed by flow cytom-
etry, showing a significant increase in Annexin V positive 
cells in the presence of 500 µM PA (Fig. 2a, b). In con-
trast, OA (500 µM) slightly reduced the percentage of apop-
totic cells, although there is no statistical significance. As 
expected, MTT analysis detected a significant reduction of 
viability after NRK-52E cells were treated with 500 µM 
PA, whereas OA did not negatively impact cell viability 
(Fig. 2c).
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PA stimulated EV release from renal tubular 
epithelial cells

It has been shown that PA treatment accelerates EV pro-
duction in hepatocytes and altered their miRNA profiles 
[17]. Next, we analyzed the EVs released from control and 
PA-treated NRK-52E cells to examine whether PA treat-
ment also stimulates EV production in renal tubular cells. 
Based on NTA analysis, the size distribution of NRK-
52E-derived EVs was 30–200 nm with a similar mode 
size (~ 50 nm) in all groups (Fig. 3a–c). Interestingly, a 

24 h incubation of NRK-52E cells with BSA alone signifi-
cantly increased EV amount compared to normal control 
(11.5 × 108 vs 2.9 × 108, P < 0.01) (Fig. 3d). When NRK-
52E cells were exposed to 500 and 750 µM PA for 24 h, EV 
production was further increased to 23.1 × 108 (P < 0.05 
compared to BSA control) and 30.2 × 108 (P < 0.01 com-
pared to BSA control), respectively (Fig. 3d). Similarly, 
PA treatment also significantly increased EV production 
in HK cells (Fig. 4). Together, these results indicate that 
PA treatment stimulates the production of EVs in both rat 
and human proximal tubular cells.

Fig. 1  Lipid accumulation and PA-induced caspase-3 activation in 
NRK-52E cells. a NRK-52E cells were treated with 1% BSA (BSA), 
BSA-conjugated palmitic acid (PA, 250  µM) or oleic acid (OA, 
250 µM) for 24 h. Neutral lipids were stained with BODIPY 493/503 
(green), and cell nuclei were stained with DAPI (blue). Bars: 25 µm. 
b Immunoblots for cleaved caspase-3 in NRK-52E cells treated 

with PA (250–750 µM) for 24 h. Image J was used to quantify band 
intensity of cleaved caspase-3 and normalized to β-actin. Data are 
expressed as mean ± SEM (n = 3–4). Statistical significance was indi-
cated as **P < 0.01 and ##P < 0.01 versus normal control (Con) and 
albumin control (BSA), respectively. (Color figure online)
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Fig. 2  The effect of fatty acids on apoptosis and cell viability in 
NRK-52E cells. NRK-52E cells were treated with Con, BSA or BSA-
conjugated-OA or PA (250–500  µM) for 24  h. a–b FACS dot plots 
and quantification of NRK-52E cell apoptosis after 24  h treatment. 
Annexin V positive flow cytometry diagram depicts live, apoptotic 
and necrotic cells. The lower and upper right quadrants indicate the 

early and late apoptotic cells. The graph represents the percentage 
of early and late apoptotic cells detected by flow cytometry. c Cell 
viability was evaluated by an MTT assay. Data are expressed as 
mean ± SEM (n = 4). Statistical significances were defined at 
**P < 0.01 versus Con, #P < 0.05 and ##P < 0.01 versus BSA group
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PA increased EV marker proteins Alix and TSG101

In combination with NTA, Western blot analysis for EV 
marker proteins was performed to further characterize EVs 
released from NRK-52E cells. As shown in Fig. 5, the iso-
lated EVs and cells were probed for four proteins commonly 

enriched in EVs: Alix and TSG101, two proteins involved 
in the biogenesis of EVs; CD63, a member of tetraspanin 
protein family, and HSP70. We found that NRK-52E-de-
rived EVs were enriched in Alix, TSG101 and HSP70. 
In contrast, CD63 was barely detectable in EVs derived 
from NRK-52E cells. To exclude the contamination with 

Fig. 3  PA stimulated EV release from NRK-52E cells. NRK-52E 
cells were treated with BSA or PA (250–750  µM) for 24  h. Nano-
particle-tracking analysis (NTA) was performed to characterize the 
EVs isolated from the conditioned media. a–b NTA graphs depict 
the intensity/concentration in relationship to the size distribution of 

EVs derived from NRK-52E cells treated with BSA (a) or 500  µM 
PA (b). c–d The averaged mode values (c) and concentration (d) of 
isolated EVs released from Con, BSA, and PA (250–500 µM)-treated 
NRK-52E cells. Data are expressed as mean ± SEM (n = 4). *P < 0.05, 
**P < 0.01 versus Con; #P < 0.05, ##P < 0.01 versus BSA group
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intracellular organelles released via cell lysis, immunoblots 
for cytochrome c and lamin B2, markers for mitochondria 
and nuclear envelope, respectively, were also performed in 
NRK-52E-derived EVs. Neither cytochrome c nor lamin B2 
was detected in isolated EVs (data not shown).

Next, we compared Alix and TSG101 protein levels in 
EVs isolated from BSA control and PA-treated NRK-52E 
cells. As depicted in Fig. 6, Alix and TSG101 proteins were 
increased in a dose-dependent manner when the cells were 
treated with 250–750 µM PA for 24 h. There was a close 
correlation between EV amount and marker protein levels 
(r = 0.96 for Alix and r = 0.91 for TSG101). Because the 
level of Alix and TSG101 was well correlated with the num-
ber of isolated EVs, we further evaluated the effect of OA 
on EV production by Western blot analysis. Both Alix and 
TSG101 proteins were not changed when NRK-52E cells 
were incubated with 500 µM OA for 24 h or 250 µM OA for 
48 h, though increased EV marker proteins were observed 
in PA-treated cells (Fig. 7). These results confirmed that 
PA but not OA increased EV production in NRK-52E cells.

Autocrine uptake of lipid‑induced EVs

In Fig. 8, we showed the uptake of tubular cell-derived EVs 
by HK-2 and NRK-52E cells. Isolated EVs were fluores-
cently labeled and co-cultured with HK-2 and NRK-52E 
recipient cells, respectively. After 16-h of incubation, confo-
cal microscopy confirmed an uptake of EVs by the recipient 

Fig. 4  PA increased EV 
production at 24 and 48 h in 
HK-2 cells. HK-2 cells were 
treated with Con, BSA, PA 
(250 µM) and OA (250 µM). 
After 24 (a) and 48 (b) hours, 
EVs showed similar modes of 
size, 30–70 nm, among four 
groups. PA increased total 
amount of EVs released from 
HK-2 cells. Data are expressed 
as mean ± SEM (n = 3–6). 
*P < 0.05, **P < 0.01 versus 
Con; ##P < 0.01 versus BSA 
group

Fig. 5  Characterization of NRK-52E-derived EVs. Immunoblots 
detected EV marker proteins Alix, TSG101, CD63 and HSP70 in cell 
lysates and EV isolates. β-actin and Ponceau S staining was used as 
loading controls
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cells. These results support a potential role of EVs in auto-
crine and paracrine communication.

Discussion

In the present study, we examined that saturated fatty acid 
PA but not unsaturated fatty acid OA stimulated cell apop-
tosis and EV production in renal proximal tubular cells. 

Increased intracellular lipid accumulation was accompanied 
by a reduction of cell viability and a profound increase in 
apoptosis in PA-treated NRK-52E cells. Moreover, PA treat-
ment resulted in a dose-dependent increase in EV production 
in renal tubular cells. In contrast, OA did not significantly 
impact cell viability, apoptosis or EV production. Addi-
tionally, tubular cell-derived EVs may possess important 
functional potentials as demonstrated through an autocrine 
cellular uptake.

Differential regulations of cell membrane composi-
tion and lipid droplet formation by unsaturated and satu-
rated FAs have been demonstrated in several nonfat cells 
[25–27]. For example, PA-treated cardiomyocytes [26] and 
mammary epithelial cells [25] exhibit marked differences 
in lipid histology compared to OA-treated cells. PA caused 
a diffused lipid-staining pattern, whereas OA led to the for-
mation of noticeably large lipid droplets in cardiomyocytes 
and mammary epithelial cells. In line with these findings, 
BODIPY 493/503 staining of NRK-52E also revealed cell 
heterogeneity in all treatments with respect to presence 
and diameter of lipid droplets. NRK-52E cells exposed 
to OA contained large droplets, whereas PA-treated cells 
had poor lipid droplet formation despite an increase in 
lipid accumulation. Lipid droplets are pseudo-organelles 
essential for storage of excess intracellular lipids. Using 
differential ultracentrifugation of whole cardiomyocyte 
lysates on sucrose density gradients, Akoumi et al. [26] 

Fig. 6  PA increased Alix and TSG101 protein levels in EV derived 
from NRK-52E cells. NRK-52E cells were treated with or without 
PA for 24  h. a Representative Western blot images show a dose-
dependent increase in Alix and TSG101 in EVs released from PA-
treated cells. The Ponceau S staining was used as a loading control. 
b–c Image J was used to quantify band intensity of Alix and TSG101. 
Data are expressed as mean ± SEM (n = 3). #P < 0.05 versus BSA 
group

Fig. 7  PA but not OA increased Alix and TSG101 proteins in NRK-
52E-derived EVs. a NRK-52E cells were treated with BSA, OA 
(500  µM) or PA (500  µM) for 24  h. b The cells were treated with 
BSA, OA (250 µM) or PA (250 µM) for 48 h. Immunoblots show that 
EV-related proteins Alix and TSG101 were not altered by 500  µM 
OA for 24 h or 250 µM OA for 48 h, though increased TSG101 and 
HSP70 protein level was observed in EVs derived from PA-treated 
cells
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demonstrated that PA led to more lipid accumulation in the 
ER, while OA promoted more lipid accumulation in lipid 
droplets. In the absence of lipid droplets, lipid accumula-
tion in the ER membrane causes ER stress and alterations 
of membrane integrity [26, 28]. Therefore, PA-induced 
lipid accumulation due to the lack of lipid droplet forma-
tion in renal tubular cells is likely a cause of cell damage 
and dysfunction.

Next, we investigated whether the difference in lipid his-
tology induced by PA compared to OA was related to the 
difference in toxicity between these two FAs. Indeed, we 
found that PA administration caused a dose-dependent loss 
in cell viability, which was not observed in OA-treated NRK-
52E cells. Moreover, PA treatment promoted cell apoptosis 
as evidenced by increased cleaved caspase-3 and Annexin V 
positive apoptotic cells. In contrast, OA slightly decreased 
the percentage of apoptotic cells. These results are consist-
ent with the previous findings that PA caused oxidative and 
ER stress leading to apoptosis in proximal tubular cells 
[29]. Together, these results demonstrated the renal lipo-
toxic effects of saturated fatty acid PA, but not unsaturated 
fatty acid OA.

Recently, Hirvosa et al. have reported that lipid-induced 
signaling causes the release of inflammatory EVs from 
hepatocytes [16]. EVs are exfoliated membrane vesicles 
released into bodily fluids by most cell types. They are 
known to influence biological behaviors and are recognized 
as critical mediators of cell-to-cell communication in renal 
pathophysiology [30]. The production of EVs and their sig-
nature content is correlated with the progression and diag-
nosis of disease states such as endometriosis, nonalcoholic 
steatohepatitis and diabetic kidney disease [31–33]. Upon 
release, EVs interact with target cells that can result in the 
initiation of a myriad of signaling processes [34, 35]. This 
perspective implies that in addition to cellular stress and dys-
function, lipotoxicity may trigger changes in EV production 
and gene expression.

Thus, this study further validated the release of EVs in 
conditioned cell culture medium using a series of charac-
terization techniques. NTA analysis allowed us to examine 
the number and the size of tubular cell-derived EVs in the 
absence or presence of fatty acids. Although the size dis-
tribution of EVs was not different in all groups, PA-treated 
proximal tubular cells are capable of releasing higher 

Fig. 8  Uptake of tubular-derived EVs by HK-2 and NRK-52E cells. 
HK-2-derived EVs were fluorescently labeled with Exo-green and 
NRK-52E-derived EVs were fluorescently labeled with PKH26 (red), 
then incubated with HK-2 cells and NRK-52E cells, respectively. Cell 

nuclei were stained with DAPI (blue). Confocal microscopy was used 
to visualize the uptake of labeled EVs by HK-2 or NRK-52E cells. 
(Color figure online)
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amounts of EVs, compared to the other experimental groups. 
Next, we performed Western blots to determine the marker 
proteins enriched in NRK-52E-derived EVs. Our results 
revealed that Alix, TSG101 and HSP70 were abundant, but 
CD63 was barely detected in EVs derived from NRK-52E 
cells. These results suggest that Alix and TSG101 can serve 
as better markers for EVs released from renal proximal tubu-
lar cells. This concept was further supported by the dem-
onstration of a close correlation between Alix and TSG101 
protein level and EV amount. In the present study, we also 
found a significant increase in EV release when NRK-52E 
cells were stimulated with BSA alone, which is consistent 
with some previous reports. For example, it has been shown 
that EV production in rat proximal tubule cells was increased 
by fatty acid-free BSA (1 mg/ml) treatment and further 
elevated by advanced glycation end product-modified BSA 
[36]. Moreover, Lv et al. found that the chemokine CCL2 
(MCP-1) mRNA, selectively enriched in the exosomes of 
mouse tubule epithelial cells after BSA stimulation, could 
be functionally delivered to the macrophages, culminating 
in macrophage activation and migration [37]. Similarly, 
studies performed in hepatocytes have demonstrated that 
EVs derived from PA-treated hepatocytes induce inflamma-
tory response in macrophages [16] and fibrotic activation 
of hepatic stellate cells [17]. These studies also identified 
a potential link between hepatocyte lipotoxicity and mac-
rophage mediated inflammation in nonalcoholic steatohepa-
titis (NASH). NASH and chronic kidney disease (CKD) have 
been shown to share common pathogenetic mechanisms reg-
ulating pathways involved in lipid metabolism, inflammation 
and fibrosis [38]. Therefore, we are leading the efforts to 
elucidate the roles of lipid-induced EVs in renal inflamma-
tion and fibrosis aimed at identifying probable CKD disease 
association and therapeutic implications.

To our knowledge, no one has mimicked lipotoxic condi-
tions in kidney dysfunction and characterized EVs released 
from proximal tubular cells. Our observations suggest PA-
mediated EV production could be dependent upon cellu-
lar apoptosis. In diseases like cancer, EVs released during 
a cell’s apoptotic state (Apo-EVs) have shown important 
regulatory roles in communication with surrounding cells, 
as well as, activating or dampening immune response [39, 
40]. Although a standard has not been defined, Apo-EVs 
display size varieties around 50 nm, whereas, apoptotic bod-
ies have larger size characteristics commonly greater than 
1000 nm [41]. EVs, perhaps including Apo-EVs, are capable 
of exerting specific functions in recipient cells facilitated by 
their cargo; implementing beneficial or detrimental func-
tional changes. Given multiple modes by which EVs can 
interact with neighboring cells potential pathways can be 
targeted to elicit mechanisms by which Apo-EVs commu-
nicate with other lineages of cells [40]. As an approach to 
link functional activity with our lipid-induced EV isolates, 

we fluorescently labeled HK-2 and NRK-52E EVs and dem-
onstrated their autocrine uptake. Hence, we can conclude EV 
functional activity exists, although the nature of the function 
and effect on recipient cells needs further investigation. The 
work presented here sets a basis to further analyze the auto-
crine and paracrine roles of EVs derived from PA-treated 
proximal tubular cells.

Despite the efforts to date, the biological roles and cellu-
lar mechanisms underlying EV production during the onset 
and progression of CKD remains vague [42]. Due to EVs 
involvement in core disease-driven cellular processes, it is 
practical to elicit their biological functions including biogen-
esis, release, cell uptake, and transmission of cargo to target 
cells to inhibit disease progression [43]. In summary, we 
were able to prove that PA, a known mediator in the progres-
sion of CKD, stimulated the release of EVs in human and 
rat proximal tubular cells. Furthermore, our work supports 
the idea that EVs have functional potential by showing their 
uptake in recipient cells. Thus, lipid-induced EVs may serve 
as an untapped source to evaluate novel signaling pathways 
contributing to diabetic kidney disease progression.
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