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Abstract
Linoleic acid (LA) is an essential and omega-6 polyunsaturated fatty acid that mediates a variety of biological processes, 
including migration and invasion in breast cancer cells. Phospholipase D (PLD) catalyses the hydrolysis of phosphatidyl-
choline to produce phosphatidic acid and choline. Increases of expression and activity of PLD are reported in several human 
cancers, including gastric, colorectal, renal, stomach, lung and breast. In this article, we demonstrate that LA induces an 
increase of PLD activity in MDA-MB-231 breast cancer cells. Particularly, PLD1 and/or PLD2 mediate migration and inva-
sion induced by LA. Moreover, LA induces increases in number and size of spheroids via PLD activity. FFAR1 also medi-
ates migration and invasion, whereas PLD activation induced by LA requires the activities of FFAR1, FFAR4 and EGFR 
in MDA-MB-231 cells. In summary, PLD plays a pivotal role in migration and invasion induced by LA in MDA-MB-231 
breast cancer cells.
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Introduction

Free fatty acids (FFAs) are sources of energy for the body; 
however, they are also ligands for nuclear peroxisome pro-
liferator-activated receptors, which regulate expression of 
genes involved in glucose and lipid metabolism [1, 2]. The 
FFAs induce the activation of signal transduction pathways, 
which mediate several biological processes including migra-
tion and invasion in breast cancer cells [3, 4]. Linoleic acid 
(LA) is an essential and omega-6 polyunsaturated fatty acid, 
which is the major fatty acid in occidental diets with an 
intake of 15–20 g/day/person and a plasma concentration of 
∼275 µM [5, 6]. Particularly, LA mediates a variety of cell 
processes in breast cancer cells, including the expression of 
plasminogen activator inhibitor-1, migration and invasion, 
whereas it induces an epithelial-to-mesenchymal transition-
like process in mammary non-tumourigenic epithelial cells, 
MCF10A [4, 7–9].

Free fatty acid receptors, 1 (FFAR1) and FFAR4, are G 
protein-coupled receptors (GPCRs) activated by medium- 
and long-chain fatty acids, including LA. In contrast, these 
receptors are not activated by short-chain fatty acids [10, 
11]. FFAR1 and FFAR4 are expressed in pancreatic β cells, 
adipose tissue, breast cancer cell lines (MDA-MB-231 and 
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MCF-7) and mammary non-tumourigenic epithelial cells, 
MCF10A [10, 12, 13]. Particularly, oleic acid induces pro-
liferation via FFAR1 activation, whereas LA induces migra-
tion and invasion via FFAR4 activation in MDA-MB-231 
cells [4, 14, 15].

Phospholipase D (PLD) is an enzyme that catalyses the 
hydrolysis of phosphatidylcholine, the major membrane 
phospholipid, to produce phosphatidic acid (PA) and cho-
line [16]. PA is a second messenger that can be metabo-
lised to other lipid metabolites, such as lyso-PA and diacyl-
glycerol [17, 18]. Two mammalian isoforms of PLD have 
been described, namely PLD1 and PLD2, which are almost 
ubiquitous and shared about 50% homology including two 
highly conserved HDK motifs that define its catalytic activ-
ity [19–21]. Particularly, PLD1 and PLD2 are activated by a 
wide variety of GPCRs and receptor tyrosine kinases (RTKs) 
in response to a wide range of mitogens. Activation of PLD 
results in an increase of local concentrations of PA and its 
involvement in many cellular biological processes, includ-
ing proliferation, survival, chemiotaxis, vesicular traffick-
ing, secretion, migration and invasion [22–25]. Moreover, 
increases of expression and activity of PLD are reported in 
several types of human cancers, including gastric, colorectal, 
renal, stomach, lung and breast [17, 26, 27].

Previously, we demonstrated that LA induces migration 
and invasion of MDA-MB-231 breast cancer cells. However, 
the role of PLD in migration and invasion induced by LA 
remains to be studied. In this article, we demonstrate that 
LA induces an increase of PLD activity in MDA-MB-231 
breast cancer cells. Particularly, PLD1 and/or PLD2 medi-
ate migration and invasion induced by LA. Moreover, LA 
induces increases in number and size of spheroids via PLD 
activity. FFAR1 also mediates migration and invasion, 
whereas PLD activation induced by LA requires the activ-
ity of FFAR1, FFAR4 and EGFR in MDA-MB-231 cells.

Materials and methods

Materials

LA sodium salt, DC260126, phorbol 12,13-dibutyrate 
(PDB), 1-butanol (BtOH) and tert-butanol (tert-BtOH) were 
from Sigma (St. Louis MO). Platelet-derived growth factor 
(PDGF) and interleukin 1β (IL1β) were from Prepro Tech 
(Rocky Hill, NJ). AH7614 was from TOCRIS (Minneapo-
lis, MN). Phosphospecific antibody (Ab) to phosphorylated 
tyrosines PY20 (anti-P-Tyr), VU0155069 and CAY10594 
were from Santa Cruz Biotechnology (Santa Cruz, CA). 
AG1478 was from Calbiochem-Novabiochem (San Diego, 
CA). Epidermal growth factor receptor (EGFR) Ab was 
from Cell Signalling Technology (Beverly, MA). Actin Ab 
was provided for PhD to Manuel Hernandez (Cell Biology 

Department, Cinvestav-IPN). Basement membrane matrix 
(BD Matrigel) was from BD Biosciences (Bedford, MA, 
USA). Type I collagen was from Costar, Corning Inc (NY, 
USA).

Cell culture

MDA-MB-231 and MCF-7 breast cancer cells were procured 
from ATCC, and they were cultured in Dulbecco’s modi-
fied Eagle’s medium (DMEM) supplemented with 3.7 g/L 
sodium bicarbonate, 5% foetal bovine serum (FBS) and anti-
biotics, in a humidified atmosphere containing 5% CO2 and 
95% air at 37 °C. For experimental purposes, cells were 
serum-starved for 16 h before treatment with inhibitors and/
or LA.

Cell viability assay

After starvation, MDA-MB-231 cells were washed twice 
with phosphate-buffered saline (PBS). Cells were equili-
brated in DMEM without FBS for 30 min at 37 °C, and 
incubated with inhibitors used in this study for 48 h. After 
incubation, cells were washed with PBS and reagent WST-1 
(Sigma–Aldrich) was added, and then cells were incubated 
for 2 h at 37 °C. The absorbance was quantified with a 
microplate reader at 450 nm. Each experiment was repeated 
three times.

Cell stimulation

Confluent cultures were washed twice with PBS, equili-
brated in DMEM at 37 °C for 30 min, and then treated with 
inhibitors and/or LA for various times. Stimulation was 
terminated by aspirating the medium, and cells were solu-
bilized in 0.5 mL of ice-cold RIPA buffer (50 mM HEPES 
pH 7.4, 150 mM NaCl, 1 mM EGTA, 1 mM sodium ortho-
vanadate, 100 mM NaF, 10 mM sodium pyrophosphate, 
10% glycerol, 1% Triton X–100, 1% sodium deoxycholate, 
1.5 mM MgCl, 0.1% SDS, and 1 mM phenylmethylsulfonyl 
fluoride).

PLD activity assay

Cells were cultured for 72 h, serum-starved for 16 h, washed 
with PBS, and lysed by three freeze–thaw cycles in 150 µl 
ice-cold assay solution (10 mM Tris-HCl pH 8, 10 mM 
NaCl, 3.2 mM NaF, 0.1% IGEPAL, 0.3% sodium deoxy-
cholate). Next, 50 µl of lysate was incubated for 1 h at 37 °C 
with choline oxidase (Phospholipase D Activity Assay Kit, 
Sigma-Aldrich), and activity was estimated by absorbance 
at 570 nm. A standard curve was generated with different 
concentrations of choline. All results were normalised with 
respect to the protein concentration of the lysate.
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Immunoprecipitation and Western blotting

Immunoprecipitation (IP) and Western blotting was per-
formed as described previously [9, 28].

Scratch‑wound assay

Cells were grown to confluence in 35-mm culture dishes, 
starved for 16 h in DMEM without FBS, and treated for 
2 h with 12 µM mitomycin C to inhibit proliferation dur-
ing the experiment. Cultures were scratch-wounded using 
a sterile 200-µl pipette tip, washed twice with PBS and re-
fed with DMEM without FBS in the absence or the pres-
ence of inhibitors and/or LA. The progress of cell migration 
into the wound space was photographed at 48 h using an 
inverted microscope coupled to a camera. Each experiment 
was repeated three times. Cell migration was evaluated using 
the ImageJ software (NIH, USA).

Chemotactic and invasion assays

Chemotactic and invasion assays were performed by the 
modified Boyden chamber method in 24-well plates con-
taining 12-cell culture inserts of 8 µm pore size (Costar, 
Corning Inc). For invasion assays, 50 µl matrigel (3 mg/mL) 
was added into culture inserts and kept for 2 h at 37 °C. 
Cells were plated at 1 × 105 cells per insert in 100 µl FBS-
free DMEM on the top chamber, whereas the lower chamber 
containing 600 µl DMEM with 90 µM LA and chambers 
were incubated for 48 h at 37 °C in a 5% CO2 atmosphere. 
After incubation, cells and matrigel were removed with cot-
ton swabs, and cells on the lower surface of membrane were 
washed and fixed with 4% (vol/vol) paraformaldehyde in 
PBS for 15 min. The number of migrated or invaded cells 
was estimated by staining of membranes with 0.1% crystal 
violet in PBS. Membranes were washed three times with 
PBS, photographed and the resulting dye was eluted with 
500 µl 30% acetic acid, and then the absorbance at 600 nm 
was measured. Background value was obtained from wells 
without cells.

Spheroid formation assay on low‑attachment

Confluent cultures of MDA-MB-231 cells (80%) were har-
vested with trypsin and gently pipetted to form a single cell 
suspension. Trypsin was inactivated by addition of FBS-
containing medium and the cells were collected by centrifu-
gation. The cells were quantified and seeded at 5,000 cells 
per well in six-well ultra-low attachment cluster dishes (Cos-
tar, Inc). Spheroids were permitted to grow in DMEM with 
1% FBS for 5 days, and then spheroids were untreated or 
treated with 90 µM LA and/or 0.3% BtOH for other 5 days. 
Spheroid number and area were quantified using an inverted 

microscope coupled to a camera. The number of spheroids 
was determined by using the ImageJ software (NIH, USA).

Spheroid formation assay on matrigel and type I 
collagen

Confluent cultures of MDA-MB-231 cells (80%) were har-
vested with trypsin and gently pipetted to form a single cell 
suspension. Trypsin was inactivated by addition of FBS-
containing medium and cells were collected by centrifuga-
tion and quantified.

A volume of 500 µl of matrigel (3 mg/mL) or 500 µl type 
I collagen (250 µg/mL) were spread with a pipette tip on the 
bottom of a 24-well chamber slide. A suspension of MDA-
MB-231 single-cells was laid on top of the matrix with a 
density of 3,000 cells per well and then incubated for 24 h. 
After incubation, cells were untreated or treated with 90 µM 
LA and/or 0.3% BtOH and spheroids were permitted to grow 
in DMEM with 0.1% FBS for 15 days. LA and BtOH were 
renewed every third day. Spheroid number and area were 
quantified using an inverted microscope coupled to a cam-
era. The number of spheroids was determined by using the 
ImageJ software (NIH, USA).

Statistical analysis

Experiments were performed at least three times and results 
are expressed as mean ± SEM. Data were statistically ana-
lysed using one-way ANOVA and Knewman-Keuls’s mul-
tiple comparison tests. A statistical probability of P < 0.05 
was considered significant.

Results

LA induces PLD activation in MDA‑MB‑231 breast 
cancer cells

We studied whether LA induced activation of PLD. MDA-
MB-231 breast cancer cells were treated with 90 µM LA for 
various times and PLD activity was determined. Our find-
ings showed that LA induced PLD activation at 5 and 60 min 
of stimulation in MDA-MB-231 cells (Fig. 1a).

Since PDGF, IL1β and PDB induce PLD activation [29, 
30], we further substantiate that LA induced the PLD acti-
vation by stimulation of MDA-MB-231 cells with 20 ng/ml 
PDGF, 10 ng/ml IL1β, 1 µM PDB for 30 min or 90 µM LA 
for 5 min, and then PLD activity was determined. Our find-
ings demonstrated that LA, PDGF, IL1β and PDB induced 
activation of PLD in MDA-MB-231 cells (Fig. 1b).
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LA induces migration and invasion 
through a PLD‑dependent pathway in MDA‑MB‑231 
cells

Since LA induces migration and invasion in breast cancer 
cells [4, 9], we studied the role of PLD in migration and 
invasion induced by LA in MDA-MB-231 cells. We first 
determined whether inhibitors used in these studies were 
cytotoxic for cells. The MDA-MB-231 cells were treated 
with different inhibitors to concentrations used in these 
studies, and viability assays were performed. Our findings 
showed that inhibitors were not toxic for MDA-MB-231 
cells (Fig. 2a).

Next, we studied the role of PLD in migration. Since 
PLD is able to utilise primary alcohols for a transphos-
phatidylation reaction to generate phosphatidylalcohols in 
place of PA, the incubation with BtOH has been used like 
a PLD inhibitor [31]. Cultures of MDA-MB-231 cells were 
scratch-wounded and untreated or treated with 0.3% BtOH, 
0.3% tert-BtOH and 90 µM LA for 48 h. The tert-BtOH was 
included as a negative control of BtOH. As illustrated in 
Fig. 2b, treatment with BtOH inhibited migration, whereas 
tert-BtOH did not inhibit migration induced by LA in MDA-
MB-231 cells.

To further substantiate our findings, we performed cell 
migration assays using the Boyden chamber method and 
MDA-MB-231 cells untreated or treated with 0.3% BtOH 
and stimulated without or with 90 µM LA for 48 h. Our find-
ings showed that treatment with BtOH inhibited migration 
induced by LA in MDA-MB-231 cells (Fig. 2c).

Next, we studied the role of PLD in the invasion process 
induced by LA. Invasion assays were performed using the 
Boyden chamber method and MDA-MB-231 cells untreated 

or treated with 0.3% BtOH and stimulated without or with 
90 µM LA for 48 h. Our findings demonstrated that treat-
ment with BtOH inhibited invasion induced by LA in MDA-
MB-231 cells (Fig. 2d).

Roles of PLD1 and PLD2 in migration and invasion 
induced by LA

We determined whether PLD1 and/or PLD2 mediate migra-
tion and invasion induced by LA in MDA-MB-231 cells. 
Migration assays were performed by using scratch-wound 
assays and Boyden chamber method with MDA-MB-231 
cells untreated or treated for 2 h with 5 µM VU0155069 and 
1 µM CAY10594, which are specific inhibitors of PLD1 and 
PLD2 respectively [32, 33], and stimulated without or with 
90 µM LA for 48 h. Our findings demonstrated that inhibi-
tion of PLD1 and PLD2 activity inhibited migration induced 
by LA in MDA-MB-231 cells (Fig. 3a, b).

Invasion assays were performed by the Boyden chamber 
method and MDA-MB-231 cells untreated or treated for 2 h 
with 5 µM VU0155069 and 1 µM CAY10594, and stimu-
lated without or with 90 µM LA for 48 h. Our results showed 
that treatment with VU0155069 completely inhibited inva-
sion, whereas CAY10594 partly inhibited invasion induced 
by LA in MDA-MB-231 cells (Fig. 3c).

LA induces migration through a PLD‑dependent 
activity in MCF‑7 breast cancer cells

To further substantiate the role of PLD in migration 
induced by LA in breast cancer cells, we studied the role 
of PLD in migration induced by LA in another breast 
cancer cell line (MCF-7). First, migration assays were 

Fig. 1   LA-induced PLD activation in MDA-MB-231 breast cancer 
cells. a MDA-MB-231 cells were stimulated with 90 µM LA for vari-
ous times, and PLD activity was determined. b MDA-MB-231 cells 
were treated with 90  µM LA for 5  min, 20  ng/ml PDGF, 10  ng/ml 
IL1β and 1 µM PDB for 30 min, and PLD activity was determined. 

Actin was included as loading control. Graphs represent the mean ± 
SEM and are expressed as the fold of PLD activity above unstimu-
lated cells (Basal). Asterisks denote comparisons made to unstimu-
lated cells. *P < 0.05, **P < 0.01, ***P < 0.001
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performed by scratch-wound assays and MCF-7 cells 
treated with 90 µM LA for various times. Our findings 
demonstrated that LA induced migration at 72 h of treat-
ment in MCF-7 breast cancer cells (Fig. 4a).

To determine the role of PLD in migration, MCF-7 
cells were untreated or treated with 0.3% BtOH and stim-
ulated without or with 90 µM LA for 72 h. Our findings 
demonstrated that treatment with BtOH inhibited migra-
tion induced by LA in MCF-7 cells (Fig. 4b).

LA induces spheroid formation 
through a PLD‑dependent pathway

The three-dimensional cell culture systems mimic better 
the in vivo conditions [34]. We studied the role of PLD in 
spheroid formation induced by LA. First, we determined 
whether stimulation of MDA-MB-231 cells with 90 µM LA 
for 5 days induced spheroids formation and the role of PLD 
in low-attachment. Our findings demonstrated that treatment 

Fig. 2   LA-induced migration 
and invasion through a PLD-
dependent pathway. a MDA-
MB-231 cells were treated with 
0.3% BtOH, 5 µM VU0155069, 
1 µM CAY10594, 3 µM 
DC260126, 20 µM AH7614 
and 500 nM AG1478 for 48 h 
and cytotoxicity assays were 
performed. Graph represents % 
cell viability of three independ-
ent experiments. b Cultures 
of MDA-MB-231 cells were 
untreated or treated with 0.3% 
BtOH or 0.3% tert-BtOH for 
2 h, scratch-wounded and 
stimulated with 90 µM LA for 
48 h. c Migration assays were 
performed by Boyden chamber 
method and MDA-MB-231 cells 
untreated or treated with 0.3% 
BtOH for 2 h and stimulated 
with 90 µM LA for 48 h. d 
Invasion assays were performed 
by Boyden chamber method and 
MDA-MB-231 cells untreated 
or treated with 0.3% BtOH for 
2 h and stimulated with 90 µM 
LA for 48 h. Images were taken 
at 48 h. Graphs represent the 
mean ± SEM and are expressed 
as the fold of migrated or 
invaded cells above unstimu-
lated cells. Asterisks denote 
comparisons made to unstimu-
lated cells (Basal). *P < 0.05, 
**P < 0.01
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of MDA-MB-231 cells with LA induced an increase in num-
ber of spheroids, and treatment with BtOH inhibited their 
formation in low-attachment (Fig. 5a). Moreover, treatment 
of MCF-7 cells with 90 µM LA for 5 days also induced an 
increase in number of spheroids in low-attachment (Fig. 1S, 
Panel A).

To further substantiate our findings, we determined 
whether treatment of MDA-MB-231 cells with 90 µM LA 
for 15 days induced an increase in the number of spheroids 
on matrigel and type I collagen and the role of PLD. Our 
findings demonstrated that stimulation of MDA-MB-231 
cells with LA induced increases in number and relative area 
of spheroids in matrigel and type I collagen, and treatment 
with BtOH inhibited their formation (Figs. 5b, c, 6a, b). In 

addition, treatment of MCF-7 cells with 90 µM LA for 15 
days also induced increases in the number and relative area 
of spheroids in matrigel (Fig. 1S, Panel B).

Roles of FFAR1 and FFAR4 in PLD activation

Since LA induces migration and invasion via FFAR4 in 
MDA-MB-231 cells [4], we studied the role of FFAR1 in 
migration and invasion induced by LA. Migration, and 
invasion assays were performed with MDA-MB-231 cells 
untreated or treated for 1 h with 3 µM DC260126, which 
is a specific inhibitor of FFAR1 [35], and stimulated 
without or with 90 µM LA for 48 h. Our findings dem-
onstrated that treatment with DC260126 partly inhibited 

Fig. 3   Roles of PLD1 and 
PLD2 in migration and inva-
sion induced by LA. a and 
b. Migration assays were 
performed by scratch-wound 
assays and Boyden chamber 
method with MDA-MB-231 
cells untreated or treated 
with 5 µM VU0155069 or 
1 µM CAY10594 for 2 h and 
stimulated with 90 µM LA for 
48 h. c. Invasion assays were 
performed by Boyden chamber 
method, and MDA-MB-231 
cells untreated or treated 
with 5 µM VU0155069 or 
1 µM CAY10594 for 2 h, and 
stimulated with 90 µM LA for 
48 h. Images were taken at 48 h. 
Graphs represent the mean ± 
SEM and are expressed as the 
fold of migrated or invaded 
cells above unstimulated cells 
(basal). Asterisks denote 
comparisons with unstimulated 
cells. *P < 0.05, ***P < 0.001
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migration, whereas it inhibited the invasion induced by 
LA in MDA-MB-231 cells (Fig. 7a, b).

Next, we determined the roles of FFAR1 and FFAR4 in 
PLD activation induced by LA. MDA-MB-231 cells were 
untreated or treated for 1 h with 3 µM DC260126 and 
20 µM AH7614, which are specific inhibitors of FFAR1 
and FFAR4, respectively [35, 36], and stimulated without 
or with 90 µM LA for 5 min, and then PLD activity was 
analysed. Our findings demonstrated that treatment with 
DC260126 or AH7614 partly inhibited the PLD activity 
induced by LA in MDA-MB-231 cells. However, treat-
ment with both DC260126 and AH7614 completely inhib-
ited the PLD activity induced by LA in MDA-MB-231 
cells (Fig. 7c).

Role of EGFR in PLD activation

LA induces migration and invasion via EGFR activity in 
MDA-MB-231 cells [4]. We determined the role of EGFR 
in PLD activation induced by LA. PLD activity assays were 
performed with MDA-MB-231 cells untreated or treated for 
30 min with 500 nM AG1478, an inhibitor of EGFR [37], 
and stimulated without or with 90 µM LA for 5 min. Our 
results showed that PLD activation induced by LA required 
the activity of EGFR (Fig. 7d).

In order to support our findings, we determined whether 
LA induced EGFR activation, given by its tyrosine phos-
phorylation [38]. MDA-MB-231 cells were treated with 
90  µM LA for various times and lysed. Lysates were 

Fig. 4   LA-induced migration via PLD activity in MCF-7 breast 
cancer cells. a Cultures of MCF-7 cells were scratch-wounded and 
treated with 90 µM LA for various times. b Cultures of MCF-7 cells 
were untreated or treated with 0.3% BtOH for 2 h, scratch-wounded 

and stimulated without or with 90  µM LA for 72  h. Pictures were 
taken at 72 h. Graphs represent the mean ± SEM and are expressed as 
the fold of migrated cells above unstimulated cells (Basal). Asterisks 
denote comparisons with unstimulated cells. *P < 0.05, ***P < 0.001
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Fig. 5   LA-induces increases in spheroids number and size through 
a PLD-dependent pathway. a MDA-MB-231 cells were untreated or 
treated with 0.3% BtOH and stimulated with 90  µM LA for 5 days 
on low-attachment, and spheroid formation was evaluated. b and c. 
MDA-MB-231 cells were untreated or treated with 0.3% BtOH and 
stimulated with 90  µM LA for 15 days on matrigel, and spheroid 

formation was evaluated. One positive control was included (FBS). 
Images were acquired and analysed for number and/or size. Rep-
resentative images are shown. Graphs represent the mean ± SEM 
of four independent experiments. Scale bar = 300  µm. Asterisks 
denote comparisons made to unstimulated cells (Basal). **P < 0.01, 
***P < 0.001, ****P < 0.0001
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immunoprecipitated with anti-EGFR Ab, and complexes 
were analysed by Western blotting with anti-P-Tyr Ab. As 
illustrated in Fig. 7e, LA induced EGFR tyrosine phospho-
rylation in MDA-MB-231 cells.

Discussion

A strong correlation between a high dietary fat intake and 
the risk of developing breast cancer has been described 
previously [39–41]. Particularly, LA is a fatty acid and a 

Fig. 6   LA-induced increases in spheroids number and size on type I 
collagen through a PLD-dependent pathway. a MDA-MB-231 cells 
were untreated or treated with 90 µM LA for 15 days on type I colla-
gen, and spheroid formation was evaluated. One positive control was 
included (FBS). b MDA-MB-231 cells were untreated or treated with 
0.3% BtOH and stimulated with 90 µM LA for 15 days on type I col-

lagen, and spheroid formation was evaluated. Images were acquired 
and analysed for number and size. Representative images are shown. 
Graphs represent the mean ± SEM of four independent experiments. 
Scale bar = 300 µm. Asterisks denote comparisons made to unstimu-
lated cells (Basal). ***P < 0.001, ****P < 0.0001
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component of vegetable oils, which activates signal trans-
duction pathways that mediate a variety of biological pro-
cesses including migration and invasion in breast cancer 
cells, whereas it mediates tumour growth and metastasis in 
nude mice [4, 7, 9, 42]. However, the capacity of LA to 
form spheroids and the roles of PLD in spheroids’ formation, 
migration and invasion induced by LA in breast cancer cells 
have not been studied.

PLD plays a pivotal role in cancer, because the expres-
sion and total PLD activity are increased in several human 
cancers including gastric, colorectal, renal, stomach and 
breast cancer, and PLD levels correlate with breast can-
cer grade [17, 26, 27]. We demonstrate here that LA 
induces a transient PLD activation in MDA-MB-231 
cells. Moreover, LA induce migration via PLD activity 
in MDA-MB-231 and MCF-7 cells, whereas it also medi-
ates invasion via PLD activity in MDA-MB-231 cells. 

Fig. 7   Roles of FFAR1/FFAR4 
and EGFR in migration/inva-
sion and PLD activity induced 
by LA. a and b. Migration and 
invasion assays were performed 
by scratch-wound assays and 
Boyden chamber method with 
MDA-MB-231 cells untreated 
or treated with 3 µM DC260126 
for 1 h and stimulated with 
90 µM LA for 48 h. c and d. 
MDA-MB-231 cells were 
untreated or treated with 3 µM 
DC260126 and 20 µM AH7614 
for 1 h or 500 nM AG1478 for 
30 min and stimulated with 
90 µM LA for 5 min, and PLD 
activity was determined. Actin 
was included as loading control. 
e. MDA-MB-231 cells were 
treated with 90 µM LA for 
various times and lysed. Lysates 
were immunoprecipitated (IP) 
with EGFR Ab followed by 
Western blotting with anti-P-Tyr 
Ab. Membranes were analysed 
further by Western blotting 
with anti-EGFR Ab. Graphs 
represent the mean ± SEM and 
are expressed as the fold of 
migrated, invaded, PLD activity 
or P-EGFR above unstimulated 
cells. Asterisks denote com-
parisons with unstimulated cells 
(Basal). *P < 0.05, **P < 0.01, 
***P < 0.001, ****P < 0.0001
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In agreement with our findings, angiotensin II induces a 
transient PLD activation in human adrenocortical carci-
noma NCI H295R cells, whereas EGF induces also PLD2 
activation with two peaks of maximal activity in COS-7 
cells expressing PLD2 [43, 44]. Our findings strongly 
suggest that different ligands induce PLD activation with 
different kinetics of activity in different cell types. In 
addition, depriving of serum induces PLD activation and 
migration through a PLD-dependent pathway in breast 
cancer cells [45].

PLD1 and PLD2 are expressed differentially and play 
specific roles in cancer. Particularly, PLD1 is required for 
secretion of metalloproteinase-9 (MMP-9) and MMP-2 
in colorectal cancer cells and glioma cells, respectively 
[30, 46]. PLD2 activation induces an increase in FAK 
phosphorylation, Akt activation and invasion in EL4 lym-
phoma cells, whereas inactivation of PLD2 inhibits metas-
tasis [47]. We demonstrate here that migration induced by 
LA requires PLD1 and PLD2 activities in MDA-MB-231 
cells. Since EGF and PDGF induce PA production, which 
induces activation of Ras-ERK/PI3K-NFκB signalling 
pathway and then PLD1 expression, which promote inva-
sion in SK-BR3 breast cancer cells [29]. We propose that 
LA induces production of PA through PLD2 activation 
and then activation of a signalling pathway that medi-
ates expression and activation of PLD1, which mediates 
migration in MDA-MB-231 cells. Supporting our proposal, 
activation of Wnt pathway induces an increase of PLD1/
PLD2 expression, which mediate proliferation and invasion 
in cancer cells [48].

In addition, we demonstrate that invasion induced by LA 
requires PLD1 activity in MDA-MB-231 cells. Interest-
ingly, the invasion induced by LA is also partly depend-
ent on PLD2 activity. In agreement with our findings, EGF 
induces invasion through a PLD2-dependent pathway in 
MDA-MB-231 cells, whereas invasion induced by PDGF 
requires PLD1 activity in SK-BR3 breast cancer cells [29, 
49]. Taken together these findings, we propose that different 
ligands mediate invasion through activation of PLD1 and/or 
PLD2 in breast cancer cells.

In order to mimic in vivo environment, we used sphe-
roid formation assays because it is a 3D culture and is 
considered a more reliable biological assay [34, 50]. We 
demonstrate here that LA induces increases in the number 
and size of spheroids under different conditions, includ-
ing low-attachment, matrigel and type I collagen, and it 
requires PLD activity in MDA-MB-231 cells. The 3D 
tumour spheroids are self-assembled cultures of tumour 
cells where cell–cell interactions predominate over 

cell–substrate interactions. It is considered that spheroids 
resemble avascular tumour nodules, micro-metastasis and 
intervascular regions of large solid tumours, because they 
have similar morphological features, microenvironment, 
volume growth kinetics, and gradients of nutrient distri-
bution, oxygen concentration and cell proliferation [51, 
52]. We propose that LA through PLD activation plays 
a pivotal role in the formation of tumour nodules and 
micro-metastasis. Supporting our proposal, PLD medi-
ates invasion, tumour growth and metastasis in a human 
breast cancer xenograph model [49]. Moreover, androgen-
insensitive prostate cancer cells, DU145 and PC-3, have 
a higher PLD activity than androgen-sensitive prostate 
cancer cells LNCaP, whereas inhibition of PLD activity 
reduces prostate cancer cell proliferation and colony for-
mation in prostate cancer cell lines and patient-derived 
prostate cancer cells [53, 54].

Previously, we demonstrated that LA induces migra-
tion and invasion via FFAR4 in MDA-MB-231 cells [4, 
9]. Moreover, LA induces an elevation of cytosolic Ca2+ 
via FFAR1 and Gi/Go in MCF-7 cells, whereas oleic acid 
induces proliferation via FFAR1 and Gi/Go in MDA-
MB-231 cells [15, 55]. In addition, FFAR4 is expressed 
in intestine cells and is coupled with Gq/11 [10, 56]. We 
demonstrate that LA induces PLD activation via FFAR1 
and FFAR4 in MDA-MB-231 cells. LA also induces inva-
sion via FFAR1, whereas migration is partly dependent on 
FFAR1. We propose that LA induces activations of FFAR1 
and FFAR4 which activate Gi/Go and/or Gq/11, and then 
PLD activations which mediate migration and invasion in 
MDA-MB-231 cells.

GPCRs induce EGFR transactivation via activation of 
metalloproteinases and then release of EGF-like ligands, 
such as HB-EGF, from growth factor precursors in plasma 
membrane [57]. Furthermore, LA induces migration and 
invasion via FFAR1 and/or FFAR4 and that LA induces 
migration and invasion through an EGFR-receptor-depend-
ent pathway in MDA-MB-231 cells [4]. Since we demon-
strate here that LA induces PLD activation via EGFR, and 
that LA induces EGFR tyrosine phosphorylation (activa-
tion) in MDA-MB-231 cells, we propose that LA induces 
migration and invasion through activation of FFAR1 and 
FFAR4 and transactivation of EGFR in MDA-MB-231 
cells.

Combining together our above findings, we propose that 
stimulation of breast cancer cells with LA induces the acti-
vation of FFAR1/FFAR4, which promotes EGFR transac-
tivation, and then EGFR signalling promotes PLD1/PLD2 
activation, which mediates migration and invasion (Fig. 8).
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