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Abstract
Vascular endothelial cell growth factor-C (VEGF-C) is a member of the VEGF family and plays a role in various biological 
activities. VEGF-C enhances proliferation and migration of lymphatic endothelial cells and vascular endothelial cells through 
VEGF receptor 2 (VEGFR2) and/or receptor 3 (VEGFR3), and thereby induces lymphangiogenesis or angiogenesis. However, 
it remains unclear whether VEGF-C promotes the migration of mesenchymal stem cells (MSCs). Here, we investigated the 
effects of VEGF-C on the migration of MSCs and evaluated the underlying molecular mechanisms. VEGF-C treatment sig-
nificantly induced the migration of MSCs, which is accompanied by the promotion of actin cytoskeletal reorganization and 
focal adhesion assembly. VEGF-C treatment enhanced the phosphorylation of VEGFR2 and VEGFR3 proteins in MSCs, and 
pretreatment with VEGFR2 and VEGFR3 kinase inhibitors effectively suppressed the VEGF-C-induced MSC migration. In 
addition, VEGF-C treatment promoted phosphorylation of ERK and FAK proteins in MSCs, and inhibition of VEGFR2 and 
VEGFR3 signaling pathways abolished the VEGF-C-induced activation of ERK and FAK proteins. Furthermore, treatment 
with ERK and FAK inhibitors suppressed VEGF-C-induced actin cytoskeletal reorganization and focal adhesion assembly, 
and then significantly inhibited MSCs migration. These results suggest that VEGF-C-induced MSC migration is mediated 
via VEGFR2 and VEGFR3, and follows the activation of the ERK and FAK signaling pathway. Thus, VEGF-C may be 
valuable in tissue regeneration and repair in MSC-based therapy.
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Introduction

In recent years, stem cell therapy has been anticipated as 
a new strategy for regenerative medicine. Bone marrow-
derived mesenchymal stem cells (MSCs) are multipotent 
cells that can differentiate into osteoblasts, chondrocytes, 
adipocytes, and smooth muscle cells [1]; therefore, MSCs 
are a promising cell source for regeneration and repair of 
damaged tissues. MSCs are known to migrate to injury sites 
after transplantation, and they differentiate into various cell 

types in the local environments [2]. However, previous stud-
ies reported that large proportions of transplanted MSCs 
were unable to reach the injury site [3, 4], or some of the 
transplanted MSCs dislodged from the transplanted site [5], 
and these problems may lead to limited therapeutic effect. 
Therefore, enhancing the migration capacity of MSCs will 
promote regeneration and repair of damaged tissues.

Previous studies have demonstrated that various cytokines 
such as stromal cell derived factor-1 (SDF-1), basic fibro-
blast growth factor (bFGF), and platelet-derived growth fac-
tor BB (PDGF-BB) enhance the migration of MSCs [6, 7]. 
Vascular endothelial growth factor (VEGF) is a key regula-
tor of angiogenesis through proliferation and migration of 
vascular endothelial cells [8]. The VEGF family consists of 
seven members: VEGF-A, VEGF-B, VEGF-C, VEGF-D, 
VEGF-E, VEGF-F, and the placental growth factor (PlGF). 
These VEGF ligands bind with specific tyrosine kinase 
receptors (VEGFR1, VEGFR2, and VEGFR3). While sev-
eral studies have demonstrated that VEGF-A promotes MSC 
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migration [9], the effect of other VEGF members has not 
been fully elucidated.

VEGF-C is well known to promote proliferation and 
migration of lymphatic endothelial cells, and is a key regu-
lator for lymphangiogenesis [10]. Previous studies have 
demonstrated that VEGF-C signaling participates in vari-
ous biological processes besides lymphangiogenesis, such 
as neural stem cell activation, and promotion of osteoclastic 
bone resorption [11, 12]. Recently, we also reported that 
VEGF-C promotes osteogenic differentiation of MSCs [13].

Cell migration is a complex and multi-step process that 
requires the ordered changes in the cytoskeleton and turno-
ver of focal adhesions [14]. It has been reported that sev-
eral intracellular signaling pathways participate in the cell 
migration process [15–17]. Focal adhesion kinase (FAK) 
is a nonreceptor cytoplasmic tyrosine kinase that plays an 
important role in the regulation of cell migration [18]. FAK 
is a primary signaling mediator of dynamic changes in actin 
cytoskeletal reorganization, and FAK activation is necessary 
for focal adhesion turnover [19–21]. Mitogen-activated pro-
tein kinase (MAPK) signaling also plays an important role 
in various cell migration [17]. Extracellular signal-regulated 
kinase (ERK1/2), c-Jun N-terminus kinase (JNK), and stress 
activated protein-kinase 2 (p38) are the members of the clas-
sical MAP kinase cascade [22]. In MSCs, ERK signaling is 
involved in MSCs migration [23]. In our previous study, we 
had demonstrated that VEGF-C induces the phosphoryla-
tion of ERK protein in MSCs [13]. Previously, some studies 
reported that VEGF-C promoted the migration of human 
and murine MSC lines [24, 25]. However, the mechanisms 
of VEGF-C-induced MSCs migration are not fully under-
stood. In this study, we examined the effects of VEGF-C on 
migration of MSCs and evaluated the underlying molecular 
mechanisms.

Materials and methods

Materials

Recombinant human VEGF-C protein was obtained from 
Wako (Osaka, Japan). VEGF receptor 2 kinase inhibitor 
(Ki8751), VEGF receptor 3 kinase inhibitor (MAZ51), 
and MAP kinase inhibitor (U0126) were purchased from 
Calbiochem/Merck Millipore (San Diego, CA, USA). FAK 
inhibitor (PF-573228) was obtained from Sigma (St Louis, 
MO, USA).

Cell culture

Human MSCs were purchased from Lonza (Walkersville, 
MD, USA). MSCs were cultured in α-minimal essential 
medium (MEM) supplemented with 10% fetal bovine serum 

(FBS), and 1% antibiotics (Life Technologies, Waltham, 
MA, USA) at 37 °C, 5% CO2. Cells between passage 3 and 
5 were used for the experiments.

Migration assay

Migration assay was performed with transwell 24-well tis-
sue culture plates composed of a polycarbonate membrane 
with 8 µm pores (Corning, NY, USA). MSCs were seeded on 
the inner chamber of the transwell plate at a concentration 
of 1 × 105 cells/100 µL. In some experiments, MSCs were 
pretreated with Ki8751 (10 nM), MAZ51 (5 µM), U0126 
(10 µM), or PF-573228 (10 µM) for 1 h. The inner chamber 
was placed into the outer chamber filled with 600 µL serum-
free α-MEM that contained VEGF-C (1–50 ng/mL) or saline 
and incubated for 6 h at 37 °C. Cells that migrated onto the 
outer surface of the membrane were fixed with 4% paraform-
aldehyde and cold methanol, and then stained by the May-
Giemsa method. The number of migrated cells was counted 
in five randomly chosen fields of the triplicated chambers at 
a magnification of × 10 for each sample.

Immunoblotting analysis

MSCs were treated with VEGF-C (10 ng/mL) or saline for 
indicated times and were lysed in RIPA lysis buffer (Ther-
moFisher Scientific, Rockford, IL, USA). Cell lysates were 
subjected to immunoblotting. In some experiments, MSCs 
were pretreated with Ki8751 (10 nM), MAZ51 (5 µM), 
U0126 (10 µM), or PF-573228 (10 µM) at 37 °C for 1 h. 
The following antibodies were used: anti-VEGF receptor 
2, anti-phospho-VEGF receptor 2 (Tyr1175), anti-phos-
pho-ERK (Thr202/Tyr204), anti-ERK, anti-phospho-JNK 
(Thr183/Tyr185), anti-JNK, anti-phospho-p38 (Thr180/
Tyr182), anti-p38, anti-phospho-FAK (Tyr397), anti-FAK, 
and anti-β-actin (Cell Signaling Technology, Danvers, MA, 
USA); anti-VEGF receptor 3 (Abcam, Cambridge, UK); 
anti-phospho-VEGF receptor 3 (Tyr1230/1231) antibody 
(Cell applications, San Diego, CA, USA). Horseradish per-
oxidase (HRP)-conjugated anti-rabbit IgG and enhanced 
chemiluminescence (ECL) system were obtained from GE 
Healthcare (Buckinghamshire, UK).

Immunofluorescent staining

Before the experiment, MSCs were placed in serum-free 
α-MEM for 15 h for serum starvation and then the cells 
were treated with VEGF-C (10 ng/mL) or saline for 2 h. 
In some experiments, MSCs were pretreated with U0126 
(10 µM) or PF-573228 (10 µM) at 37 °C for 1 h. After that, 
cells were washed with PBS and fixed with 4% paraform-
aldehyde for 15 min and permeabilized with cold methanol 
at -20 °C for 15 min. After washing with PBS, cells were 
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incubated with 0.1% Triton X-100 and 1% BSA in PBS for 
1 h. Afterwards, the cells were stained with Alexa Fluor 
488 phalloidin (Molecular Probes, Eugene, OR) and anti-
paxillin antibody (BD Biosciences, Franklin Lakes, NJ, 
USA), and nuclei were stained with the DNA binding dye 
4, 6-diamino-2-phenylindole (DAPI) (Dojindo, Kumamoto, 
Japan) for 10 min.

Statistical analysis

The data are presented as mean ± SD values. Statistical 
analysis for multiple comparisons among the groups was 
performed using one-way ANOVA. p < 0.05 was considered 
to indicate a statistically significant difference.

Control 1 10 25 50

VEGF-C (ng/mL)

)aera/sllec( sllec detargi
M

Control 1 10 25 50

VEGF-C (ng/mL)

0
10
20
30
40
50
60
70
80
90

*
* *

*

(A)

(B) DAPI Paxillin

VEGF-C
(+)

F-actin Merge

VEGF-C
(-)

Fig. 1   VEGF-C promotes MSCs migration, and regulates actin 
cytoskeletal reorganization and focal adhesion assembly. a Repre-
sentative photomicrographs of migrating MSCs treated with VEGF-
C (1–50  ng/mL) or saline for 6  h. Migrating cells were counted in 
five fields randomly chosen from the triplicated chambers. Results are 
presented as mean ± S.D.; *p < 0.05 versus 0 ng/mL; scale bar 20 µm. 

b Immunofluorescent microscopic analysis for F-actin filament for-
mation and paxillin accumulation in MSCs treated with or without 
VEGF-C (10 ng/mL) for 2 h. Staining with phalloidin (green), anti-
paxillin antibody (red), and DAPI (blue); scale bar 20 µm. (Color fig-
ure online)
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Results

VEGF‑C promotes MSC migration, and regulates 
actin cytoskeletal reorganization and focal 
adhesion assembly

To evaluate whether VEGF-C induces MSC migration, MSCs 
were treated with VEGF-C (1–50 ng/mL) or saline for control. 
Treatment with VEGF-C promoted MSCs migration (Fig. 1a). 
Quantitative analysis demonstrated that VEGF-C significantly 
induced MSC migration in a dose-dependent manner. We 
used 10 ng/mL VEGF-C in subsequent experiments.

Cell migration is a complex process that requires 
cytoskeletal dynamics and reorganization, and turnover of 

focal adhesions [14]. We evaluated whether VEGF-C treat-
ment regulates actin cytoskeletal organization and assembly 
of focal adhesions in MSCs. Phalloidin staining revealed that 
treatment with 10 ng/mL VEGF-C promotes F-actin fila-
ment formation in MSCs (Fig. 1b). Staining with antibody 
against paxillin, a focal adhesion-associated protein, showed 
that VEGF-C treatment promoted paxillin accumulation in 
MSCs (Fig. 1b).

VEGF‑C induces MSC migration in a VEGFR2 
and VEGFR3‑dependent manner

VEGF-C signaling is mediated through activation of spe-
cific transmembrane tyrosine kinase receptors VEGFR2 

Fig. 2   Involvement of VEGFR2 
and VEGFR3 signaling in the 
VEGF-C-induced MSC migra-
tion. a Immunoblotting with the 
indicated antibodies was per-
formed on MSCs treated with 
VEGF-C (10 ng/mL) for the 
indicated times. Representative 
blots are shown. b Effects of 
VEGFR2 and VEGFR3 kinase 
inhibitors on VEGF-C-induced 
MSCs migration. MSCs were 
pretreated with Ki8751 (10 nM) 
or MAZ51 (5 µM) for 1 h, and 
then treated with VEGF-C 
(10 ng/mL) for 6 h (n = 3). The 
migration assay was performed. 
Representative photomicro-
graphs are shown. Migrating 
cells were counted in five fields 
randomly chosen from the 
triplicated chambers. Results 
are presented as mean ± SD; 
*p < 0.05 versus VEGF-C(−)/
Ki8751(−)/MAZ51(−), 
#p < 0.05 versus VEGF-C(+)/
Ki8751(−)/MAZ51(−); scale 
bar 20 µm
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and VEGFR3 [10]. We, therefore, assessed the par-
ticipation of VEGFR2 and/or VEGFR3 signaling in the 
observed VEGF-C-induced migration of MSCs. Treatment 
with 10 ng/mL VEGF-C stimulated the phosphorylation 
of both VEGFR2 and VEGFR3 proteins in MSCs, while 
there was no effect on total VEGFR2 and VEGFR3 protein 
levels (Fig. 2a). We next investigated whether VEGFR2 
and VEGFR3 signaling pathway is involved in VEGF-
C-induced migration of MSCs. MSCs were treated with 
VEGFR2 kinase inhibitor (Ki8751) or VEGFR3 kinase 
inhibitor (MAZ51), and then MSC migration was meas-
ured. Treatment with Ki8751 and MAZ51 significantly 
inhibited VEGF-C-induced MSC migration (Fig. 2b).

VEGF‑C activates ERK and FAK signaling in MSCs

Previous studies have shown that VEGF-C binds to VEGFR2 
and VEGFR3, which is induced following autophosphoryla-
tion of VEGFR2 and VEGFR3, and then activates various 
downstream signaling pathways such as phosphatidylinosi-
tol 3-kinase (PI3K)/Akt, mitogen activated protein kinase 
(MAPK), and focal adhesion kinase (FAK), which are 
involved in the regulation of lymphatic endothelial cells 
proliferation and migration [10, 26, 27]. We, therefore, 
examined the signaling pathways that are involved in the 
VEGF-C-induced MSC migration. Treatment with VEGF-
C increased phosphorylation of ERK and FAK proteins in 
MSCs (Fig. 3a), while there was no effect on activation of 

Fig. 3   VEGF-C activates 
ERK and FAK signaling in a 
VEGFR2 and VEGFR3 depend-
ent manner. a Immunoblotting 
with indicated antibodies was 
performed on MSCs treated 
with VEGF-C (10 ng/mL) for 
the indicated times. Representa-
tive blots are shown. b Effects 
of VEGFR2 and VEGFR3 
kinase inhibitors on VEGF-
C-induced phosphorylation of 
ERK and FAK. MSCs were 
pretreated with Ki8751 (10 nM) 
or MAZ51 (5 µM) for 1 h, 
and then treated with VEGF-
C (10 ng/mL) or saline for 
10 min. Relative phosphoryla-
tion levels were normalized to 
the total protein signal. Results 
are presented as mean ± SD. 
(n = 3); *p < 0.05 versus VEGF-
C(−)/Ki8751(−)/MAZ51(−), 
#p < 0.05 versus VEGF-C(+)/
Ki8751(−)/MAZ51(−)
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JNK and p38 proteins. Treatment with VEGF-C had no 
effect on total ERK, FAK, JNK, and p38 protein levels.

To further investigate the involvement of VEGFR2 and 
VEGFR3 signaling in the VEGF-C-induced activation of 
ERK and FAK proteins, MSCs were treated with Ki8751 and 

MAZ51, and then the phosphorylation of ERK and FAK was 
assessed. Treatment with both Ki8751 and MAZ51 effec-
tively suppressed the phosphorylation of ERK and FAK 
proteins (Fig. 3b).
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Involvement of ERK and FAK signaling in VEGF‑C 
mediated MSCs migration

It is well known that ERK and FAK signaling pathway 
plays a critical role in regulating various cell migration 
[17, 19–21]. To further investigate whether ERK and FAK 
signaling pathway participates in VEGF-C-induced MSC 
migration, MSCs were treated with ERK inhibitor (U0126) 
and FAK inhibitor (PF573228). Treatment with U0126 and 
PF573228 significantly suppressed VEGF-C-induced phos-
phorylation of ERK and FAK proteins (Fig. 4a). Interest-
ingly, treatment with PF573228 inhibited phosphorylation of 
ERK protein, whereas, U0126 did not affect the phosphoryl-
ation level of FAK protein. We next examined the effect of 
ERK and FAK signaling inhibition on the VEGF-C-induced 
MSCs migration. Treatment with U0126 and PF573228 sup-
pressed VEGF-C-induced actin cytoskeletal reorganization 
and paxillin accumulation in MSCs (Fig. 4b). In addition, 
pretreatment with U0126 and PF573228 significantly attenu-
ated VEGF-C-induced MSC migration (Fig. 4c).

Discussion

In the present study, we have demonstrated that VEGF-C 
induces actin cytoskeletal reorganization and focal adhesion 
assembly, leading to the promotion of MSCs migration.

It is well known that MSCs secrete a variety of cytokines 
and growth factors that show therapeutic effect for various 
damaged tissues [28, 29]. Accumulating evidence sug-
gests that MSCs mediate their therapeutic effects primar-
ily through a paracrine mechanism [30, 31]. Therefore, 
the appropriate homing of MSCs to the injured area is an 

essential step to enhance the therapeutic effects. A better 
understanding of the molecular mechanisms that regulate 
the MSCs migration, will play an important role for the 
improvement of therapeutic benefit.

Recently, we had reported that MSCs secrete VEGF-A, 
but not VEGF-C in normal culture conditions [13]. Previ-
ous report showed that MSCs did not secrete VEGF-C in 
normoxic culture conditions, but VEGF-C secretion was 
induced by near anoxia (0.1% O2) conditions [32]. Further-
more, another report indicated that VEGF-C expression was 
slightly increased at later stages of osteogenic differentia-
tion in preosteoblast-like cells [33]. In the present study, we 
performed all experiments using undifferentiated MSCs at 
normoxic and normal culture conditions. Therefore, the 
observed VEGF-C-induced MSC migration was possibly 
promoted by exogenously added VEGF-C. However, in the 
present study, we did not investigate whether VEGF-C treat-
ment promotes autocrine secretion of VEGF-C in MSCs, and 
thus further studies may be needed to elucidate this issue.

It is well established that VEGF-C promotes prolif-
eration and migration of lymphatic endothelial cells, and 
thereby induces lymphangiogenesis [10]. In lymphatic 
endothelial cells, VEGF-C binds and activates two related 
receptor tyrosine kinases, VEGFR2 and VEGFR3, which 
are induced during several signal transduction pathways 
such as ERK, p38, Akt, and FAK [10, 34]. Previous studies 
have reported that VEGFR2 and VEGFR3 are expressed 
in human and murine MSCs [13, 25, 35]. Consistent with 
these observations, VEGFR2 and VEGFR3 expression 
were confirmed in the MSCs used in this study, and treat-
ment with VEGF-C induced phosphorylation of VEGFR2 
and VEGFR3. Furthermore, inhibition of VEGFR2 and 
VEGFR3 signaling by Ki8751 and MAZ51 significantly 
suppressed VEGF-C-induced MSC migration, indicating 
that VEGF-C-induced MSC migration is dependent on 
both VEGFR2 and VEGFR3 signaling pathway.

Previous studies had reported that VEGF-C promoted 
migration of human and murine MSC lines [24, 25], but 
the underlying molecular mechanisms were not fully iden-
tified. It has been reported that the coordination of actin 
cytoskeletal changes and focal adhesion turnover is essential 
for various cell migration [14]. In our study, treatment with 
VEGF-C promoted F-actin filament formation and paxillin 
accumulation in MSCs. These findings indicate that VEGF-
C-induced MSC migration is regulated by cytoskeletal rear-
rangement and focal adhesion formation.

We have shown that the treatment with VEGF-C acti-
vates ERK and FAK signaling in MSCs; however, there 
was no effect on activation of JNK and p38. It is well 
established that ERK and FAK signaling is involved in 
MSC migration process [23]. Treatment with Ki8751 and 
MAZ51 effectively abrogated VEGF-C-induced phos-
phorylation of ERK and FAK. These results indicate that 

Fig. 4   Involvement of ERK and FAK signaling in VEGF-C-induced 
MSCs migration. a Effects of ERK and FAK inhibitors on VEGF-C-
induced phosphorylation of ERK and FAK. MSCs were pretreated 
with U0126 (10  µM) or PF-573228 (10  µM) for 1  h, and treated 
with VEGF-C (10  ng/mL) or saline for 10  min. Relative phospho-
rylation levels were normalized to the total protein signal. Results 
are presented as mean ± SD. (n = 3); *p < 0.05 versus VEGF-C(−)/
U0126(−)/PF-573228(−), #p < 0.05 versus VEGF-C(+)/U0126(−)/
PF-573228(−). b Effects of ERK and FAK inhibitors on VEGF-C-
induced actin cytoskeletal reorganization and paxillin accumulation. 
MSCs were pretreated with U0126 (10 µM) or PF-573228 (10 µM) 
for 1 h, and then treated with VEGF-C (10 ng/mL) or saline for 2 h. 
Immunofluorescent microscopic analysis for F-actin filament forma-
tion and paxillin accumulation. Staining with phalloidin (green), anti-
paxillin antibody (red), and DAPI (blue); scale bar 20 µm. c Effects 
of ERK and FAK inhibitors on VEGF-C-induced MSCs migration. 
MSCs were pretreated with U0126 (10 µM) or PF-573228 (10 µM) 
for 1 h, and then treated with VEGF-C (10 ng/mL) or saline for 6 h. 
Representative photomicrographs are shown. Migrating cells were 
counted in five fields randomly chosen from the triplicated chambers. 
Results are presented as mean ± SD.; *p < 0.05 versus VEGF-C(−)/
U0126(−)/PF-573228(−), #p < 0.05 versus VEGF-C(+)/U0126(−)/
PF-573228(−). scale bar 20 µm. (Color figure online)

◂



192	 Molecular and Cellular Biochemistry (2019) 455:185–193

1 3

VEGF-C-induced phosphorylation of ERK and FAK is 
mediated via both VEGFR2 and VEGFR3-dependent sign-
aling. Furthermore, treatment with U0126 and PF573228 
suppressed VEGF-C-induced actin cytoskeletal reorgani-
zation and paxillin accumulation, and thereby suppressed 
MSC migration. These results demonstrate that VEGF-C-
induced MSC migration is mediated by the activation of 
ERK and FAK dependent signaling pathway.

Activation of FAK stimulates several signal transduction 
pathways such as Ras/MEK/ERK and PI3K/Akt pathways 
[36]. In the present study, we found that the treatment with 
PF573228 inhibited not only VEGF-C-induced phospho-
rylation of FAK but also phosphorylation of ERK. These 
results indicated that FAK may be an upstream effector to 
ERK signaling in VEGF-C-induced MSC migration. Con-
sistent with our data, previous studies also have shown 
that PF573228 treatment suppressed phosphorylation of 
ERK protein in various cells [37–39]. Furthermore, it has 
been reported that transfection with shRNA targeting FAK 
decreased phosphorylation of ERK protein in the distracted 
callus [40]. Src tyrosine kinase is known to play critical 
roles in cell migration. A previous study indicated that Src-
induced the phosphorylation of FAK, and subsequently acti-
vated downstream ERK signaling, and thereby promoted cell 
migration [41]. Recently, it has been reported that VEGF-C 
promotes macrophage migration via Src signaling activa-
tion [42]. These results indicate that Src signaling may be 
involved in the VEGF-C-induced MSC migration. Further 
studies may be needed to elucidate this issue. To understand 
precise mechanisms of VEGF-C-induced MSC migration, 
these possibilities need to be investigated in the future.

In conclusion, our data demonstrate that VEGF-C-
induced MSC migration is mediated through ERK and FAK 
signaling dependent mechanism. These findings suggest that 
VEGF-C might be employed in regenerative therapeutic 
strategies to enhance various tissue repair.
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