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Abstract
We showed previously that natriuretic peptide receptor-C (NPR-C) agonist, C-ANP4−23, attenuated the enhanced expression 
of Giα proteins in vascular smooth muscle cells (VSMC) from spontaneously hypertensive rats (SHR) through the inhibition 
of enhanced oxidative stress. Since the enhanced levels of endogenous angiotensin II (Ang II) contribute to the overexpres-
sion of Giα proteins and augmented oxidative stress in VSMC from SHR, the present study was undertaken to investigate if 
C-ANP4−23 could also attenuate angiotensin II (Ang II)-induced oxidative stress and associated signaling. Ang II treatment 
of aortic VSMC augmented the levels of superoxide anion  (O2

−), NADPH oxidase activity, and the expression of NADPH 
oxidase subunits and C-ANP4−23 treatment attenuated all these to control levels. In addition, Ang II-induced enhanced levels 
of thiobarbituric acid-reactive substances (TBARS) and protein carbonyl content were also attenuated toward control levels 
by C-ANP4−23 treatment. On the other hand, Ang II inhibited the levels of nitric oxide (NO) and augmented the levels of 
peroxynitrite  (OONO−) in VSMC which were restored to control levels by C-ANP4−23 treatment. Furthermore, C-ANP4−23 
treatment attenuated Ang II-induced enhanced expression of Giα proteins, phosphorylation of p38, JNK, and ERK 1,2 as 
well as hyperproliferation of VSMC as determined by DNA synthesis, and metabolic activity. These results indicate that 
C-ANP4−23, via the activation of NPR-C, attenuates Ang II-induced enhanced nitroxidative stress, overexpression of Giα 
proteins, increased activation of the p38/JNK/ERK 1,2 signaling pathways, and hyperproliferation of VSMC. It may be 
suggested that C-ANP4−23 could be used as a therapeutic agent in the treatment of vascular remodeling associated with 
hypertension and atherosclerosis.
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Introduction

Angiotensin II (Ang II), a vasoactive peptide and a key com-
ponent of the renin-angiotensin system (RAS), regulates a 
variety of physiological functions including proliferation, 
hypertrophy of vascular smooth muscle cells (VSMC), and 
blood pressure by interacting with two distinct receptor 
subtypes designated as  AT1 and  AT2, respectively [1]. The 

presence of  AT1 receptor subtype has been shown in rat vas-
cular tissues; however, a small proportion of  AT2 receptors 
are also present in rat aorta [2, 3]. Most of the physiologi-
cal effects of Ang II are mediated through the activation of 
 AT1 receptors, which are coupled to different signaling path-
ways including adenylyl cyclase/cAMP inhibition through 
Giα proteins [4, 5] and MAPKs [6] and PI turnover through 
Gq/11α [7]. Ang II has also been shown to increase oxidative 
stress through the activation of NADPH oxidase, enhanced 
expression of different subunits of NADPH oxidase, and 
overproduction of  O2

− in VSMC [8, 9]. Furthermore, the 
enhanced levels of endogenous Ang II were also shown to 
contribute to the enhanced oxidative stress and hyperpro-
liferation of VSMC from spontaneously hypertensive rats 
(SHR) [10]. In addition, Ang II-mediated hyperprolifera-
tive effects were associated with decreased levels of NO in 
VSMC [11].
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Natriuretic peptides (NPs) comprise a family of three 
peptide hormones: atrial natriuretic peptide (ANP), brain 
natriuretic peptide (BNP), and C-type natriuretic peptide 
(CNP) [12, 13] and regulate a variety of physiological func-
tions including blood pressure through their interaction 
with natriuretic peptide receptors (NPRs). Three subtypes 
of NPRs have been identified: NPR-A [14], NPR-B [15, 16], 
and NPR-C [17]. NPR-A and NPR-B are membrane guanylyl 
cyclase receptors, whereas NPR-C does not possess guanylyl 
cyclase activity and is coupled to adenylyl cyclase inhibition 
through the inhibitory guanine nucleotide regulatory protein 
Gi [17, 18], or activation of phospholipase C (PLC) [19].

ANP has been shown to act as an autocrine/paracrine 
modulator of cardiac hypertrophy and remodeling [20–22]. 
Earlier studies demonstrated that C-ANP4−23, an agonist that 
interacts specifically with NPR-C attenuated enhanced pro-
duction of superoxide anion  (O2

−), NADPH oxidase activ-
ity, and the overexpression of different subunits of NADPH 
oxidase in VSMC from SHR [23]. In addition, C-ANP4−23 
was also shown to attenuate hyperproliferation and hyper-
trophy of aortic VSMC from SHR through the inhibition 
of reactive oxygen species (ROS) and ROS-mediated cell 
signaling pathways [24]. However, whether C-ANP4−23 
could also attenuate the enhanced oxidative stress induced 
by Ang II remains obscure. The present study was therefore 
undertaken to investigate the effect of C-ANP4−23 on Ang 
II-evoked nitroxidative stress, overexpression of Giα pro-
teins, increased activation of the p38/JNK/ERK 1,2 signal-
ing pathways, and subsequent hyperproliferation of VSMC.

In this study, we have provided the first experimental evi-
dence that NPR-C activation by C-ANP4−23 attenuates Ang 
II-induced hyperproliferation of VSMC through decreasing 
the enhanced nitroxidative stress and activation of the p38/
JNK/ERK 1,2 signaling pathways. From these results it may 
be suggested that C-ANP4−23, an activator of NPR-C, may be 
used as a therapeutic agent for the treatment of hypertension 
and atherosclerosis.

Materials and methods

Materials

A ring-deleted analog of ANP, C-ANP4−23 was purchased 
from Bachem (Torrance, CA). Angiotensin II (human) was 
purchased from Sigma-Aldrich Chemical Co. (St Louis, 
Missouri, USA). Western blotting primary antibodies against 
Giα-2 (sc-13534), Giα-3 (sc-373746), p38α (sc-535), p-p38 
(sc-7973, phosphospecific-Tyr182), JNK1 (sc-1648), p-JNK 
(sc-135642, phosphospecific-Thr183), ERK 1,2 (sc-135900), 
p-ERK 1,2 (sc-7383, phosphospecific-Tyr204), Nox-4 (sc-
21860),  p22phox (sc-130551),  p47phox (sc-86190), dynein 
IC1/2 (sc-13524), secondary antibodies goat anti-mouse IgG 

horseradish peroxidase (HRP) conjugate (sc-2005), donkey 
anti-goat IgG horseradish peroxidase (HRP) conjugate (sc-
2020), and enhanced chemiluminescence (ECL) detection 
system kits were purchased from Santa Cruz Biotechnolo-
gies (Santa Cruz, CA, USA). The L-[4,5-3H]-Thymidine was 
from PerkinElmer Inc. (Waltham, Massachusetts, USA). All 
other chemicals used in the experiments were purchased 
from Sigma-Aldrich.

Cell culture and incubation

Aortic VSMC from Male Sprague Dawley (SD) rats were 
cultured as described previously [25]. The cell purity 
was determined by immunofluorescence using α-actin as 
described previously [25]. The cells contained high levels of 
smooth muscle-specific α-actin [8, 26]. Cells were incubated 
at 37 °C in 95% air, 5%  CO2, humidified atmosphere in Dul-
becco’s Modified Eagle’s Medium, and 10% heat-inactivated 
fetal bovine serum (FBS). Cells were passaged upon reach-
ing confluence with 0.5% trypsin and used between passages 
two and ten. Subconfluent VSMC were serum deprived 4 h 
in DMEM without FBS at 37 °C to reduce the interference 
by growth factors present in the serum. VSMC were then 
pre-incubated in the absence or presence of different con-
centrations of C-ANP4−23  (10−6–10−10 or  10−7 M) for 1 h 
before stimulation with  10−6 M of Ang II, a concentration 
previously shown to be effective in VSMC [27, 28]. After 
24 h incubation, the cells were washed twice with ice-cold 
phosphate buffer saline (PBS) and lysed in a 200 µl buffer 
containing 25 mM Tris–HCl (pH 7.5), 25 mM NaCl, 1 mM 
sodium orthovanadate, 10 mM sodium fluoride, 10 mM 
sodium pyrophosphate, 2 mM EDTA, 1 mM phenylmethyl-
sulfonyl fluoride, 10 µg/mL aprotinin, 1% Triton X-100, 
0.1% sodium dodecyl sulfate, and 0.5 µg/mL leupeptin on 
ice. The cell lysates were centrifuged at 12,000×g for 15 min 
at 4 °C, and the supernatants were used for Western blot 
analysis. Protein concentrations were measured with a Brad-
ford assay [29].

All the animal procedures used in the present study 
were approved by the Comité de Déontologie de 
l’Expérimentation sur les Animaux (CDEA) of the Univer-
sity of Montreal (Approval no. 99050). The investigation 
conforms to the “Guide for the Care and Use of Laboratory 
Animals” published by the US National Institutes of Health 
(NIH) (Guide, NRC 2011).

Western blotting

The levels of protein expression and phosphorylation 
were determined by Western blotting as described previ-
ously [30]. After SDS-PAGE, the separated proteins were 
transferred to a nitrocellulose membrane, which were then 
blocked for 1 h at room temperature with 5% dry milk and 
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incubated overnight with specific antibodies against dif-
ferent proteins. Dynein was used for loading controls. The 
antibody–antigen complexes were detected by incubating 
the membranes with horseradish peroxidase-conjugated 
antibodies for 1 h at room temperature. The blots were 
then washed three times with PBS before reaction with 
enhanced chemiluminescence (ECL). Quantitative analysis 
of the proteins was performed by densitometric scanning 
of the autoradiographs using the enhanced laser densi-
tometer LKB Ultroscan XL and quantified using the gel-
scan XL evaluation software (version 2.1) from Pharmacia 
(Baie d′Urfé, Québec, Canada).

[3H]‑Thymidine incorporation assays

Aortic VSMC proliferation was quantified by DNA synthesis 
that was evaluated by incorporation of  [3H]-Thymidine into 
cells as described earlier [31]. Briefly, VSMC were plated 
in 6-well plates  (105cells/well) and incubated at 37 °C for 
24  h. After incubation, VSMC were serum-starved for 
4 h (to induce cell quiescence), pre-incubated in the pres-
ence or absence of different concentrations of C-ANP4−23 
 (10−6–10−10 or  10−7 M) for 60 min before stimulation with 
or without  10−6 M Ang II for 24 h. These concentrations of 
different agonist/antioxidants have been used in earlier stud-
ies [10, 23, 31, 32]. The cells were then incubated with  [3H] 
thymidine (1 µCi) for 4 h before the cells were harvested. 
The cells were rinsed twice with ice-cold PBS and incubated 
with 5% trichloroacetic acid for 1 h at 4 °C. After being 
washed twice with ice-cold water, the cells were incubated 
with 0.4 N sodium hydroxide (NaOH) solution for 30 min 
at room temperature, and radioactivity was determined by 
liquid scintillation counter.

MTT cell proliferation assay

Aortic VSMC proliferation was also measured by MTT 
(3-4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-
mide assay using a MTT Cell Proliferation Assay Kit (Trevi-
gen) as describe previously [33]. Briefly, VSMC were plated 
in 96-well culture plates  (103cells/well) and incubated at 
37 °C for 24 h. After incubation, VSMC were serum-starved 
for 4 h (to induce cell quiescence), pre-incubated in the pres-
ence or absence of different concentrations of C-ANP4−23 
 (10−6–10−10 or  10−7 M) for 60 min before stimulation with 
or without Ang II  (10−6M) for 24 h. The cells were then 
incubated with 10 µL of MTT (5 mg/mL) for 4 h at 37 °C 
and 100 µL of cell lysis buffer was added to solubilize the 
crystals for 2 h at room temperature. The absorbance was 
determined with a spectrophotometer (TECAN infinite 200 
PRO) at a wavelength of 490 nm.

Superoxide anion  (O2
−) measurements

Basal  O2
− production in aortic VSMC was measured by 

the lucigenin-enhanced chemiluminescence method with a 
low concentration (5 µM/L) of lucigenin as described previ-
ously [23]. The VSMC were pre-incubated in the absence or 
presence of C-ANP4−23  (10−7 M) for 1 h and subsequently 
stimulated with or without Ang II  (10−6 M) for 24 h. After 
treatment with Ang II, VSMC were washed in oxygenated 
Krebs-HEPES buffer, scraped, and placed in scintillation 
vials containing lucigenin solution, and the emitted lumi-
nescence was measured with a liquid scintillation counter 
(Wallac 1409; Perkin Elmer Life Science, St Laurent, QC, 
Canada) for 5 min. The average luminescence value was 
estimated and the background value was subtracted, and the 
result was divided by the total weight of proteins in each 
sample.

NADPH oxidase activity determination

The activation of NADPH oxidase activity in the samples 
was assessed by adding  10−4 M/L NADH (Sigma) in the 
vials before counting. Basal  O2

−-induced luminescence 
was then subtracted from the luminescence value induced 
by NADH [23].

Thiobarbituric acid‑reactive substances (TBARS) 
assay

Lipid peroxidation was determined by measuring TBARS in 
control and C-ANP4−23-treated aortic VSMC as described 
earlier [34, 35]. Aortic VSMC were pre-incubated with 
0.01 mM  CuCl2 in 20 mM phosphate buffer (pH 7.4) at 
room temperature for 15 min. The reaction was started by 
the addition of 0.5 mM ascorbate and 1.9 mM deoxyribose 
and incubated for 1 h at 37 °C. Thiobarbituric acid (10 g/L) 
in 50 mM NaOH and concentrated acetate acid (1:1 ratio) 
were added to the incubation mixture, which was boiled in 
water for 15 min. The TBARS were quantified by spectro-
photometer (TECAN infinite 200 PRO) at a wavelength of 
532 nm. Phosphate buffer (20 mM; pH 7.4) was taken as 
blank. Protein concentration was measured with a Bio-Rad 
(Hercules, CA, USA) assay kit using bovine serum albumin 
as a standard.

Protein carbonyl content assay

The carbonyl content of proteins in control and C-ANP4−23-
treated cells was determined by the 2,4-dinitrophenylhy-
drazine (DNPH) method as described earlier [36]. Aortic 
VSMC were lysed and proteins were precipitated with 20% 
trichloroacetic acid. The precipitates were incubated with 
either 2 N HCl alone (blank) or 2 N HCl containing 10 mM 
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DNPH at room temperature in the dark for 1 h, being vor-
texed every 10 min. After the reaction, the mixture was 
centrifuged, and the precipitates were washed with an 
ethanol:ethyl acetate (1:1) mixture three times and dissolved 
in 6 M guanidine chloride or 8 M urea. The absorbance was 
determined with a spectrophotometer (TECAN infinite 200 
PRO) at a wavelength of 360 nm. The concentration of pro-
tein was measured with a Bio-Rad assay kit using bovine 
serum albumin as a standard.

Measurements of intracellular hydrogen peroxide 
 (H2O2), nitric oxide (NO), and peroxynitrite  (ONOO−) 
levels

The levels of intracellular  H2O2, NO, and  ONOO− produced 
in VSMC were measured by using intracellular fluorescent 
probes, dichloro-dihydro-fluorescein diacetate (DCFH-DA), 
diaminofluorescein-2 diacetate (DAF-2DA), and dihydrorho-
damine 123 (DHR 123), respectively, as described earlier 
[30, 37, 38]. Briefly, VSMC were plated in a 96-well culture 
plate  (103 cells/well) and incubated at 37 °C for 24 h. After 
incubation, VSMC were serum-starved for 4 h (to induce 
cell quiescence), pre-treated in the presence or absence of 
C-ANP4−23  (10−7 M) for 60 min before stimulation with or 
without Ang II  (10−6 M) for 24 h. After stimulation, VSMC 
were washed twice with PBS and incubated at 37 °C for 
1 h with 10 mmol/L DCFH-DA for detecting  H2O2, with 
both 10 mmol/L DAF-2DA and  10−6 mol/L acetylcholine for 
detecting NO, and with 5 × 10−3 mol/L DHR 123 for detect-
ing  ONOO−, respectively. Cells were washed twice with 
PBS, and fluorescence intensities were measured by a spec-
trophotometer (TECAN infinite 200 PRO) with excitation 
and emission wavelengths at 495 and 515 nm for DCFH-DA, 
495 and 515 nm for DAF-2DA, and 480 and 530 nm for 
DHR 123, respectively. Changes in fluorescence intensities 
were expressed as percentages of the values obtained in the 
WKY group (taken as 100%).

Measurements of extracellular NO levels

The NO concentrations in cell culture supernatant were 
determined by using Griess reagent as describe previously 
[30]. Briefly, VSMC were plated in a 96-well culture plate 
 (103 cells/well) and incubated at 37  °C for 24 h. After 
incubation, VSMC were serum-starved for 4 h (to induce 
cell quiescence), pre-treated in the presence or absence of 
C-ANP4−23  (10−7 M) for 60 min before stimulation with or 
without Ang II  (10−6 M) for 24 h. After stimulation, 50 µL 
aliquots was removed from the supernatant of the cultured 
cells and incubated with an equal volume of the Griess rea-
gent at room temperature for 15 min. Sodium nitrite was 
used to generate a standard curve. The absorbance was 

determined with a spectrophotometer (TECAN infinite 200 
PRO) at a wavelength of 490 nm.

Transfection of VSMC with siRNA

For siRNA transfection efficiency, the manufacturer’s pro-
tocol was followed. Briefly, aortic VSMC were seeded in a 
12-well plate or petri dishes and cultured in antibiotic free 
normal growth medium supplemented with 10% FBS until 
the cells were 60% confluent (~ 48 h). On the day of transfec-
tion, cells were washed with transfection medium (sc-36868) 
and incubated with 1 ml of transfection reagent (sc-29528) 
containing 80 pmoles of either scrambled siRNA (sc-37007), 
siRNA specific for Giα-2 (sc-41753), or Giα-3 (sc-37255) 
for 12 h. The medium was replaced with normal DMEM 
(containing 10% FBS and 1% antibiotics) for an additional 
24 h (90% confluence). By using this procedure, we were 
able to knockdown the expression of Giα-2 and Giα-3 by 
about 90 and 80%, respectively in aortic VSMC (data not 
shown), which is similar to our previous report [39].

Statistical analysis

The number of independent experiments is reported. Each 
experiment was conducted at least 4 times using separate 
cell population. All data are expressed as the mean ± SE 
(standard error). Comparisons between groups were made 
with one-way analysis of variance (ANOVA) followed by 
Dunnett’s tests using GraphPad Prism5 (GraphPad Software 
Inc., La Jolla, California, USA). Results were considered 
significant at a value of p < 0.05.

Results

C‑ANP4−23 attenuates Ang II‑induced enhanced 
levels of  O2

−, NADPH oxidase activity, and  H2O2 
in aortic VSMC

We earlier showed that C-ANP4−23 attenuated the 
enhanced oxidative stress exhibited by VSMC from SHR 
[23]. Since the enhanced levels of endogenous Ang II 
were shown to contribute to the augmented oxidative 
stress in VSMC from SHR, it was of interest to investi-
gate if C-ANP4−23 could also attenuate Ang II-induced 
enhanced oxidative stress. To test this, we examined the 
effect of C-ANP4−23 on Ang II-induced enhanced levels of 
 O2

−, NADPH oxidase activity, and  H2O2 in aortic VSMC. 
Results shown in Fig. 1 demonstrate that Ang II  (10−6 M) 
treatment enhanced the basal levels of  O2

− (A), NADPH 
oxidase activity (B), and  H2O2 (C) in VSMC by about 
100, 110, and 30%, respectively, which were attenuated 
towards the control levels by C-ANP4−23 pre-treatment. 
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In addition, C-ANP4−23 also inhibited the basal levels of 
 O2

− and NADPH oxidase activity in control cells by about 
30 and 20%, respectively, without affecting the levels of 
 H2O2.

C‑ANP4−23 attenuates Ang II‑induced enhanced 
expression of NADPH oxidase subunits in aortic 
VSMC

To further explore if C-ANP4−23-induced attenuation 
of oxidative stress was associated with the decreased 
expression of the NADPH oxidase subunits, we exam-
ined the effect of C-ANP4−23 treatment on Ang II-induced 
enhanced expression of Nox-4,  p47phox, and  p22phox pro-
teins, critical subunits involved in NADPH oxidase acti-
vation in aortic VSMC. Results shown in Fig. 2 indicate 
that, treatment of aortic VSMC with Ang II  (10−6 M) 
enhanced the expression levels of Nox-4 (A),  p47phox 
(B), and  p22phox proteins (C) by about 50, 80, and 30%, 
respectively, which were all attenuated to almost control 
levels by C-ANP4−23 pre-treatment. However, C-ANP4-
23 treatment did not affect the levels of these proteins in 
control VSMC.

C‑ANP4−23 attenuates Ang II‑induced enhanced 
levels of TBARS and carbonyl content in aortic VSMC

We also examined the effect of C-ANP4−23 treatment on Ang 
II-induced enhanced levels of MDA as well as carbonyl con-
tent (cellular markers of oxidative stress) in aortic VSMC 
and the results are shown in Fig. 3. Treatment of VSMC 
with Ang II  (10−6 M) enhanced the levels of TBARS (A) 
and carbonyl content (B) by about 40 and 70%, respectively, 
and these increases were completely reversed by C-ANP4−23 
pre-treatment. On the other hand, C-ANP4−23 also decreased 
the levels of TBARS and carbonyl content by about 25 and 
50%, respectively, in control VSMC.

C‑ANP4−23 augments Ang II‑induced decreased level 
of NO and attenuates enhanced levels of  ONOO− 
in aortic VSMC

Ang II-induced increased oxidative stress has been shown 
to diminish the release and bioavailability of NO in VSMC 
[40]. To investigate if C-ANP4−23 that has been shown to 
augment the levels of NO in proximal tubules [41] could 
also enhance the Ang II-induced decreased levels of intra- 
and extracellular NO in aortic VSMC, we examined the 

Fig. 1  Effect of C-ANP4−23 
on Ang II-induced enhanced 
levels of superoxide anion  (O2

−) 
NADPH oxidase activity and 
hydrogen peroxide  (H2O2) in 
aortic VSMC. Serum-starved, 
quiescent aortic VSMC were 
pre-incubated in the absence 
or presence of C-ANP4−23 
 (10−7 M) for 60 min prior to 
stimulation with or without Ang 
II  (10−6 M). After 24 h later, 
levels of  O2

− (A), NADPH oxi-
dase activity (B), and  H2O2 (C) 
were determined as described 
in the “Materials and Methods” 
section. Results are expressed 
as % of the control group (CTL, 
taken as 100%). Values are the 
means ± SE of at least 3 inde-
pendent experiments. *p < 0.05, 
**p < 0.01, ***p < 0.001 versus 
control (CTL) group; ¶p < 0.05, 
¶¶¶p < 0.001 versus Ang II 
group
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effect of C-ANP4−23 treatment on intra- and extracellu-
lar levels of NO in the absence and presence of Ang II. 
The results shown in Fig. 4 indicate that Ang II  (10−6 M) 
decreased the levels of intracellular (A) and extracellular 
(B) NO by about 40 and 80%, respectively, which were 
significantly augmented by C-ANP4−23 treatment. In addi-
tion, C-ANP4−23 also increased the intra- and extracellular 

levels of NO by about 40 and 125%, respectively, in con-
trol cells.

Since decreased bioavailability of NO has been shown 
to result in the concomitant increase in the levels of per-
oxynitrite  (ONOO−) [42] and Ang II has been shown to 
enhance the levels of  ONOO− in different tissues includ-
ing aorta, cardiomyocytes, and endothelial cells [43–45], it 
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Fig. 2  Effect of C-ANP4−23 on Ang II-induced enhanced expression 
of NADPH oxidase subunits: Nox-4,  p22phox, and  p47phox in aortic 
VSMC. Serum-starved, quiescent aortic VSMC were pre-incubated 
in the absence or presence of C-ANP4−23  (10−7 M) for 60 min prior 
to stimulation with or without Ang II  (10−6 M). After 24 h later, cell 
lysates were prepared as described in the Materials section. 30µ g of 
proteins was resolved by SDS-PAGE and was subjected to immunob-
lotting analysis using antibodies against Nox-4,  p22phox, and  p47phox. 
Upper panels: representative immunoblot of Nox-4 (A),  p22phox 

(B), and  p47phox (C) with corresponding dynein. Lower panels: Pro-
tein levels of Nox-4,  p22phox, and  p47phox and corresponding dynein 
were quantified using scanning densitometry and all the values were 
normalized based on the corresponding dynein values. Results are 
expressed as % of the control group (CTL, taken as 100%). Values 
are the means ± SE of at least 4 independent experiments. *p < 0.05, 
**p < 0.01, ***p < 0.001 versus control (CTL) group; ¶p < 0.05, 
¶¶p < 0.01 versus Ang II group
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Fig. 3  Effect of C-ANP4−23 on Ang II-induced enhanced levels of 
thiobarbituric acid-reactive substances (TBARS) and protein carbonyl 
content in aortic VSMC. Serum-starved, quiescent aortic VSMC were 
pre-incubated in the absence or presence of C-ANP4−23  (10−7 M) for 
60 min prior to stimulation with or without Ang II  (10−6 M). After 
24 h later, TBARS (A) and protein carbonyl content (B) levels in cell 

lysates were determined as described in the “Materials and Methods” 
section. Results are expressed as picomols/mg protein for TBARS 
and nmols/ml/mg protein for TBRAS. Values are the means ± SE of 
at least 3 independent experiments performed in triplicate. *p < 0.05, 
**p < 0.01, ***p < 0.001 versus control (CTL) group; ¶¶¶p < 0.001 
versus Ang II group

Fig. 4  Effect of C-ANP4−23 on 
Ang II-induced decreased levels 
of NO and enhanced levels 
of  ONOO− in aortic VSMC. 
Serum-starved, quiescent aortic 
VSMC were pre-incubated 
in the absence or presence 
of C-ANP4−23  (10−7 M) for 
60 min prior to stimulation with 
or without Ang II  (10−6 M). 
After 24 h later, NO (A–B) 
and  ONOO− (C) levels were 
determined as described in 
the “Materials and Methods” 
section. Results are expressed 
as % of the control group 
(CTL, taken as 100%). Values 
are the means ± SE of at least 
3 independent experiments. 
**p < 0.01, ***p < 0.001 versus 
control (CTL) group; ¶¶p < 0.01, 
¶¶¶p < 0.001 versus Ang II 
group
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was of interest to examine if C-ANP4−23 could attenuate the 
enhanced levels of  ONOO− induced by Ang II in VSMC. 
Results shown in Fig. 4C indicate that Ang II increased the 
levels of  ONOO− by about 50% in VSMC and C-ANP4−23 
attenuated these enhanced levels by about 80%. However, 
the basal  ONOO− levels in control VSMC were not affected 
by this treatment.

C‑ANP4−23 attenuates Ang II‑induced enhanced 
phosphorylation of MAPKs: p38, JNK, ERK 1,2 
in aortic VSMC

Oxidative stress due to the overproduction of ROS has 
been shown to activate ERKs, JNKs, or p38 MAPK 

signaling pathways [46–48]. Since C-ANP4-23 attenuates 
Ang II-induced oxidative stress, it was desirable to inves-
tigate if it could also attenuate Ang II-evoked enhanced 
activation of MAPK signaling pathways. To test this, the 
effect of C-ANP4−23 treatment on Ang II-induced enhanced 
levels of phosphorylated p38, JNK, and ERK 1,2 were 
examined in aortic VSMC, and the results are shown in 
Fig. 5. Ang II enhanced the phosphorylation levels of p38 
(A), JNK (B), and ERK 1,2 (C) by about 60, 80, and 40%, 
respectively, which were attenuated toward control lev-
els by C-ANP4−23 treatment. In addition, C-ANP4−23 also 
attenuated the activation of p38 and JNK by about 40% 
in control VSMC without affecting the activation of ERK 
1,2. However, this treatment did not affect the expression 

A

B C

Fig. 5  Effect of C-ANP4−23 on Ang II-induced enhanced phospho-
rylation of MAPK: p38, JNK, and ERK 1,2 in aortic VSMC. Serum-
starved, quiescent aortic VSMC were pre-incubated in the absence 
or presence of C-ANP4−23  (10−7 M) for 60 min prior to stimulation 
with or without Ang II  (10−6 M). After 24 h later, cell lysates were 
prepared as described in the “Materials and Methods” section. 30µ g 
of proteins were resolved by SDS-PAGE and were subjected to 
immunoblotting analysis using phosphorylated antibodies against 
p38, JNK, and ERK 1,2. Membranes were stripped and re-probed 
with p38, JNK, and ERK 1,2 antibodies. Upper panels: representa-

tive immunoblotting of phosphorylated p38 (A), JNK (B), and ERK 
1,2 (C) with corresponding p38, JNK, and ERK 1,2. Lower panels: 
protein levels of phosphorylated p38, JNK, and ERK 1,2 were quan-
tified using scanning densitometry and all the values were normal-
ized based on the corresponding p38, JNK, and ERK 1,2. Results are 
expressed as % of the control group (CTL, taken as 100%). Values 
are the means ± SE of at least 3 independent experiments. *p < 0.05, 
**p < 0.01, ***p < 0.001 versus control (CTL) group; ¶¶p < 0.01, 
¶¶¶p < 0.001 versus Ang II group
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of total p38, JNK, and ERK 1,2 in control or treatment 
groups.

C‑ANP4−23 attenuates Ang II‑induced enhanced 
proliferation of aortic VSMC

Oxidative stress-induced activation of ERKs, JNKs, or p38 
MAPK signaling pathways are implicated in Ang II-induced 
enhanced proliferation of VSMC [49–51]. Since C-ANP4−23 
attenuated the enhanced activation of ERKs, JNKs, or p38 
MAPK signaling pathways, we investigated if C-ANP4−23 
could also attenuate Ang II-induced enhanced proliferation 
of aortic VSMC. Results shown in Fig. 6 indicate that Ang II 
 (10−6 M) treatment enhanced the DNA synthesis and meta-
bolic activity (markers of cell proliferation) in VSMC by 
about 100 and 80%, respectively, compared to the control 
and C-ANP4−23 dose-dependently attenuated the increased 
DNA synthesis (A) and metabolic activity (B) toward the 
control levels. On the other hand, C-ANP4−23  (10−7 M) treat-
ment did not have any significant effect on DNA synthesis 
and metabolic activity in control VSMC.

C‑ANP4−23 attenuates Ang II‑induced enhanced 
expression of Giα proteins in aortic VSMC

Enhanced oxidative stress has been shown to contribute to 
the overexpression of Giα proteins in VSMC induced by 
Ang II and in VSMC from spontaneously hypertensive rats 
(SHR) [23, 28, 32]. In addition, the role of overexpression 
of Giα proteins in hyperproliferation of VSMC from SHR 
has also been shown [32]. To investigate if attenuation of 
Ang II-induced hyperproliferation by C-ANP4−23 is medi-
ated through the inhibition of enhanced expression of Giα 

proteins, we examined the effect of C-ANP4−23 treatment 
on Ang II-induced enhanced expression Giα-2 and Giα-3 
proteins in aortic VSMC and the results are shown in Fig. 7. 
As reported earlier [23], Ang II augmented the expression 
of Giα-2 (A) and Giα-3 (B) in aortic VSMC by about 60% 
which was inhibited by C-ANP4−23 in a concentration-
dependent manner and at  10−6 M, the expression of both 
Giα-2 and Giα-3 was attenuated to control level. On the 
other hand, C-ANP4−23  (10−7 M) treatment did not have any 
significant effect on the expression of Giα-2 (A) and Giα-3 
(B) in control cells.

In addition, we also investigated the implication of Giα 
proteins in Ang II-induced enhanced proliferation of aortic 
VSMC by using gene knockdown experiments. Figure 7C 
shows that Ang II-induced enhanced metabolic activity 
(approximately 100%) was completely attenuated by knock-
ing down of Giα-2 and Giα-3 proteins using respective siR-
NAs. In addition, siRNA of Giα-2 and Giα-3 also attenuated 
the basal metabolic activity by about 40 and 50%, respec-
tively, in control cells.

Discussion

We earlier reported that C-ANP4−23 treatment of aortic 
VSMC from SHR attenuated the enhanced oxidative stress 
by attenuating the enhanced production of superoxide anion 
 (O2

−), enhanced levels of NADPH oxidase activity, and 
enhanced expression of NADPH oxidase subunits [23]. In 
addition, we also showed that the enhanced levels of endog-
enous Ang II contributed to the enhanced oxidative stress 
in VSMC from SHR [32]. However, in the present study, we 
report for the first time that C-ANP4−23 attenuates oxidative 
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Fig. 6  Effect of C-ANP4−23 on Ang II-induced hyperproliferation 
of aortic VSMC. Serum-starved, quiescent aortic VSMC were pre-
incubated in the absence or presence of different concentrations 
 (10−6–10−10 or  10−7 M) of C-ANP4−23 for 60 min prior to stimulation 
with or without Ang II  (10−6 M). After 24 h,  [3H]-Thymidine (A) and 
MTT incorporation (B) were determined as described in the “Materi-

als and Methods” section. Results are expressed as % of the control 
group (CTL, taken as 100%). Values are the mean ± SE of three sepa-
rate independent experiments performed in triplicate. ***p < 0.001 
versus control (CTL) group; ¶p < 0.05, ¶¶p < 0.01, ¶¶¶p < 0.001 versus 
Ang II group
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stress, nitrosative stress in aortic VSMC induced by Ang II 
which through the inhibition of overexpression of Giα pro-
teins and MAPKs including p38 and JNK and ERK 1,2 path-
ways contributes to the anti-proliferative effect of NPR-C.

Our results showing that Ang II treatment augments the 
production of  O2

−, NADPH oxidase activity, and expres-
sion of Nox-4,  p22phox, and  p47phox in aortic VSMC, are 
consistent with the studies reported earlier [10, 52–54]. 
Furthermore, the fact that C-ANP4−23, a specific agonist 
of NPR-C, inhibited Ang II-induced enhanced produc-
tion of  O2

−, enhanced NADPH oxidase activity as well 
as the enhanced expression of Nox4,  p47phox, and  p47phox 

subunits of NADPH oxidase in aortic VSMC suggests that 
C-ANP4−23 acts as an antioxidant. This notion is further sup-
ported by our study showing that treatment of aortic VSMC 
with C-ANP4−23 prevented both Ang II-induced enhanced 
lipid (TBARS levels) and protein (carbonyl contents) per-
oxidation, which are considered as important markers of oxi-
dative cell injury [35, 38]. Several studies have shown the 
interaction of natriuretic peptides and NO in the regulation 
of BP [55–58]. In addition, NPR-C activation by C-ANP4−23 
was also reported to activate eNOS in various tissues includ-
ing smooth muscle [59]. Furthermore, Ang II that increases 
blood pressure has been shown to decrease the levels of NO 

A B

C

Fig. 7  Effect of C-ANP4−23 on Ang II-induced enhanced expression 
of Giα-2 and Giα-3 proteins in aortic VSMC. Serum-starved, quies-
cent aortic VSMC were pre-incubated in the absence or presence of 
different concentrations  (10−6–10−10 M or  10−7 M) of C-ANP4−23 for 
60 min prior to stimulation with or without Ang II  (10−6 M). After 
24 h later, cell lysates were prepared as described in the “Materials 
and Methods” section. 30µ g of proteins was resolved by SDS–PAGE 
and subjected to immunoblotting analysis using antibodies against 
Giα-2 and Giα-3. Upper panel (A and B) representative immunob-
lotting of Giα-2 or Giα-3 protein with corresponding dynein. Lower 

panel (A and B) protein levels of Giα-2 and Giα-3 were quantified 
using scanning densitometry and all the values are normalized based 
on the corresponding dynein values. (C) Knockdown effects of Giα-2 
or Giα-3 gene on Ang II-induced hyperproliferation of aortic VSMC. 
Aortic VSMC hyperproliferation (cell metabolic activity) was deter-
mined by MTT assay as described in “Materials and Methods” sec-
tion. Results are expressed as % of the control group (CTL, taken 
as 100%). Values are the mean ± SE of four separate independent 
experiments. **p < 0.01, ***p < 0.001 versus control (CTL) group; 
¶p < 0.05, ¶¶p < 0.01, ¶¶¶p < 0.001 versus Ang II group
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and NOS activity in VSMC [11]. We also show that Ang II 
decreased the levels of NO in VSMC which may be attrib-
uted to Ang II-induced enhanced production of  O2

− anion 
because increased levels of  O2

− have been shown to decrease 
the production/bioavailability of NO associated with hyper-
tension [30, 60, 61]. This notion was further supported by 
our earlier study demonstrating that VSMC from SHR 
exhibit enhanced levels of  O2

− and decreased levels of NO 
and eNOS [30]. Our results showing that C-ANP4−23 treat-
ment ameliorated Ang II-evoked decreased levels of both 
intra- and extracellular NO suggests that C-ANP4−23-induced 
attenuation of  O2

− may be responsible for the augmentation 
of NO levels. NO has been shown to react with  O2

− and 
produce  ONOO−, which further reduces the bioavailability 
of NO [40]. In accordance with this report, we also show 
that the levels of  ONOO− were increased in VSMC after 
Ang II treatment and C-ANP4−23 treatment decreased Ang 
II-induced enhanced levels of  ONOO− in VSMC. In this 
regard, in vivo treatment of C-ANP4−23 has also been shown 
to decrease the enhanced levels of  ONOO− in aorta and aor-
tic VSMC from SHR [30]. Taken together, it may be sug-
gested that C-ANP4−23 decreases nitroxidative stress induced 
by Ang II in VSMC by decreasing the levels of  O2

− and 
ONOO-.

Ang II-induced oxidative stress has been shown to 
enhance the proliferation of A10 VSMC [62]. In addition, 
enhanced levels of endogenous Ang II through ROS and 
ROS-mediated signaling have also been reported to contrib-
ute to the hyperproliferation of VSMC from SHR [10, 32]. 
Our results showing that C-ANP4−23 inhibits Ang II-induced 
enhanced proliferation of aortic VSMC are consistent with 
our previous study conducted in A10 cell line [31] and sug-
gest that the anti-proliferative effect of C-ANP4−23 may be 
attributed to its ability to inhibit the oxidative stress induced 
by Ang II. It should be noted that the anti-proliferative effect 
of C-ANP4−23 is not attributed to apoptosis, because cell 
viability checked by trypan blue exclusion method indicated 
that > 90–95% cells were viable and that C-ANP4−23 did not 
inhibit DNA synthesis in control VSMC.

C-ANP4−23 has been reported to suppress Ang II-induced 
activation of ERK 1,2 and AKT/protein kinase B (PKB) as 
well as subsequent hyperproliferation of A10 VSMC line 
[31]. In addition, Ang II-induced  O2

− and its metabolites 
have been reported to effectively stimulate all 3 MAPK 
including ERK 1,2, JNK, p38 MAPK, and VSMC prolif-
eration [63, 64]. However, we show for the first time that 
C-ANP4−23 inhibits Ang II-induced activation of p38 and 
JNK signaling pathway in aortic VSMC in addition to 
ERK 1,2 pathway. Taken together, it may be suggested that 
C-ANP4−23-induced attenuation of Ang II-evoked hyperpro-
liferation may be mediated through the inhibition of ROS 
and ROS-mediated ERK1,2, JNK, and p38 MAPK signaling 
pathways.

The role of Giα proteins in Ang II-induced hyperpro-
liferation of VSMC is well established [62]. In addition, 
enhanced levels of endogenous Ang II through the over-
expression of Giα proteins [32] have been shown to con-
tribute to the hyperproliferation of VSMC from SHR [10]. 
The fact that C-ANP4−23 decreases Ang II-induced enhanced 
expression of Giα proteins and hyperproliferation of VSMC 
further suggests that the attenuation of enhanced expression 
of Giα proteins may be responsible for the decreased pro-
liferation induced by C-ANP4−23.The mechanism by which 
C-ANP4−23 attenuates the enhanced expression of Giα pro-
teins and hyperproliferation appears to involve C-ANP4−23-
induced increased levels of NO. This notion is supported by 
our recent study showing that elevation of intracellular levels 
of NO by NO donors attenuates the overexpression of Giα 
protein and hyperproliferation of VSMC from SHR [38].

In conclusion, we have provided the evidence that NPR-C 
activation by C-ANP4−23 decreases Ang II-induced enhanced 
oxidative stress and hyperproliferation of VSMC involving 
ERK 1,2/JNK/p38 MAPK signaling pathways and enhanced 
expression of Giα proteins. From these studies, it can be sug-
gested that C-ANP4−23, an agonist of NPR-C, has the poten-
tial to be used as an antioxidant and anti-proliferative agent.
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