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Abstract Coronary artery disease, the leading cause of

death in the developed and developing countries, is

prevalent in diabetes mellitus with 68% cardiovascular

disease (CVD)-related mortality. Epidemiological studies

suggested inverse correlation between HDL and CVD

occurrence. Therefore, low HDL concentration observed in

diabetic patients compared to non-diabetic individuals was

thought to be one of the primary causes of increased risks

of CVD. Efforts to raise HDL level via CETP inhibitors,

Torcetrapib and Dalcetrapib, turned out to be disappointing

in outcome studies despite substantial increases in HDL-C,

suggesting that factors beyond HDL concentration may be

responsible for the increased risks of CVD. Therefore,

recent studies have focused more on HDL function than on

HDL levels. The metabolic environment in diabetes mel-

litus condition such as hyperglycemia-induced advanced

glycation end products, oxidative stress, and inflammation

promote HDL dysfunction leading to greater risks of CVD.

This review discusses dysfunctional HDL as one of the

mechanisms of increased CVD risks in diabetes mellitus

through adversely affecting components that support HDL

function in cholesterol efflux and LDL oxidation. The

dampening of reverse cholesterol transport, a key process

that removes cholesterol from lipid-laden macrophages in

the arterial wall, leads to increased risks of CVD in diabetic

patients. Therapeutic approaches to keep diabetes under

control may benefit patients from developing CVD.
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Introduction

High-density lipoprotein’s role in cardiovascular

disease

Coronary artery disease (CAD) remains the leading cause

of death in the United States and many developed and

developing countries [1]. While elevated levels of low-

density lipoprotein cholesterol (LDL-C) and triglycerides

are risk factors for developing coronary artery disease [2],

the excessive accumulation of cholesterol by macrophages

and subsequent conversion to foam cells [3, 4] sets the

stage of atherosclerosis progression. Correlation of LDL-C

to CAD necessitated statin therapy to prevent atheroscle-

rosis, primarily by inhibiting HMG-CoA reductase, a key

enzyme in the de novo cholesterol synthesis, and thereby

leading to decreased serum LDL-C [2, 5, 6]. Low levels of

high-density lipoprotein cholesterol (HDL-C) is another

prominent risk factor for developing premature

atherosclerosis [7]. Despite documented benefits of statins

[2], a good proportion of individuals still remain at a higher

risk of developing CAD [8]. At least in prior clinical

studies, it was demonstrated that HDL-C levels inversely

correlated with the risk of coronary artery diseases [8–11]

as evidenced by clinical trial results [12–14].

The increasing incidence of diabetes worldwide and

metabolic derangement and risk factors associated with

this, leads to the development of cardiovascular disease

(CVD) [15–17]. Among those, low HDL-C is characterized

as one of the features of metabolic syndrome (MetS). The

other risk factors include dyslipidemia,
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hypertriglyceridemia, hypertension, and impaired glucose

tolerance. A recent report suggests that MetS is becoming

pandemic and the number of individuals suffering from

MetS is likely to double by 2030 worldwide [18]. There-

fore, aiming to correct dyslipidemia and increase HDL-C

appeared to be a plausible therapeutic approach to reduce

the risks of developing atherosclerotic lesion formation.

Low HDL-C levels are the most common lipid abnormal-

ities observed in men with CAD [11]. ApoA-I, the major

protein component of HDL, determines the blood levels of

HDL-C [19] and promotes cholesterol efflux, which in turn

promotes reverse cholesterol transport. Therefore, raising

HDL-C was thought to have protective effects against

developing CAD. HDL’s protective role occurs through

inhibition of atherogenesis by promoting cholesterol efflux

from peripheral tissues and from lipid-laden macrophages

and arterial smooth muscle cells [20]. HDL also inhibits

atherogenesis through other pathways like its direct effect

on the vessel wall and inhibiting lipoprotein oxidation [21].

The most discussed atheroprotective function of HDL is

enhancement of reverse cholesterol transport, a process in

which HDL receives excess cholesterol from the peripheral

tissues, including macrophages in the arterial wall, which is

subsequently delivered to the liver for biliary excretion

[19] (Fig. 1). The discovery of scavenger receptor-BI (SR-

BI) [22, 23], ATP-binding cassette transporter A1

(ABCA1) [24, 25], and ATP-binding cassette transporter

G1 (ABCG1) [26] have further added to our understanding

of reverse cholesterol transport.

Key roles of ABCA1 in HDL biogenesis, RCT,

and atherosclerosis

A correlation between cholesterol efflux from macrophages

and serum apoA1 concentration was first shown by Four-

nier et al. [27], which suggested a role of apoA-I in cellular

cholesterol efflux. Later studies in a variety of cell-types

showed that other apoproteins also function as cholesterol

acceptors [28]. Marked induction in cholesterol efflux to

acceptor lipid-poor apoA-I was observed in macrophages

following treatment with cAMP [29, 30]. These observa-

tions together with other studies [31, 32] suggested the

existence of an interaction between the acceptor

apolipoproteins and the cell membrane component(s). In

addition to HDL, other players such as SR-BI [23], ABCA1

[25], and hepatic lipase [33] have been shown to be part of

the reverse cholesterol transport pathway.

Following the findings in WHAM chickens, the role of

ABCA1 gained recognition in HDL biogenesis and reverse

cholesterol transport and provided important insights into

the correlation between cholesterol efflux and circulating

HDL concentration [34]. In these mutant chickens, despite

normal secretion rates of apoA-I, they have only 5% of the

HDL compared to normal due to rapid catabolism of

secreted apoA-I if not assembled into HDL particles.

Subsequent studies confirmed the specific role of ABCA1

in the cellular cholesterol trafficking [35–37]. In the HDL

biogenesis process, the discoidal lipid-poor apoA-I particle

functions as a cholesterol acceptor and gets converted into

spherical mature HDL particle, which then delivers this

cholesterol to the liver and steroidogenic tissues via scav-

enger receptor class B type 1 (SR-B1)-mediated pathway

(Fig. 1). ABCA1 participates in the reverse cholesterol

transport by facilitating the efflux of cholesterol in an

energy-dependent manner from cells to the acceptor lipid-

poor apoA-I-particles (Fig. 2), which are then taken to the

liver for excretion as bile salts. Despite other apoproteins

being able to induce cholesterol efflux, lipid-poor apoA-I

appears to be the preferred acceptor of ABCA1-mediated

lipid efflux. Since apoA-I has been shown to specifically

bind to ABCA1 [38], the lipid-poor apoA1 (preb-HDL)
functions as an acceptor of cholesterol and phospholipid in

an ABCA1-dependent manner resulting the formation of

mature cholesterol ester-rich spherical a-HDL particles

following the action of LCAT [39]. SR-BI interacts with

the mature a-HDL and facilitates the uptake of CE from the

HDL particles (Fig. 2). Thus, any compromise in the

Fig. 1 Cholesterol transport. Apolipoprotein A-I, synthesized from

the liver and the gut, forms nascent HDL particles. The nascent

discoidal HDL particle accepts cholesterol and phospholipids from

the peripheral tissues in ABCA1-dependent manner, and gets

converted into cholesteryl ester-rich mature HDL particles. The

mature HDL particles are then taken to the liver in a process called

reverse cholesterol transport in which SR-B1 plays an important role

in docking and accepting the cholesterol esters from HDL particles.

The cholesterols delivered to the liver is converted into bile by

cholesterol 7-a hydroxylase and excreted to the gut
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function of HDL may lead to impaired cholesterol efflux

leading to increased risk of CVD (Fig. 3).

Preb-HDL particle formation and function

Pre b HDL fraction of HDL constitutes a heterogeneous

population generated de novo by interaction between lipid-

free apoA-I and ABCA1 [25] and these particles include

lipid-free apoA-I to Apo-I-lipid complexes of varying sizes

[40]. Thus, the only protein in the preb-HDL is the apoA-I

that has high affinity for lipids at its C-terminus that allows

rapid association of apoA-I with phospholipids when

preparing reconstituted HDL (rHDL) [41, 42]. The nascent

phospholipid-apoA-I complex induces cholesterol efflux

[43]. Depending upon the size of apoA-I-lipid complex,

these particles are classified into preb-HDL1 (smaller) and

preb-HDL2 (larger) particles [44]. As depicted in Fig. 2 the
lipid-poor apoA-I generated through interaction with

ABCA1gets more lipidated via ABCG1-mediated lipid

efflux. The maturation of discoidal HDL particles into

spherical HDL particles is carried out by LCAT-mediated

esterification [39]. The smaller preb-HDL, preb1, with 1-2

Fig. 2 A ABCA1-mediated cholesterol efflux. Lipid-poor discoidal

HDL particle in the circulation accepts cholesterol and phospholipids

from the tissues via ABCA1-mediated pathway. ABCA1 is a

membrane protein that facilitates the transport of cholesterol and

phospholipids from the tissues to the lipid-poor HDL particles and, as

a result, the nascent HDL particles get converted into mature

cholesterol ester-rich HDL particles capable of transporting

cholesterol to the liver for excretion. Any defect in the membrane-

associated ABCA1 protein renders them unable to mediate the

cellular cholesterol efflux resulting into the deposition of cholesterol

within the tissues. B ABCA1-and ABCG1-mediated cholesterol efflux

requires energy in the two-step HDL maturation. Lipid-poor discoidal

HDL particle in the circulation becomes lipidated by ABCA1using

ATP followed by ATP-dependent maturation of HDL by ABCG1

Fig. 3 Schematic representation of atheroprotective effects of

ABCA1. A Lipid-laden macrophages in the arterial walls set the

stage for the initiation of atherosclerosis via a variety of mechanisms.

The removal of lipids from the macrophages is therefore a

prerequisite in the process of inhibition of atherosclerosis.

B ABCA1-inducing agents and stimuli accelerate the removal of

cholesterol and phospholipids from the lipid-laden macrophages, and

reduce the risk of predisposition to atherosclerosis
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apoA-I per particle, is suggested to be more efficient in

effluxing cholesterol from cells. The steady state level of

preb1 particles is emerging as a biomarker for the protec-

tive role of HDL and an independent indicator of CAD risk

in humans [45]. Thus, the function and maturation of HDL

is linked with the function of ABCA1 that lipidates lipid-

poor apoA-I through cholesterol efflux and contributes to

the reverse cholesterol transport pathway [46], suggesting

that the formation and functionality of HDL is tightly

linked to production of apoA-I and membrane-associated

transporters, ABCA1 and G1 [47]. Any defect in these

proteins lead to dysfunctional HDL [35, 48–50].

HDL’s role in preventing LDL oxidation

While the main function of HDL that contributes to the

atheroprotective property is its ability to efflux cholesterol

from lipid-laden cells and arteries [20] (Fig. 3), the inhi-

bition of LDL oxidation by HDL is another important

property of HDL in attenuating progression of atheroscle-

rosis [51]. Thus, HDL on one hand inhibits progression of

atherosclerosis and on the other hand promotes plaque

regression. HDL acquires antioxidative property by HDL-

associated proteins such as paraoxonase I (PON1) and

apoA-I. The association of apoA-I, CETP, LCAT, and

PON1 has been shown to enhance HDL’s ability to inhibit

LDL oxidation [52, 53]. Among these associated proteins,

PON1 appears to be the most important player in confer-

ring antioxidant property to HDL particles to protect LDL

from undergoing oxidation [54]. Myeloperoxidase (MPO)

and PON1 are two key proteins in the promotion and

prevention of LDL oxidation, respectively. While MPO is

known to cause oxidative modification of lipoproteins

[55, 56], PON1 prevents oxidation of lipoproteins [57, 58].

PON1 inhibits oxLDL-induced MCP1 formation by

endothelial cells and MCP1 is known to induce recruitment

of monocytes into the subendothelial space, a process that

sets the stage for the initiation of atherogenesis. Attenua-

tion of oxidative stress in macrophages by PON1 in

transfected cells as well as in PON1 transgenic mice

[59, 60] reduces atherosclerotic lesion formation [61], and

PON1 deficiency was found to be associated with increased

macrophage oxidative stress and atherosclerosis [62]. Thus,

the ability of HDL to inhibit LDL oxidation appears to be

largely dependent on the HDL-associated protein, PON1,

which dampens the oxidative stress and confers LDL

protection.

Elevated oxidative stress in diabetes mellitus causes

oxidative modification of HDL particle and its main protein

component, apoA-I, and contributes to the generation of

dysfunctional HDL [56, 63–66]. Hyperglycemia in dys-

lipidemic non-diabetic individuals induces oxidative

modification of HDL resulting in higher oxidized HDL

[67]. HDL’s antioxidant property is impaired in Type 1

diabetic individuals [68], suggesting a distinct role of high

glucose in impairing HDL’s function as an antioxidant. It is

possible to restore HDL function by infusing the apoA-I

mimetics, the main protein component of HDL [69]. Thus,

the ratio of oxLDL to LDL and oxLDL to HDL are

important in determining the risks for developing CVD.

Indeed, Motamed et al. [70] determined in type 2 diabetes

patients that both oxLDL/LDL and oxLDL/HDL are potent

biomarkers for oxidative stress, and support earlier studies

by Girona et al. [71] who showed that oxidized lipoprotein

ratios are associated with atherosclerotic lesion formation

in patients with diabetes. Thus, decreased HDL antioxidant

capacity is important in atherosclerosis susceptibility [72].

Pathological and physiological conditions that strip off or

decrease HDL-associated proteins, PON-1 [62], apoA-I

[73–75], or LCAT [76, 77] have been shown to either

decrease HDL or make them susceptible to oxidation.

Raising circulating HDL to promote reverse
cholesterol transport and attenuate atherosclerosis
progression

Epidemiological studies suggested that raising HDL may

be beneficial in reducing the risk of CVD [14]. Several

approaches have been tried to raise HDL, including CETP

inhibition [78], LCAT activation [79, 80], and infusing

nascent HDL particles to regress atheroma volume [81].

The very first CETP inhibitor, torcetrapib [82], despite

showing massive increase in HDL concentration in

ILLUMINATE clinical trial, did not show any benefit in

outcome studies, possibly due to high aldosterone levels

[83, 84]. Another class of CETP inhibitor, dalcetrapib that

covalently binds to CETP, showed enhanced RCT in pre-

clinical models, also failed to show positive results in

cardiovascular outcome studies (dal-OUTOMES) [78].

While torcetrapib dampened endothelial function because

of increased aldosterone [83], dalcetrapib increased CRP

and thereby increased vascular inflammation [85]. These

adverse effects may have resulted in lack of positive out-

come. Macrophage-to-feces RCT involves ABCA1-de-

pendent cholesterol efflux and may be considered as a RCT

biomarker [86]. However, both elevation of CETP as well

as absence of CETP increase RCT in this assay [87], thus

making it difficult to interpret the data. Anacetrapib is

being evaluated in REVEAL clinical trial and the results

are expected to be announced in 2017 [78]. A potent and

selective CETP inhibitor, evacetrapib, with no effect on

aldosterone is being evaluated in ACCENTUATE trial for

LDL reduction and in ACCELERATE trial in patients with

high risk vascular disease [78]. Because these selective

CETP inhibitors massively reduce LDL cholesterol, the
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clinical data would require careful evaluation to determine

contribution of HDL elevation in atheroprotection.

In order to avoid chemotype and class effect of small

molecule CETP inhibitors, researchers have explored other

approaches like CETP antibody [88] and siRNA [89],

albeit only in the preclinical animal models, primarily to

show proof-of-concept of these approaches. That the ele-

vation of HDL may not necessarily impart all beneficial

effects was demonstrated by mouse genetic models over-

expressing SR-BI [90, 91] or lacking SR-BI [92]. Mice

lacking SR-BI, although had elevated HDL levels, but

showed decreased RCT in macrophage-to-feces assays and

increased atherosclerosis [92, 93]. On the other hand, mice

overexpressing SR-BI had lower HDL concentrations

compared to WT littermates and exhibited higher RCT

activity in MS-RCT assay and showed atherosclerosis

attenuation [94, 95]. It was observed that HDL function-

ality was compromised in SR-BI knockout mice despite

higher HDL concentration [96], suggesting that SR-BI is

atheroprotective and lack of SR-BI while showed increased

HDL, but appeared to be dysfunctional that contributed to

lack of atheroprotection. Further support to this hypothesis

comes from human genetic studies that identified a rare

SR-BI variant with higher HDL concentration, but

increased risks of coronary artery disease [97]. These

findings are consistent with the notion that HDL function is

more important than the HDL concentration and any factor

that dampens HDL function may have negative effects on

CVD outcome. It is quite possible that the lack of benefit in

CVD outcome studies with RVX-208 [98] and CER-001

[99] may have to do with the compositional changes in

HDL that influences HDL function in a way that does not

translate into CVD benefits. RVX-208 is identified as a

BET inhibitor [100] and in one study shown to influence

glucose metabolism [101]. A clear mechanism of action of

BET inhibitors in glucose production or excursion is likely

to add further knowledge to our current understanding and

to establish a meaningful link between BET inhibition and

diabetes.

HDL modification in diabetes mellitus impacts
reverse cholesterol transport

Individuals with diabetes have a greater risk of developing

CVD compared to non-diabetic individuals since 2/3rd of

CVD-related deaths occur in diabetic population [102]. At

least 68% of people age 65 or older with diabetes die from

some form of heart disease; and 16% die of stroke.

Therefore, adults with diabetes are two to four times more

likely to have heart disease or a stroke than adults without

diabetes. Given the projected diabetes population world-

wide and in the US in particular [103], even larger

proportion of population appears to be at risk of developing

CVD complications. Type 2 diabetes mellitus and the

cluster of pathologies characteristics of metabolic syn-

drome including insulin resistance, obesity, and high

plasma triglycerides are often associated with low HDL

[104, 105], and renders them to become dysfunctional as a

result of the formation of advanced glycation end products

[104, 106–108]. Insulin resistance contributes to low HDL

cholesterol, and low HDL may promote development of

diabetes [109], predict the development of type 2 diabetes

in prediabetics [110], and promote progression of glycemia

in those with established T2DM [111]. Individuals who do

intensive exercise tends to have high HDL and also show

improved glucose tolerance [112], suggesting a link

between low HDL and energy homeostasis. One of the risk

factors of CVD is low level of HDL [8–11] as seen in

individuals with diabetes [104, 105]. Therefore, individuals

with diabetes would have higher risks of developing CVD

[102] as a result of impaired reverse cholesterol transport

through reduced cholesterol efflux capability

[107, 113, 114]. Impairment in the RCT may increase CVD

risk [115]. Indeed, Rohatgi et al. [116] investigated the

cholesterol efflux capacity and its association with inci-

dence of atherosclerotic CVD outcome in a large popula-

tion cohort. These investigators not only measured the

concentration of HDL and number of HDL particles, they

also measured cholesterol efflux capacity at baseline in

2924 adults free from CVD from the Dallas Heart Study, a

probability-based population sample. The primary endpoint

was defined as a first non-fatal myocardial infarction, non-

fatal stroke, or coronary revascularization or death from

cardiovascular causes, all grouped as atherosclerotic CVD,

with a median follow-up period of 9.4 years. The choles-

terol efflux capacity, a new biomarker that characterizes a

key step in reverse cholesterol transport, was found to be

inversely associated with the incidence of cardiovascular

events in a population-based cohort. This finding showed

the importance of HDL function above plasma HDL

cholesterol concentration and received recognition as a

surrogate biomarker for CAD risk [117]. Thus, a correla-

tion between cholesterol efflux capability of the serum and

incidence of CVD appears to exist. However, this needed

to be validated in individuals with diabetes. Kubota et al.

[118] carried out serum cholesterol efflux studies in indi-

viduals with glucose intolerance. An inverse correlation

was found between the cholesterol efflux capability and

extent of glucose intolerance in an oral glucose tolerance

test in all subjects. Most notably, the serum cholesterol

efflux capacity was significantly lower in subjects with

glucose intolerance. This study established a link between

glucose intolerance and cholesterol efflux and demon-

strated that cholesterol efflux capacity is impaired in

Japanese-Americans newly diagnosed with glucose
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intolerance. As suggested [116], the impairment in

cholesterol efflux capacity in these individuals may con-

tribute to increased risk of atherosclerotic CVD.

One of the hallmarks of diabetes is increased glycation

end products [119–122]. Since advanced glycation end

products promote oxidative stress leading to oxidation of

physiologically important biomolecules and increased

inflammation, it is possible these biological attributes of

glycated proteins in individuals with diabetes may impact

the functionality of HDL. To address this, an elegant study

was carried out by Mechado-Lima et al. [123]. Basically,

these investigators isolated albumin from non-diabetes and

type 1 diabetes mellitus individuals and treated J774 cells

loaded with 3H-Cholesterol followed by measurement of

cholesterol efflux to the media apoA-I, HDL3 or HDL2.

Simultaneously, they also measured intracellular ABCA1

protein content and a set of genes by real-time PCR. Both

apoA-I and HDL2-mediated cholesterol efflux were found

to be impaired in macrophages treated with albumin iso-

lated from diabetic patients compared with non-diabetic

albumin-treated cells, which was attributed to intracellular

ABCA1 protein content, demonstrating that the advanced

glycated albumin isolated from poorly controlled type 1

diabetes mellitus patients alters macrophage gene expres-

sion impairing ABCA-1-mediated reverse cholesterol

transport that possibly contributes to the increased risk of

CVD in diabetic patients. A similar study by Traldi et al.

[122] with glycated human serum albumin isolated from

poorly controlled diabetic patients showed impairment of

cholesterol efflux from macrophages. They treated mouse

peritoneal macrophages with human serum albumin iso-

lated from control, type 1 and type 2 diabetic subjects and

measured gene expression related to cholesterol efflux as

well as cholesterol efflux using J774 macrophages. ABCA-

1 protein level and apoA-I mediated cholesterol efflux

reduced by 50 and 60%, respectively, in macrophages

exposed to HSA from type 1 and type 2 diabetic patients

when compared to that exposed to HSA from control

subjects. Thus, compromised RCT in diabetes mellitus

contributes to atherosclerosis.

A comprehensive clinical study in 1745 diabetic patients

and 1749 control patients from the EPIC- Norfolk study of

25,639 individuals were carried out by Saleheen et al.

[124]. These investigators quantified cholesterol efflux

capacity in 1745 individuals with reported incidence of

coronary heart disease and 1749 individuals with no car-

diovascular disorder by a widely accepted cholesterol

efflux assay using J774 cells loaded with radiolabel

cholesterol. Their studies showed a positive correlation of

cholesterol efflux with both HDL-C as well as apoA-I, the

main apoprotein of HDL that determines HDL concentra-

tion and to a great extent HDL function [19]. Interestingly,

cholesterol efflux showed an inverse correlation with

diabetes, a finding confirming earlier studies

[118, 122, 123]. Additionally, cholesterol efflux capacity

showed an inverse correlation with incidence of coronary

heart disease events in this study [124], suggesting

cholesterol efflux capacity of HDL as a predictor of coro-

nary heart disease. A parallel study by Bao et al. [125]

provided mechanistic insights into the correlation of

cholesterol efflux capacity and type-2 diabetes mellitus.

Along with serum cholesterol efflux, these researchers

measured expression of CYP7A1, ABCG5, and LXR-beta

in the peripheral blood monocytes by realtime PCR and

Western blot. Out of 30 type-2 diabetes patients recruited

in this study, half of them had complicated heart disease.

Fifteen normal control individuals with no diabetes were

recruited for comparison. Only CYP7A1 mRNA and pro-

tein showed correlation with the cholesterol efflux capac-

ity. A significantly lower rate of macrophage cholesterol

efflux was noticed in patients with type 2 diabetes com-

pared to normal control subjects. Since a positive correla-

tion between cholesterol efflux capacity and CYP7A1

existed, it was concluded that the reduction in cholesterol

efflux capacity in type 2 diabetes patients is associated with

the down-regulation of CYP7A1 expression.

To address impaired cholesterol efflux capacity in type 2

diabetic patients, a quite different approach was undertaken

by Apro et al. [126]. These researchers isolated HDL from

interstitial fluid as well as from peripheral plasma from

type 2 diabetes patients (n = 35) and non-diabetic control

individuals (n = 35). Both in normal control individuals as

well as in diabetic patients, the cholesterol efflux assay

showed lower efflux capacity in interstitial fluid as com-

pared to the peripheral plasma. Whereas, plasma efflux

capacity in type 2 diabetic patients were 10% lower com-

pared to normal control individuals, the interstitial fluid

cholesterol efflux capacity in type 2 diabetic patients

showed a 28% reduction, suggesting that interstitial fluid

cholesterol efflux capacity in type 2 diabetes mellitus is

severely impaired and may contribute to their increased

risk of CAD. In a mouse model of streptozotocin-induced

diabetic nephropathy, Tsun et al. [127] studied the role of

ABCG1 and SR-BI in renal cellular cholesterol efflux by

evaluating expression of cholesterol transporters. In vitro

studies established hyperglycemia-induced reduction in

cholesterol transporters, ABCA1, G1, and SR-BI. Similar

reduction in these three cholesterol transporters were

observed in the kidney of streptozotocin-induced mouse

model of diabetic nephropathy, suggesting that cholesterol

efflux in kidney is compromised in type 1 diabetic condi-

tions, leading to lipid accumulation in the kidney.

In terms of what makes HDL dysfunctional that damp-

ens cholesterol efflux capacity, among other factors, post-

translational modification of HDL has been suggested as

one of them [128]. Although other posttranslational
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modifications of HDL in diabetic patients have been noted

[129], the oxidative modification of HDL particle and its

main protein component, apoA-I, appears to be the primary

cause of rendering HDL dysfunctional [56, 63–66]. Poor

glycemic control in type-1 diabetes is associated with

accelerated oxidative damage to apolipoprotein (apo) A-I

[130] and advanced glycated albumin diminishes anti-in-

flammatory properties of HDL [131, 132]. Reconstituted

HDL (rHDL) shows anti-inflammatory activity in humans

[133–135]. ABCA1-mediated cholesterol efflux capability

of HDL is compromised in type 2 diabetes patients [136],

possibly caused by the oxidatively damaged apoA-I and

increased inflammation [137, 138] (Fig. 4). Since antiox-

idative and anti-inflammatory properties of HDL are

impaired in diabetics [138], this may contribute to HDL

dysfunction [139]. HDL undergoes modification and mul-

tiple structural changes in an inflammatory environment

and transforms normal functional HDL into ‘‘acute phase

HDL’’ enriched in free fatty acids, triglycerides, serum

amyloid A (SAA), and decrease anti-inflammatory

enzymes, including paraoxanase [56, 64, 140–144]. In

addition, inflammation induces secretion of myeloperoxi-

dase (MPO), which has been shown to modify

apolipoprotein A-I and impair its ability to accept choles-

terol [64, 66, 142, 145–147]. MPO-mediated oxidation of

apoA-I makes it proinflammatory [148]. Tryptophan sub-

stitution in apoA-I renders it resistance to MPO oxidation

[149]. All these studies suggest that oxidative stress-in-

duced HDL modification increases inflammation and con-

tributes to HDL dysfunction.

Hyperglycemia causes increased flux through the polyol

pathway, formation of advanced glycation end products,

activation of protein kinase C isoforms, and increased

hexosamine pathway flux, all of which may contribute to

increased oxidative stress [150–152]. Excessive free fatty

acids delivered to nonadipose tissues can lead to reactive

oxygen species (ROS) formation through a number of

pathways, including oxidative phosphorylation, activation

of NADPH oxidase, and alterations in mitochondrial

structure leading to ROS production [153–155]. In addition

to evidence for activation of these pathways in cultured

endothelial cells, human studies support the notion of

increased systemic oxidative stress in diabetic subjects in

whom increased circulating levels of adhesion molecules

and oxidized lipids correlate with increases in HbA1c and

hypertriglyceridemia [156]. The effects of oxidative stress

in diabetes on both the vascular wall and lipoproteins in the

circulation may promote atherogenesis. Jaleel et al. [130]

provided intriguing evidence that poor glycemic control in

type-1 diabetes is associated with accelerated oxidative

Fig. 4 Oxidative stress and inflammation impair reverse cholesterol

transport in DM. Advanced glycation products and reactive oxygen

species together with inflammation in DM induce MPO and decrease

PON1 leading to oxidative modification of the main protein

component of HDL, apoA-I. The resulting dysfunctional and

proinflammatory HDL impacts immune response in macrophages

through TLR2/4 by repressing the transcription factor ATF3, and

impairs ABCA1-mediated cholesterol efflux leading to cholesterol

accumulation and oxidation within macrophages entrapped in the

subendothelial space. Additionally, oxidative environment in DM

induces acute phase proteins like haptoglobin and CRP leading to

impaired RCT and increased vascular inflammation that promote lipid

deposition in arterial wall
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damage to apoA-I. These investigators labeled newly

synthesized proteins with 13C-phenylalanine in human

subjects and analyzed various plasma apoA-I isoforms by

two-dimensional gel separation and mass spectrometry.

Newly synthesized forms of the protein containing the

propeptide and in more mature cleaved forms were ana-

lyzed. The older forms of apoA-I accumulated significantly

more, suggesting damage of apoA-I as a result of a variety

of reactions, including deamidation, oxidation, and car-

bonylation of amino acids that likely contribute to their

altered migration in isoelectric focusing.

Given that apoA-I is a major component of HDL that

protects against atherosclerosis by facilitating the removal

of cholesterol from macrophages in the arterial wall,

oxidative damage of apoA-I [130] may impair HDL

function. Indeed, recent studies demonstrated the presence

of significant amounts of oxidation products of apoA-I in

human atherosclerotic plaques [142, 157]. Additionally,

Kataoka et al. [158] showed that myeloperoxidase enzyme

that participates in the oxidation of apoA-I, predict accel-

erated progression of atherosclerosis in diabetics. Simi-

larly, Shao et al. [159] quantified site-specific oxidation of

apoA-I and measured cholesterol efflux in the HDL iso-

lated from control subjects as well as subjects with

stable coronary artery disease or acute coronary syndrome.

The two groups of patients, CAD and ACS, had higher

levels of chlorinated tyrosine 192 and oxidized methionine

148 compared to control subjects, clearly pointing to the

importance of oxidatively damaged apoA-I in rendering

HDL dysfunctional (Fig. 4). Interestingly, these research-

ers found no differences in the MPO level between the

groups. Subjects with CAD and ACS showed less choles-

terol efflux capacity compared to control group. The con-

centration of chlorinated tyrosine 192 and oxidized

methionine 148 was inversely correlated to ABCA1-me-

diated cholesterol efflux capacity and positively with the

extent of atherosclerosis. This suggests that chlorinated

tyrosine and oxidized methionine in circulating HDL may

serve as a useful marker of the atherosclerotic CVD. Thus,

these studies provide mechanistic insight into the etiology

of the oxidative modification of apoA-I, and how the

functionality of HDL is linked to increased cardiovascular

risks in diabetes. Lu et al. [160] extended this work in

diabetic patients and showed that the levels of apoA-I

nitration and chlorination were increased, and apoA-I

concentrations as well as cholesterol efflux activity were

significantly decreased. Specifically, they showed that Tyr

192 was the major nitration and chlorination site in apoA-I

from diabetic serum. In addition to decreased cholesterol

efflux capacity in patients with diabetes, these investigators

further showed loss of antiapoptotic properties of lipopro-

teins. These findings were corroborated by a recent study

by Chen et al. [161] who measured nitrated-apoA-I (NT-

apoA-I) in 777 patients with CAD. Additionally, they

measured cholesterol efflux capacity in diabetic (n = 327)

and non-diabetic (n = 450) individuals. Higher ratio of

NT-apoA-I/apoA-I in diabetic patients suggested higher

oxidative stress. Indeed, thiobarbituric acid-reactive sub-

stances and c-reactive protein levels in diabetes mellitus

were independent predictors of elevated NT-apoA-I/apoA-I

ratio. Thus, oxidative stress in patients with diabetes

leading to oxidative modification of apoA-I renders HDL

dysfunctional in carrying out cholesterol efflux function,

thus linking dampened cholesterol efflux to coronary artery

disease risk in diabetic patients (Figs. 3, 4).

HDL and apoA-I modulate AMPK function

and reverse cholesterol transport

Given the higher prevalence of cardiovascular morbidity

and mortality in diabetics, this is an important area to pay

attention to. Recent cell-based studies suggest that HDLmay

modulate plasma glucose through both insulin-dependent

[162, 163] and -independent and AMPK-mediated mecha-

nisms [164]. The ATP-binding cassette transporter A1

(ABCA1) has been shown to modulate insulin secretion

[163], and HDL can reverse the deleterious effects of oxi-

dized low-density lipoprotein (LDL) on insulin secretion by

pancreatic beta cells [162]. In addition, HDL may also

increase glucose disposal through direct effects in skeletal

muscle, the major site of glucose disposal in the body. It was

reported that HDL and apoA-I activate the key metabolic

regulatory enzyme AMP-activated protein kinase (AMPK)

in endothelial cells and are critical for the nitric oxide-me-

diated vasodilatory effects of HDL [165]. Infusion studies

with recombinant and reconstituted HDL (rHDL) demon-

strated modest effects on coronary plaque morphology and

volume [166, 167] and also showed improved endothelial

function in type 2 diabetes mellitus [168].

Diabetic individuals often have higher non-esterified

fatty acids that may impact ABCA1-mediated cholesterol

efflux. Indeed, unsaturated fatty acids inhibit ABCA1-

mediated cholesterol efflux [169]. Given the elevated levels

of fatty acids in diabetics [170], this finding is relevant in

explaining, at least in part, the dampening of cholesterol

efflux capability in diabetic individuals. This together with

enhanced apoB secretion by fatty acids as a result of

impaired presecretory degradation of apoB [171–173]

contributes to the CVD risks in diabetic individuals

[124, 174–176]. It therefore appears that ABCA1 could be

important not only in the inhibition of progression of

atherosclerosis [25, 34, 177–179], but also in metabolic

diseases [136]. Wang and Oram [169] studied the effects of

fatty acids, ranging in carbon chain length from 8 to 20, on

cholesterol and phospholipid efflux in murine J774 and

RAW 264.7 cells. The saturated fatty acids, palmitate and
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stearate, neither inhibited ABCA1-mediated cholesterol

and phospholipid efflux nor they influenced ABCA1 pro-

tein. However, unsaturated fatty acids, oleate and linoleate,

reduced cholesterol efflux as well as ABCA1 protein in a

dose-dependent manner. Interestingly, oleate and stearate

did not alter ABCA1 mRNA. As determined from ABCA1

turnover studies, it was concluded that unsaturated fatty

acids enhanced the degradation of ABCA1 protein. These

authors investigated the mechanism of fatty acid-mediated

degradation of ABCA1 and carried out elegant studies to

demonstrate that unsaturated fatty acids phosphorylate and

destabilize ABCA1 through a phospholipase D2 pathway

[180]. Further studies revealed that protein kinase C delta

pathway is also involved in this process [181]. Thus, it

appears that the triggering of the ABCA1 degradation by

fatty acids possibly occurs via a mechanism distinct from

the one observed with the cAMP withdrawal [38].

Although the role of AMPK in attenuating diabetes

through glucose catabolism and energy balance has been

well studied [182–184], the role of apoA-I on energy and

glucose metabolism was first investigated by Han et al.

[164] in C2C12 myocytes. These investigators reported

AMPK phosphorylation at Thr-172 following treatments

with apoA-I, and this effect was found to be specific to

apoA-I protein since treatment with apoB did not result

into AMPK phosphorylation. ApoA-I also increased glu-

cose uptake by C2C12 cells like AMPK activators [185].

These effects were similar to AMPK activation by adipo-

nectin, leading to increased glucose uptake [186]. Exten-

sion of this study in apoA-I-/- mice further supported the

hypothesis that apoA-I is involved in glucose and energy

metabolism, since apoA-I-/- mice had higher circulating

glucose and impaired glucose tolerance compared to the

WT littermates; increased HDL in apoA-I Tg mice pro-

vided protection against diet-induced hyperglycemia

through increased glucose catabolism [187]. Based on

these findings, Drew et al. [109] extended these studies in

human primary skeletal muscle cells isolated from type 2

diabetic patients infused with either a placebo or recon-

stituted HDL. There were reductions in the fasting glucose

in the rHDL treated group compared to the placebo group.

In cultured primary human skeletal muscle cells, apoA-I

increased glucose uptake by 50%, which was associated

with the activation of AMPK as measured by the AMPK

phosphorylation at Thr-172. To further gain insights into

the mechanism of apoA-I/HDL-mediated AMPK activa-

tion, these investigators examined two primary pathways of

AMPK activation, i.e. LKB1 and CaMKK, the two

upstream kinases known to phosphorylate AMPK

[184, 188, 189]. They found that HDL-mediated induction

of AMPK phosphorylation occurs via CaMKK-mediated

pathway, since the CaMKK inhibitor STO609 abolished

HDL-mediated phosphorylation of AMPK. Interestingly,

the HDL-mediated induction of skeletal muscle glucose

uptake occurred in ABCA1-dependent manner, since

ABCA1 blocking antibody inhibited apoA-I and HDL-

mediated uptake of glucose [109].

Low-grade inflammation in diabetes impairs reverse

cholesterol transport

Atherosclerosis has been characterized as a chronic

inflammatory response to LDL oxidation and deposition in

arteries, but the mechanisms linking cholesterol accumu-

lation in macrophage foam cells to inflammation are not

completely understood. One of the mechanisms to protect

cells from free cholesterol and oxysterol-induced toxicity

during progression of atherosclerosis is the macrophage

cholesterol efflux [86, 94, 190, 191]. During the cholesterol

efflux process, the ATP-binding cassette transporters

ABCA1 and ABCG1 are important players responsible for

the major part of macrophage cholesterol efflux to HDL in

macrophage foam cells [192]. Recent studies have shown

that the sterol efflux activities of ABCA1 and ABCG1

modulate macrophage expression of inflammatory cytoki-

nes and chemokines as well as lymphocyte proliferative

responses [193, 194]. Accumulating evidence suggests that

by promoting cholesterol and oxysterol efflux, HDL regu-

lates all these cellular responses in macrophage foam cells

[192]. Indeed, several studies demonstrated that native and

reconstituted HDL, apoA-I and apoA-I mimetic peptides,

all show anti-inflammatory activity [133, 135, 195–198].

Inflammation modulates HDL composition and function

[196, 199] and impairs reverse cholesterol transport

[139, 200], and infusion of reconstituted HDL during

human endotoxemia exerts anti-inflammatory activity

[133]. Thus, native apoA-I and HDL-C show anti-inflam-

matory activities leading to enhancement in reverse

cholesterol transport [201]. Indeed, increased inflammation

was observed in mice lacking apoA-I [202], suggesting the

role of apoA-I as an anti-inflammatory agent. Thus, accu-

mulating evidence suggests an anti-inflammatory role for

native unmodified HDL, but becomes inflammatory when

it undergoes modifications [148] (Figs. 4, 5).

Two proteins, ABCA1 and ABCG1, important in

reverse cholesterol transport play distinct roles in macro-

phages immune response. In macrophages lacking ABCA1

or ABCG1, TLR4 cell surface expression increased, albeit

ABCG1 deficiency showed greater macrophage inflam-

matory response compared to ABCA1 deficiency [203].

These studies demonstrate that the primary function of

HDL and ABC transporters in cholesterol efflux and

reverse cholesterol transport are linked to anti-inflamma-

tory and immunosuppressive functions of HDL. A recent

study [204] demonstrates that dysfunctional HDL from

patients with chronic kidney dysfunction (CKD) showed
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unfavorable physiological functions by increasing super-

oxide dismutase production and reducing NO. These

unfavorable activities were found to be occurring through

toll-like receptor-2/4 (TLR-2/4). The HDL isolated from

healthy counterpart did not show these unfavorable activ-

ities. Thus, the anti-inflammatory properties of HDL is

linked to immune response through a number of mecha-

nisms [205, 206], leading to suppression of Toll-like

receptor 2 (TLR2) signaling [207] and suggesting that the

HDL-mediated cholesterol efflux inhibits cellular inflam-

matory signaling, including inhibition of MCP-1 expres-

sion, a key player in monocyte transmigration. The

molecular mechanisms of how HDL can modulate

inflammation, particularly in immune cells such as mac-

rophages, were investigated by De Nardo et al. [208].

These researchers found that the transcriptional regulator

ATF3 in macrophages downregulates the expression of

Toll-like receptor (TLR)-induced proinflammatory cytoki-

nes in an HDL-dependent manner, since the protective

effects of HDL against TLR-induced inflammation were

entirely dependent on ATF3. In LPS-induced animal

model, Dandekar et al. [209] demonstrated the role of

cAMP-responsive element-binding protein hepatic-specific

(CREBH) and TNF receptor-associated factor 6 (TRAF6)

in mediating TLR signaling in HDL-dependent manner,

suggesting a mechanism of how HDL is involved in

inflammation through toll-like receptors. These findings

may explain the broad anti-inflammatory and metabolic

actions of HDL and provide the basis for predicting the

success of new HDL-based therapies.

Lipid raft in the plasma membrane appears to be a key

regulator of macrophage inflammation, since one of the

mechanisms of enhanced inflammatory responses in

ABCA1 or ABCG1 deficiency appears to be through

increased lipid raft formation in macrophages [210–213].

That cholesterol efflux is linked to immune response in

ABCA1 or ABCG1 deficient macrophages was further

demonstrated by treatment with cyclodextrin that removes

cholesterol and attenuates inflammatory response. It was

shown [212] that the modulation of membrane cholesterol

by cholesterol efflux in ABCA1 or ABCG1 deficiency

increased TLR4 cell surface expression.

Recent studies by Bensinger et al. [214] reported that

Liver X Receptor (LXR) signaling, that promotes choles-

terol efflux via ABCA1 and G1 stimulation, is involved in

T-cell lymphocyte proliferation in an ABCG1-dependent

fashion. Mice lacking apoA-I, an important component of

cholesterol efflux, also stimulates T-cell proliferation and

activation and some features of autoimmunity when

backcrossed into an LDL receptor-deficient background

[215]. These studies strongly suggest that HDL-mediated

cholesterol efflux via LXR-regulated ABC transporters

plays a key role in dampening lymphocyte proliferation

and activation. Regulatory T cells (Tregs) express SR-B1

Fig. 5 Proposed working hypothesis. The biologic sequence of

events that leads to HDL dysfunction is shown here. HDL performs

its normal function by removing cholesterol from lipid-laden

macrophages in the arterial wall, thus causing lesion regression. In

diabetic mellitus, high oxidative environment causes inflammation in

macrophages entrapped in the subendothelial space resulting in the

secretion of proinflammatory cytokines and acute phase proteins like

haptoglobin and CRP. The dysfunctional HDL impairs cholesterol

efflux from lipid-laden macrophages. Treatment with antidiabetic

drugs attenuates hyperglycemia which in turn reduces AGE, oxidative

stress, and inflammation, and makes HDL functional and capable of

promoting cholesterol efflux. This results in attenuating vascular

inflammation leading to atherosclerotic plaque regression

176 Mol Cell Biochem (2018) 440:167–187

123



[216], which facilitates the uptake of HDL from microen-

vironment. A recent study demonstrates that LDL is not

taken up by Treg, and HDL-derived fatty acids serve as

fuel for the survival of Tregs [217]. Additionally, these

authors further showed that mitochondrial activity was

increased in the Tregs that internalized HDL, but not those

that did not [217]. Thus, HDL plays an important role in

the survival of Tregs, leading to the suppression of

proatherogenic effector T cells [218].

To confirm if HDL function is compromised in inflam-

matory disease, Charles-Schoeman et al. [219] isolated

HDL from 40 patients with Rheumatoid Arthritis patients

and 40 age and sex matched healthy controls, and found

that cholesterol efflux, HDL’s antioxidant function, and

paraoxanase-1 (PON-1) activity in RA patients with high

disease activity had significantly decreased ability to pro-

mote cholesterol efflux compared to HDL from patients

with very low disease activity. This was further substanti-

ated by the findings that there was higher plasma MPO

activity in patients with dysfunctional HDL. Additionally,

cholesterol efflux activity of HDL correlated significantly

with its antioxidant activity.

Another study was carried out by Field et al. [220] in

patients with Crohn’s disease, which is a tumor necrosis

factor-alpha (TNF-alpha)-driven gastrointestinal tract

chronic inflammatory condition. These investigators

reported dampened basolateral efflux of cholesterol to

apolipoprotein A1 (apoA1) through TNF-alpha mediated

decreases in HDL cholesterol levels by modulating the

expression of intestinal ABCA1 and cholesterol efflux to

apoA1. A different approach was pursued by de la Llera

Moya et al. [199] to assess the effect of inflammation on

HDL and RCT related parameters. They employed low-

dose human endotoxemia that induces HDL remodeling

through depletion of pre-beta1 HDL particles. Endotox-

emia resulted in reduced capacity of HDL to efflux

cholesterol. The HDL fraction, isolated following endo-

toxemia, had reduced capacity to efflux cholesterol in vitro

from SR-BI and ABCA1, but not ABCG1 transporter cell

models. Thus, inflammatory conditions lead to dysfunc-

tional HDL. Autoimmune disease, systemic lupus erythe-

matosus (SLE), patients have elevated inflammation and

have a higher prevalence of subclinical atherosclerosis and

higher risk of CV events. The factors causing cardiovas-

cular risks in these patients were investigated by Ammirati

et al. [221]. They found that among CV risk factors, only

the two important players in the cholesterol efflux, HDL

level and ABCA1-dependent cholesterol efflux capability,

were markedly reduced, whereas the common carotid

artery intima-media thickness (CCA-IMT) significantly

increased in SLE patients compared to controls. These and

other findings discussed above suggest that reduction in

RCT capability, as a result of dysfunctional HDL or ABC

transporters, in inflammatory conditions lead to impaired

cholesterol efflux and increased risk of CV. In diabetic

patients, both oxidative stress and inflammation are ele-

vated that lead to HDL modification and impairs RCT

function leading to increased risks of CVD.

HDL-associated proinflammatory protein,

haptoglobin, is associated with diabetic

atherosclerosis

Haptoglobin (Hp) is an acute phase hemoglobin (Hb)

binding serum protein primarily synthesized in the liver

[222–224]. Hp binds to free Hb in the serum and forms Hp/

Hb complex. The endocytosis of this Hp/Hb complex by

monocyte-macrophages is mediated by the scavenger

receptor CD163 [225, 226]. The main function of hap-

toglobin is in infection and inflammation, where it acts as a

natural antagonist for receptor-ligand activation of the

immune system [224]. The level of haptoglobin increases

in proinflammatory conditions [224, 227]. It is now well

established that HDL function is impaired in proinflam-

matory conditions [133, 139, 202, 228]. Both the anti-in-

flammatory properties as well as the cholesterol efflux

capabilities of HDL are significantly dampened [193, 229].

Increased levels of haptoglobin in proinflammatory con-

dition preferentially associates with proinflammatory HDL

in animal models as well as in humans [230, 231]. Elevated

level of haptoglobin has been observed in humans with

CVD [232–234], and HDL isolated from mice lacking this

protein show anti-inflammatory activity compared to WT

mice [231]. These findings together with the observations

that the endocytosis of Hp/Hb complex [235, 236] is

mediated by a receptor, CD163, exclusively expressed in

the macrophages [225, 226], and the involvement of

macrophages and inflammatory cytokines in the progres-

sion of atherosclerosis [237], suggest a potential role of Hp

in macrophage cholesterol efflux and the progression of

atherosclerosis [238–240]. Indeed, HDL-raising agent in

apoE-deficient mice decreases haptoglobin, which was

associated with attenuation of aortic lipid deposition [241].

Several studies carried out in diabetic patients with CVD

show a strong association between diabetic CVD and

haptoglobin [233, 234].

Hp gene exists as Hp-1 and Hp-2 alleles and the phe-

notypes show important molecular heterogeneity. In indi-

viduals with DM, the Hp2-2 genotype is suggested as a

contributor for increased cardiovascular events compared

with Hp1-1 or Hp2-1 genotype [233, 234]. Indeed, hap-

toglobin genotype was found to be associated with com-

promised reverse cholesterol transport in Hp2 diabetic

mice because of increased oxidative stress [242]. Levy

et al. [234] tested this hypothesis in a case–control sample

from the Strong Heart study, a population-based
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longitudinal study of CVD in American Indians. These

investigators determined haptoglobin phenotype in 206

CVD cases and 206 matched controls and followed-up for

6 years. In multivariate analyses, DM patients with hap-

toglobin phenotype were highly statistically significant and

independent predictor of CVD. The odds ratio of having

CVD in DM with the haptoglobin 2-2 phenotype was found

to be 5.0 times greater than in DM with the haptoglobin 1-1

phenotype. An intermediate risk of CVD was associated

with the haptoglobin 2-1 phenotype. In another study,

Lioupis et al. [243] investigated iron burden of carotid

atherosclerotic plaques removed from patients treated for

carotid disease and examined correlation with haptoglobin

genotype and common cardiovascular risk factors. Twenty

seven plaques from diabetic patients (16 with the Hp 1-1 or

2-1 genotype and 11 with the Hp 2-2 genotype) and 43

plaques from non-diabetic patients (20 with the Hp 1-1 or

2-1 genotype and 23 with the Hp 2-2 genotype) were

evaluated. They found that the density of Perl’s iron stain

was significantly higher in plaques from diabetic patients

with the Hp 2-2 group compared with that in the Hp 1-1 or

2-1 group. The correlation and regression analysis of all

possible clinical and laboratory predictors of intraplaque

iron deposition showed that four factors were indepen-

dently associated with intraplaque iron deposition; these

were male gender, serum homocysteine, Hp 2-2 genotype

and diabetes mellitus treatment. To further corroborate the

relation between Hp genotype and CV risks in DM, Pur-

ushothaman et al. [244] carried an elegant study in 40

diabetic patients. These patients were genotyped for hap-

toglobin allele, Hp-1 and Hp-2 and after atherectomy,

several parameters like plaque hemorrhage, hemoglobin-

binding protein, CD163, and heme-oxygenase 1 were

measured. To evaluate oxidative and inflammatory pattern,

these investigators also quantitated myeloperoxidase, IL-

10, and VCAM1. Consistent with earlier findings, it was

reported that plaques with Hp2-2 allele had increased

hemorrhage, increased heme-oxygenase, decreased CD163

protein, increased MPO, and decreased IL-10. Some of

these unfavorable changes appear to be associated with

oxidative stress, since patients with Hp2-2 genotype had

greater oxidative stress [245]. Thus, these independent

studies demonstrated that haptoglobin, an HDL-associated

proinflammatory protein and a risk factor for CVD, is

elevated in diabetes; especially the Hp2-2 allele show

stronger correlation with CVD risk factors.

Conclusion

As a working hypothesis, the biologic sequence of events

that leads to HDL dysfunction is shown in Fig. 5. HDL

performs its normal function by removing cholesterol from

lipid-laden macrophages in the arterial wall, thus causing

lesion regression. In high oxidative environment, the

inflamed macrophages entrapped in the subendothelial

space secrete proinflammatory cytokines and haptoglobin,

and activates wnt signaling through LRP5/6 as a result of

uptake of aggregated LDL [246] in hyperlipidemic condi-

tions. Wnt/b-catanin signaling has been shown to induce

proliferation of vascular smooth muscle cells [247], which

may lead to narrowing of artery lumen and eventually

causing occlusion. High oxidative stress, diabetes, and

proinflammatory proteins, including acute phase proteins

like haptoglobin and CRP cause dysfunctional HDL,

leading to dampening of cholesterol efflux capability and

impaired arterial cholesterol removal. Treatments that

attenuates hyperlipidemia, oxidative stress and inflamma-

tion, at least in animal models of diabetes and hyperlipi-

demia, improves HDL function [248] and promotes

removal of cholesterol from lipid-laden macrophages

entrapped in the subendothelial space leading to

atherosclerotic lesion regression [248]. Thus, systemic

metabolic disturbances of diabetes, including hyper-

glycemia and hyperlipidemia, likely play a central role in

the pathogenesis of diabetes-associated atherosclerosis

through the generation of oxidative stress and inflamma-

tion, and aggressive treatment of diabetes mellitus offer

promise to reduce progression of CVD in this highly sus-

ceptible group of individuals with diabetes.
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