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Abstract The proliferation-promoting effect of neuropep-

tide Y (NPY) always functions in low-serum-cultured

vascular smooth muscle cells (VSMCs), and the pheno-

typic switch of VSMCs is regulated by concentrations of

serum. Whether the property of the NPY proliferative

effect in VSMCs relies on phenotype of VSMCs is unclear.

We aimed to explore the role of NPY on proliferation of

different VSMC phenotypes in the pathogenesis of

atherosclerosis. By stimulating A10 cells with 200 nM

NPY in 0.5 or 10% serum, 3H-thymidine and 5-ethynyl-20-
deoxyuridine (EdU) and CCK8 measurements were used to

detect VSMC proliferation. RT-PCR and Flow cytometry

were performed to detect the factors involved in different

properties of the NPY proliferative effect in VSMCs.

Instead of facilitating proliferation, NPY had no significant

effect on the growth of VSMCs when cultured in 10%

serum (VSMCs stayed at synthetic states). The underlying

mechanism may be involved in down-regulation of Y1

receptor (P\ 0.05 vs. Vehicle) and up-regulation of

Geminin (P\ 0.05 vs. Vehicle) in 10% serum-cultured

VSMCs co-incubated with 200 nM NPY. Besides, modu-

lation of Geminin was effectively blocked by the Y1

receptor antagonist. The stimulation of NPY on prolifera-

tion of VSMCs could be a double-edged sword in the

development of atherosclerosis and thus provides new

knowledge for therapy of atherosclerosis.
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Introduction

Atherosclerosis, a major form of cardiovascular disease

that is one of the leading causes of mortality all over the

world, involves complicated molecular and cellular

responses including endothelial dysfunction, inflammation,

proliferation, and matrix alteration. Notably, it has been

demonstrated previously that VSMC proliferation plays

critical roles in atherosclerosis and is linked to other

pathological processes [1, 2]. Different cell types such as

endothelial cell, platelets, and inflammatory cells release

growth factors and cytokines to respond to the lesions of

atherosclerosis, which will promote the changes of VSMCs

from contractile type (differentiation) to synthetic type

(dedifferentiation). Indeed, proliferation potential and

migration rates are higher in synthetic than contractile

VSMCs [3–5]. Thus, emerging strategies are required to

develop therapeutics that could prevent the aberrant phe-

notypic switch and proliferation of VSMCs toward multi-

ple mediators during atherosclerosis.

NPY, a 36-amino acid peptide neurotransmitter, is an

endogenous vasoconstrictor and is released in response to

direct stimulation of cardiac sympathetic neurons in the

periphery [6, 7]. Besides, NPY has been shown to

remarkably aggravate the proliferation of VSMCs by

binding with Y1 receptors and promote atherosclerosis
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[8, 9]. An intriguing observation is that the proliferation-

promoting effect of NPY always functions in low-serum-

cultured VSMCs [10–12]. Wilson and Reusch [13, 14]

found that in a serum-free media, expression of smooth

muscle myosin heavy chain (SM MHC) increased in

VSMCs. SM MHC is an isoform of SM contractile proteins

SMC, whose stable production is associated with the con-

tractile phenotype of VSMC and rapidly degrades in the

synthetic phenotype [5, 15]. It has also been proved that

factors contained in serum could be able to weaken the

contractile response of rat aortic vessels [16]. In that case,

we can confirm that the phenotype of VSMCs are regulated

by concentrations of serum. Our previous study showed

that silence of Geminin, an inhibitor of DNA replication

licensing and cell cycle, could promote DNA synthesis and

proliferation of VSMCs [17]. Most importantly, our group

also found that over expression of Geminin stimulated

phenotypic transformation of VSMCs from contractile type

to synthetic type.

Given that the dynamic changes of VSMC phenotype

were mediated by multiple factors in development of

atherosclerosis, we aimed to determine whether the

enhancing effect of NPY on the proliferation of VSMCs

was affected by its aberrant phenotypic switch during

atherosclerosis and investigate the potential mechanisms.

Methods

VSMC culture

The thoracic aortic smooth muscle cell line of rats, A10

cells (ATCC, USA), were cultured in Dulbecco’s modified

essential medium (DMEM) (Gibco, USA) supplemented

with 10% fetal bovine serum (FBS) (Gibco, USA) and a

1% penicillin/streptomycin/epidermal growth factor I in a

humidified atmosphere (5% CO2, 95% air). The mor-

phology and protein markers were examined as indicated in

Zhang et al. [17]. Cells from passages 3 through 6 were

used in all experiments. In experiments with NPY Y1

receptor antagonist BIBO3304, cells were incubated with

indicated concentration of BIBO3304 for 1 h prior to NPY

stimulation.

CCK8 assay

A10 cells were seeded onto with 5000 cells/well and grown

in 10% serum for 24 h. After serum-starved for 24 h, A10

cells were incubated in four groups for 24 h: 0.5% serum,

0.5% serum ? 200 nM NPY, 10% serum, 10% ser-

um ? 200 nM NPY. Then 20 lL CCK8 (cell count kit,

Boster, Wuhan, China) was added to each group for 4 h,

followed by light absorbance measurement at a wavelength

of 450 nm.

Measurement of EdU incorporation

After plated onto 96-well plate and starved as CCK8 assay,

A10 cells were stimulated with or without 200 nM NPY

(Novoprotein, Shanghai, China) for 24 h in 10% serum. At

the same time, different concentrations of BIBO3304 were

used to treat A10 cells cultured with 10% serum and NPY

for 24 h. Next, A10 cell proliferation was determined by

the 5-ethynyl-20-deoxyuridine (EdU) Cell Proliferation

Assay Kit (Ribobio, Guangzhou, China), which was per-

formed according to the manufacturer’s protocol. The cell

nuclei were stained with DAPI (Beyotime), and the

incorporated EdU in A10 cells was detected by fluores-

cence microscopy.

RNA isolation and real-time PCR

Total RNA was extracted from the cultured cells using

RNAiso Plus (Takara, Japan) according to the manufac-

turer’s instructions. Total RNA was reverse transcribed

using PrimeScriptTM RT reagent Kit (Perfect Real Time)

(Takara, Japan), and Real-time PCR was performed using a

CFX96 TouchTM (Bio-rad, USA) with One-Step SYBR�

PrimeScriptTM RT-PCR Kit (Perfect Real Time) (Takara,

Japan). GAPDH served as a housekeeping gene. Cycling

conditions were as follows: 30 s at 95 �C, (5 s at 95 �C and

30 s at 60 �C) 9 40. Melting curve analysis was performed

to confirm the exclusive amplification of the expected PCR

product. The values for each target gene were calculated as

2DDCt values (Table 1).

Cell cycle analysis

A10 cells were seeded in the 6-well plates with 500,000

cells/well and incubated and grown in 10% serum for 24 h.

After starvation for 24 h, the cells were cultured in 10%

serum with administration of 200 nM NPY at 0, 12, and

24 h.Then, cells were fixed in 70% ethanol and incubated

overnight at -4 �C. The cell cycle was analyzed by pro-

pidium iodide (PI) and examined by a flow cytometer

(Beckman Coulter, USA).

Data analysis

The statistical significance of differences between groups

was assessed via Student’s t tests of comparison, and

P values less than 0.05 were considered to be statistically

significant. Statistical analyses were conducted using the

GraphPad Prism 6.0 software (GraphPad Software, Inc.).
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Results

Effects of different serum concentrations on NPY-

mediated proliferation of VSMCs

To determine whether NPY promoted the proliferation of

low-serum-cultured VSMCs, the A10 cells were incubated

in 0.5% serum with additional 200 nM NPY for 24 h.

Previous study has demonstrated that NPY increased pro-

liferation of VSMCs via Y1 receptor which is the major

subtype of NPY receptors [18]. We confirmed this result by

NPY Y1 receptor antagonist BIBO3304 in a concentration-

dependent manner. We observed that NPY increased the

growth of VSMCs in an intensively low serum concen-

tration (*P\ 0.05 vs. Vehicle, Fig. 1a), and this effect was

blocked by Y1 receptor antagonist (Fig. 1c). In contrast,

when exposed to 10% serum, there was no significant

difference of VSMC proliferation between vehicle group

and test group (200 nM NPY) (Fig. 1b). These data indi-

cated that the proliferation-promoting effect of NPY on

VSMCs was affected by serum concentrations of culture

media.

Expression levels of Y1 receptors are decreased

in high-serum-cultured VSMCs

Considering the critical role of Y1 receptor in NPY-me-

diated growth of VSMCs, we explored whether NPY

induced expression changes of Y1 receptor in A10 cells

exposed to 0.5 or 10% serum for 24 h. Since previous study

has shown that Y2 receptors were involved in stimulating

angiogenesis in periphery [19], we also examined the levels

of Y2 receptor in the same conditions. As shown in Fig. 2a,

when A10 cells were cultured in 0.5% serum, NPY cannot

induce the mRNA levels change of Y1 receptor while it

stimulated down-regulation of Y1 receptors expression in

10% serum. Particularly, the mRNA levels of Y1 receptor

were unchanged between 0.5% serum- and 10% serum-

cultured A10 samples. Furthermore, there was no signifi-

cant difference of Y2 receptor expression levels among

these four groups (Fig. 2b). The results collectively

revealed that down-regulation of Y1 receptor instead of Y2

receptor may limit NPY to aggravate growth of VSMCs

cultured in 10% serum.

Geminin expression modulated by NPY via Y1

receptor in 0.5% or 10% serum-cultured VSMCs

Previous study has proved that there was a close connec-

tion between Geminin expression and proliferation of

VSMCs [17]. Thus, we focused on the regulation of NPY

on the expression of Geminin in 0.5 and 10% serum-cul-

tured VSMCs. Based on the role of Y1 receptor in VSMC

proliferation, we also added Y1 receptor antagonist in the

medium to investigate whether the regulation is involved in

NPY/Y1 pathway. Although levels of Geminin were not

significantly different between vehicle (0.5% serum) and

200 nM NPY (0.5% serum) groups, expression of Geminin

was significantly up-regulated in 10% serum-cultured

VSMCs co-incubated with 200 nM NPY compared with

vehicle (10% serum) group. This modulation was effec-

tively blocked by the Y1 receptor antagonist (Fig. 3).

These results implied that Geminin could have a role in

NPY-mediated proliferation effect on VSMCs.

Role of NPY on cell cycle progression of 10% serum-

cultured VSMCs

Geminin is a negative regulator of cell cycle. Thus, we

evaluated whether NPY-induced changes of Geminin

expression play a role in cell cycle progression of 10%

serum-cultured VSMCs. We performed the flow cytometry

on A10 cells incubated in 10% serum by following time

points: 0, 12, and 24 h after NPY stimulation. In 200 nM

NPY group, more cells were in S phases compared to

vehicle group at same time points (11.9 vs. 12.86% at 12 h,

9.45 vs. 13.82% at 24 h). It has been reported that Geminin

prevents DNA replication at S phase and induces cell cycle

arrest in S phase [20, 21]. Thus, cell cycle arrest is another

reason that NPY could not facilitate proliferation of

VSMCs cultured in high serum concentration (Fig. 4).

Discussion

VSMC proliferation is commonly thought to occupy an

important position in the pathogenesis of atherosclerosis,

while NPY, the neurotransmitter of sympathetic postgan-

glionic neuron, promotes VSMC proliferation. In addition,

Table 1 Primer sequences for

gene expression analyzed by

qRT-PCR

Target gene Forward (50–30) Reverse (50–30)

GAPDH TACCCACGGCAAGTTCAA GCCAGTAGACTCCACGACAT

Y1 GTTGACGCAGGTGGAGATCA GCTGCCCCTTACCATCTTCA

Y2 GCAGCTCCAGGACTAACGTG CCGGGGAGGAGAAGAGTGTG

Geminin GAGCCCAAGAGAACGTGAAGAGTAG CCTCCGTTGTTCTGCCACTTCTTTC
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recent studies have suggested that overexpression of

perivascular NPY makes contribution to atherosclerosis

development [12, 22]. However, numerous studies sug-

gested that NPY always increased growth of VSMCs that

cultured in low or free serum. On the one hand, there were

evidences that the makers of VSMC phenotype were reg-

ulated by serum concentrations in vitro and the phenotype

switch of VSMCs was modulated by growth factors and

cytokines secreted during process of atherosclerosis in vivo

[23]. On the other hand, the switch of VSMCs from con-

tractile type (differentiation) to synthetic type

(dedifferentiation) plays a critical role in atherosclerosis,

such as dedifferentiated VSMCs promote plaque growth

and stability [24]. Thus, it is worth exploring whether the

response of contractile type or synthetic type is different

when toward stimulation of NPY.

Our preliminary data suggested that expression of

Osteopontin, a key marker of synthetic phenotype, is up-

regulated when VSMCs were exposed to 10% serum and

the condition also stimulated their growth [11]. However,

we demonstrated that NPY only promoted proliferation of

VSMCs incubated with 0.5% serum rather than 10%

Fig. 1 Effects of serum

concentration on NPY-induced

VSMC proliferation. a A10

cells were stimulated with

200 nM NPY in 0.5% serum for

24 h. An index of cell

proliferation was analyzed by

CCK8 assay. *P\ 0.05 versus

vehicle group. b A10 cells were

stimulated with 200 nM NPY

for 24 h. An index of cell

proliferation was analyzed by

CCK8 assay. There was no

significant difference between

NPY group and vehicle group.

c EdU staining assay analysis.

The cells with green

fluorescence indicate cells

undergoing proliferation, and

the cells with blue fluorescence

represent all the cells. A10 cells

stimulated with 200 nM NPY in

0.5% serum were incubated

with NPY Y1 receptor

antagonist BIBO3304 in a

concentration-dependent

manner for 24 h. Scale

bar 20 lm in all images
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serum where VSMCs remained in differentiated and

dedifferentiated state, respectively. It is well known that

the proliferation-promoting effect of NPY in VSMC is

mediated by Y1 receptors [8, 10, 25]. The results of Y1

receptor expression in VSMCs supported that down-reg-

ulation of Y1 receptor levels in VSMC synthetic type may

limit NPY to aggravate VSMC growth; it is likely

because extra stimulating factor is not a necessity for

synthetic type of VSMCs with cell proliferation activity

and thus reduces Y1 receptor levels via feedback loop.

NPY induces mitogenesis signals in VSMCs via Y1

receptors [8]. We hypothesized that non-growth-promot-

ing effect of NPY on VSMC synthetic type might be

induced by alteration of cell cycle. Our previous study

found that knockdown of Geminin, a cell cycle inhibitor,

facilitated DNA synthesis and proliferation of VSMCs.

Therefore, our present study determined whether NPY

stimulation caused changes of Geminin expression in

VSMC synthetic type (cultured in 10% serum). In line

with our speculation, we observed an intensive increase of

Geminin in VSMC synthetic type with the presence of

200 nM NPY, which was attenuated by antagonism of Y1

receptors. Furthermore, Geminin prevents DNA replica-

tion during S phase of cell cycle and up-regulation of

Geminin may induce cell cycle arrest in S phase. In our

study, flow cytometry analysis indicated that more cells

remained in S phase after administration of NPY in

VSMC synthetic type, which may be mediated by

increased expression of Geminin.

We cannot exclude the possibility that some other

factors might also be involved in the cell cycle arrest in S

phase of VSMCs; however, we can confirm that the

property of the NPY proliferative effect in VSMCs is

influenced by phenotype of VSMCs. As for contractile

type (differentiation), NPY promotes growth of VSMCs

via interactions of multiple signaling pathways including

calcium/calmodulin-dependent kinase II (CaMKII), pro-

tein kinase C (PKC), and mitogen-activated protein

kinase, MEK1/2 [25]. Instead of facilitating proliferation,

NPY might negatively control VSMC growth when they

transform into synthetic type (dedifferentiation).

Fig. 2 Expression of NPY Y1

and Y2 receptors in VSMCs.

a mRNA expression levels of

Y1 in 0.5% serum, 0.5%

serum ? 200 nM NPY, 10%

serum, and 10%

serum ? 200 nM NPY groups.

*P\ 0.05 versus 10% serum

group. b mRNA expression

levels of Y2 in 0.5% serum,

0.5% serum ? 200 nM NPY,

10% serum, and 10%

serum ? 200 nM NPY groups.

There was no significant

difference of Y2 expression

among these four groups

Fig. 3 mRNA expression of Geminin in VSMCs. A10 cells stimu-

lated with 200 nM NPY in 0.5% serum or 10% serum were incubated

with NPY Y1 receptor antagonist 10 lM BIBO3304 for 24 h. NPY

induced significant up-regulation of Geminin in 10% serum-cultured

VSMCs compared with control group (10% serum). This regulation

was effectively blocked by the Y1 receptor antagonist. *P\ 0.05

versus 10% serum group. #P\ 0.05 versus NPY (10% serum)
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The molecular pathogenesis of VSMC proliferation in

atherosclerosis is complicated and still far from fully illu-

minated. Our results suggest that NPY plays different roles

in the VSMC proliferation during atherosclerosis, but there

are still many questions that need further investigations.

For instance, Serum contains many biologically active

factors, whether other concentration gradients of serum and

different time points of NPY administration are associated

with the effect of NPY on VSMCs [26, 27]; abnormal

phenotype switch induces VSMCs to secrete multiple cell

cytokines, there is a possibility that these factors are also

involved NPY-mediated changes of Geminin; cal-

cium/calmodulin-dependent kinase II (CaMKII) pathway is

the dominant element of NPY-induced growth of VSMCs,

whose changes are also needed to be determined. The

VSMC-specific knockdown models of Geminin and Y1

receptor are planned to use in the future to detect the

interplays of NPY and Geminin in VSMCs, which will help

us profoundly understand the molecular mechanisms of

aberrant phenotypic switch and proliferation of VSMCs in

response to NPY and other factors. In short, aberrant

phenotypic switch of VSMCs is induced by multiple fac-

tors and NPY release is long-lastingly activated during the

development of atherosclerosis; our findings showed that

the stimulation of NPY on VSMCs could be a double-

edged sword in the pathogenesis of atherosclerosis. This

may provide surprising knowledge into treatments for

atherosclerosis with the purpose of alleviating side effects

of agents used for atherosclerosis and leads to generating a

more rational strategy to prevent diseases related to VSMC

abnormal transformation.
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