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shRNA cells, indicating this synergy entails the crosstalk 
between extrinsic and intrinsic apoptotic signaling. Taken 
together, UMI-77 enhances TRAIL-induced apoptosis by 
unsequestering Bim and Bak, which provides a novel thera-
peutic strategy for the treatment of gliomas.
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Abbreviations
TRAIL	� Tumor necrosis factor-related apoptosis-inducing 

ligand
Mcl-1	� Myeloid cell leukemia-1
PARP	� Poly-ADP ribose polymerase
shRNA	� Small hairpin RNA
Bcl	� B cell lymphoma
Bid	� BH3-interacting domain death agonist
BH	� Bcl-2 homology
tBid	� Truncated Bid
TNF	� Tumor necrosis factor
FADD	� Fas-associated death domain
DISC	� Death-inducing signaling complex
MOMP	� Mitochondrial outer membrane permeabilization

Introduction

Tumor necrosis factor-related apoptosis-inducing ligand 
(TRAIL) belongs to the tumor necrosis family (TNF) of 
cytokines that are involved in inflammation and immune 
surveillance. TRAIL is a promising anticancer agent due 
to its capacity to induce apoptosis in a broad range of can-
cer cells while sparing normal cells. TRAIL activates the 
death receptor (extrinsic) signaling upon binding to its 
functional receptors DR4 (TRAIL-R1) and DR5 (TRAIL-
R2), resulting in receptor trimerization and recruitment 
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of Fas-associated death domain (FADD), caspase-8  and 
caspase-10 to form the death-inducing signaling complex 
(DISC) [1–3]. DISC assembly induces caspase-8 cleav-
age and activation. In the so-called ‘type I’ cells, cas-
pase-8 activation is sufficient to activate caspase-3 and 
trigger apoptosis [4], while in ‘type II’ cells, the caspase-
8-dependent cleavage of Bid and its downstream mito-
chondrial (intrinsic) apoptotic signaling are essential to 
fully activate caspase-3. Truncated Bid (tBid) translocates 
to the mitochondria and activates Bax and Bak, which 
leads to mitochondrial outer membrane permeabilization 
(MOMP),  release of mitochondrial cytochrome c, smac/
DIABLO and AIF into the cytosol and consequently activa-
tion of caspase-3 and apoptosis [5–8].

Unfortunately, innate or acquired TRAIL resistance of 
cancer cells limits TRAIL-based therapy. Overexpression 
and TRAIL-stimulated transcriptional activation of pro-
survival proteins of Bcl-2 family are parts of the reason 
[9]. Bcl-2, Bcl-xL and Mcl-1 bind to pro-apoptotic Bax and 
Bak, preventing their conformational changes and activa-
tion. The pro-apoptotic BH3-only proteins bind to specific 
pro-survival proteins and prevent the latter to bind Bax 
and Bak or directly activate them [10]. Several small mol-
ecules that mimic BH3-only proteins have been utilized to 
promote TRAIL treatment. For instance, the Bad-like BH3 
mimetic ABT-737 that targets Bcl-2 and Bcl-xL potenti-
ates TRAIL-induced apoptosis by abolishing sequestration 
of Bim and Bak from Bcl-2 or Bcl-xL in pancreatic cancer 
cells and by promoting tBid mitochondrial accumulation 
in glioma cells [11, 12]. Although BH3 mimetics target-
ing Mcl-1 were developed previously and their antican-
cer effect was proven when used alone or in combination 
with the Bcl-2/Bcl-xL inhibitor ABT-263, their synergistic 
apoptosis-inducing effect with TRAIL has not been tested 
[13, 14]. To date, strategies targeting Mcl-1 for TRAIL 
sensitization are mostly indirect, either by inhibiting its 
transcription or increasing its protein instability to reduce 
its protein level [15, 16]. In this study, we sought to deter-
mine whether the Mcl-1-specific inhibitor UMI-77 sen-
sitizes human glioma cells to TRAIL-induced apoptosis. 
Our results showed that UMI-77 sensitized glioma cells to 
TRAIL by releasing sequestered Bak and Bim from Mcl-1.

Materials and methods

Cell culture

Human glioma cell lines U87, U251  and A172 and 
the cervical cancer cell line HeLa were obtained from 
the Shanghai Institute of Biochemistry and Cell Biol-
ogy (Shanghai, China). U87 and U251 cells were cul-
tured in DMEM plus 10% fetal bovine serum (FBS), 1% 

non-essential amino acid  and 1% sodium pyruvate (Life 
technologies, Grand Island, USA). A172 cells were cul-
tured in DMEM plus 10% FBS. HeLa cells were cultured 
in MEM plus 10% FBS. All the cells were maintained 
under standard cell culture conditions at 37 °C and 5% 
CO2.

Reagents

We used antibodies specific for Bax, Bak, Bcl-2, Bid, Bim, 
caspase-3, caspase-8, Mcl-1, poly-ADP ribose polymerase 
(PARP), horseradish peroxidase-conjugated anti-mouse or 
anti-rabbit secondary antibodies (Cell Signaling Technol-
ogy, Beverly, USA), Bcl-xL (Santa Cruz Technology, Santa 
Cruz, USA), Bax (6A7), Mcl-1 (for immunoprecipitation) 
(BD Biosciences, San Jose, USA), Bak, NT (Merck Mil-
lipore, Darmstadt, Germany) and GAPDH (Kangchen, 
Shanghai, China). Annexin V Apoptosis Detection Kit 
APC (eBioscience, San Diego, USA), Propidium iodide 
(PI, Sigma-Aldrich), protease inhibitor cocktail, RNase A 
(Thermo Scientific, Waltham, USA), MTT, phosphatase 
inhibitor (Sangon, Shanghai, China), cell lysis buffer for 
Western and IP, cytosolic and mitochondrial protein extrac-
tion kit, mitochondrial membrane potential assay kit with 
JC-1, protein A agarose, protein G agarose, PMSF, RIPA, 
(Beyotime, Nantong, China), UMI-77 (Selleck, Shanghai, 
China)  and human recombinant TRAIL (ProSpec, Ness 
Ziona, Israel) were used in this study.

Lentivirus‑mediated Gene transduction

Short hairpin RNAs (shRNAs) targeting human Mcl-1 
(CCC​TAG​CAA​CCT​AGC​CAG​AAA), Bid (CCG​TGA​TGT​
CTT​TCA​CAC​A) and the scrambled (control) shRNA (TTC​
TCC​GAA​CGT​GTC​ACG​T) were inserted into the lentivi-
ral vector pLKD-CMV-GFP-U6-shRNA (Neuron Biotech, 
Shanghai, China). Human non-degradable phospho-defec-
tive Mcl-1 (T92A) mutant was generated by PCR amplifi-
cation and inserted into the lentiviral vector pLOV-EF1a-
eGFP (Neuron Biotech, Shanghai, China). Insertion at 
indicated site was confirmed by DNA sequencing. Lenti-
viruses encoding various shRNA plasmids and expression 
plasmids were produced as previously described [17].

Western blot

After collection, cells were lysed in RIPA supplemented 
with PMSF, phosphatase inhibitor  and protease inhibi-
tor cocktail. Western blot was carried out as previously 
described [17].
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MTT assay

To evaluate the half maximal inhibitory concentration 
(IC50) of UMI-77, U87, U251 and A172 cells were plated 
in 96-well plates (3000 cells/well) and treated with indi-
cated doses of UMI-77 for 48 h. To evaluate the synergistic 
cytotoxicity of UMI-77 and TRAIL, U87 and A172 cells 
were plated in 96-well plates (3000 cells/well) and treated 
with UMI-77 (0, 4, 8 and 12 μM) for 24 h and additional 
with TRAIL (0, 10, 30 and 100 ng/ml) for 24 h. Following 
treatment, the cell viability was determined by MTT assay 
as previously described [17].

Flow cytometry

To measure apoptosis, cells were stained with Annexin V 
according to the manufacturer’s protocol of the Annexin 
V Apoptosis Detection Kit APC, or with PI as previously 
described [17]. To measure the mitochondrial membrane 
potential, cells were stained with JC-1 according to the 
manufacturer’s protocol of mitochondrial membrane poten-
tial assay kit with JC-1. After staining, cells were analyzed 
by BD LSR II flow cytometer. Data were analyzed by 
FlowJo software.

Cell fractionation assay

The cytosolic and mitochondrial protein of cells was frac-
tionated using cytosolic and mitochondrial protein extrac-
tion kit according to the manufacturer’s protocol.

Immunoprecipitation

After treatment, cells were harvested and subjected to 
immunoprecipitation as previously described [18].

Statistical analysis

Data analysis was performed using Microsoft Excel and 
OriginPro 8 software. Values represent the mean ± standard 
error of the mean (SEM). The statistical significance of the 
differences between experimental groups was determined 
with Student’s t test.

Results

UMI‑77 synergizes with TRAIL to induce apoptosis 
in glioma cells

To determine whether Mcl-1 plays a key role in TRAIL 
resistance of glioma cells, we knocked down Mcl-1 in three 
human glioma cell lines, U87, U251 and A172, followed 

by treating them with different concentrations of recom-
binant human TRAIL (30  ng/ml for U87, 100  ng/ml for 
U251 and 10 ng/ml for A172). Neither Mcl-1 knockdown 
(shMcl-1) nor TRAIL had significant effect on apopto-
sis, whereas shMcl-1 plus TRAIL potently induced apop-
tosis in U87 and A172 cells (Fig.  1a, b). Combination of 
shMcl-1 and TRAIL had little effect on U251 cells prob-
ably because both Bcl-2 and Bcl-xL were increased in 
U251 cells (Fig. 1c), which compensated for loss of Mcl-1 
to retain anti-apoptotic effects. Although A172 cells are 
innately sensitive to TRAIL [19], they were used in the fol-
lowing experiments to test the synergistic effect of Mcl-1 
loss and TRAIL, as cell apoptosis induced by relatively low 
dose of TRAIL (10  ng/ml) is enhanced by Mcl-1 knock-
down (Fig. 1a, b).

UMI-77 was identified as a selective binding inhibi-
tor of Mcl-1 that induced apoptosis in pancreatic cancer 
cells by blocking the interaction of Mcl-1 with Bax and 
Bak [14]. Here we evaluated the cytotoxic effect of UMI-
77 in glioma cells. IC50 of UMI-77 after a 48 h treatment 
was 3.72 μM in HeLa cells that are strictly dependent on 
Mcl-1 for survival [20], and were relatively higher in U87, 
U251 and A172 cells, showing functional redundancy of 
anti-apoptotic Bcl-2 proteins in these cells (Fig. 2a). When 
combined with TRAIL, 8  μM or higher concentration of 
UMI-77 lowered viabilities of UMI-77-resistant U87 and 
A172 cells (Fig. 2b). Combination of 8 μM (lowest effec-
tive concentration) UMI-77 and TRAIL resulted in higher 
levels of cleaved caspase-8, Bid, caspase-3 and PARP, the 
accumulation of tBid in the mitochondria and the release of 
cytochrome c into cytosol in U87 and A172 cells, suggest-
ing the onset of MOMP and caspase-dependent apoptosis 
(Fig. 2c, d).

The synergistic apoptotic effect of UMI‑77 and TRAIL 
is dependent on Mcl‑1

To investigate whether the effect of UMI-77 in synergiz-
ing apoptosis with TRAIL is dependent on Mcl-1, deg-
radation-resistant Mcl-1 (T92A) mutant was moderately 
overexpressed using EF1a promoter in U87 and A172 
cells. Mcl-1 overexpression compromised apoptosis as 
well as cleavage of caspase-8, Bid, caspase-3 and PARP 
in U87 and A172 cells treated with UMI-77 and TRAIL 
(Fig. 3a–c). JC-1 staining showed that loss of mitochon-
drial outer membrane potential upon combination treat-
ment was partly inhibited by Mcl-1 overexpression in 
U87 and A172 cells (Fig. 4a, b). Moreover, 8 μM UMI-
77 did not further improve TRAIL-induced apoptosis 
in the Mcl-1 knockdown U87 cells because the syner-
gistic effect of shMcl-1 and TRAIL was already greater 
than that of UMI-77 and TRAIL (Fig. 5). These results 
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Fig. 1   Mcl-1 knockdown augments TRAIL-induced apoptosis 
in U87 and A172 glioma cells. a and b U87, U251 and A172 cells 
infected with lentiviruses encoding either control shRNA or Mcl-1 
shRNA (shMcl-1) were treated with TRAIL (30  ng/ml for U87, 
100  ng/ml for U251 and 10  ng/ml for A172) for 24  h and stained 
by Annexin V-APC antibody. The percentage of apoptotic cells 

was measured by flow cytometry. Representative data were shown 
in (a) and averaged values were shown in (b) (n = 3, mean ± SEM, 
*p < 0.05). c Levels of proteins in control shRNA and shMcl-1-ex-
pressing U87, U251 and A172 cells were analyzed by Western blot. 
GAPDH was used as a loading control
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Fig. 2   UMI-77 sensitizes U87 and A172 glioma cells to TRAIL-
induced apoptosis. a To calculate the half maximal inhibitory concen-
tration (IC50) values, U87, U251, A172 and HeLa cells were treated 
with indicated concentration of UMI-77 for 48  h and subjected to 
MTT assay. b U87 and A172 cells were treated with indicated con-
centration of UMI-77 for 24  h and further treated with indicated 
concentration of TRAIL for 24 h. The cell viability was analyzed by 
MTT assay. c U87 and A172 cells were treated with UMI-77 (8 μM) 
for 24  h and further treated with TRAIL (30  ng/ml) for indicated 

period of time. Levels of apoptosis-associated proteins were analyzed 
by Western blot. GAPDH was used as a loading control. d U87 and 
A172 cells were treated with UMI-77 (8  μM) for 24  h and further 
treated with TRAIL (30 ng/ml for U87 and 10 ng/ml for A172) for 
6 h. Levels of proteins in the cytosolic and mitochondrial fractions of 
cells were analyzed by Western blot. β-tubulin and COX4 were used 
as the loading control of cytosolic and mitochondrial fraction, respec-
tively
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Fig. 3   Mcl-1 overexpression attenuates apoptosis induced by UMI-
77 plus TRAIL. a and b U87 and A172 cells infected with lentivi-
ruses encoding either an empty vector (control OE) or Mcl-1 (T92A) 
were treated with UMI-77 (8 μM) for 24 h and further treated with 
TRAIL (30  ng/ml for U87 and 10  ng/ml for A172) for 24  h. After 
Annexin V-APC staining, the percentage of apoptotic cells was ana-

lyzed by flow cytometry. Representative data were shown in (a). Val-
ues from three independent experiments were averaged and shown in 
(b) (n = 3, mean ± SEM, *p < 0.05). c Levels of apoptosis-associated 
proteins of U87 and A172 cells treated as in (a) were analyzed by 
Western blot. GAPDH was used as a loading control
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Fig. 4   Mcl-1 overexpression attenuates loss of mitochondrial mem-
brane potential (MMP) induced by UMI-77 plus TRAIL. a and b 
Control OE and Mcl-1 (T92A)-expressing U87 and A172 cells were 
treated with UMI-77 (8 μM) for 24h and further treated with TRAIL 
(30 ng/ml for U87 and 10 ng/ml for A172) for 6 h. Cells were incu-

bated with JC-1 and subjected to flow cytometry for measuring JC-1 
aggregates and monomers. Representative data were shown in (a) 
and averaged values of the percentage of cells with MMP loss were 
shown in (b) (n = 3, mean ± SEM, *p < 0.05)
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suggest that glioma cell apoptosis induced by UMI-77 
and TRAIL combination is dependent on Mcl-1.

UMI‑77 unsequesters Bim and Bak from Mcl‑1 
and induces Bak activation, alone or in combination 
with TRAIL

To study the mechanism behind the combination-
induced apoptosis, we first performed immunoprecipita-
tion to evaluate the binding of pro-apoptotic Bcl-2 pro-
teins with Mcl-1 in UMI-77-treated U87 cells. At less 
as 8  μM, UMI-77 untethered Bim and Bak, two pro-
apoptotic Bcl-2 proteins that normally bound to Mcl-1 
[21], from the sequestration of Mcl-1 in a dose-depend-
ent manner (Fig. 6a). Bax was hardly detected in Mcl-1 
precipitants, but there was a tendency that UMI-77 also 
displaced Bax from Mcl-1. Next, we examined the bind-
ing of these pro-apoptotic proteins to Mcl-1 in U87 cells 
treated with UMI-77 and TRAIL. UMI-77 promoted dis-
sociation of Bak and Bim from Mcl-1 and Bcl-xL/Bax 
interaction without affecting Bcl-2/Bim and Bcl-xL/
Bak interaction. On the other hand, TRAIL enhanced 
tBid/Bcl-xL interaction and the binding of Mcl-1 to 
Bim and Bak (Fig.  6b). UMI-77 and TRAIL combina-
tion reversed TRAIL-induced binding of Mcl-1 to Bim 
and Bak, enhanced TRAIL-induced Bid truncation, and 
inhibited UMI-77-induced Bcl-xL/Bax interaction. In 
addition, UMI-77 and TRAIL, respectively, upregulated 
conformational active forms of Bak and Bax, whereas 
their combination activated Bax and Bak simultaneously 
(Fig.  6b). These results suggest that UMI-77 frees Bak 
and Bim from Mcl-1 and activates Bak with or without 
TRAIL.

Bid is important for apoptosis induced by UMI‑77 
and TRAIL combination

Given that UMI-77 promoted crosstalk between the mito-
chondrial apoptotic signaling and the death receptor signal-
ing which is induced by TRAIL, we investigated the role 
of Bid, the linker of these two signaling, in mediating such 
crosstalk in U87 cells. Bid knockdown suppressed cleavage 
of caspase-8, caspase-3 and PARP and cell death induced 
by UMI-77 plus TRAIL (Fig. 7a, b). These results under-
score the importance of Bid in the cell death induced by 
UMI-77 and TRAIL combination.

Discussion

TRAIL receptor agonists (TRA) have been demonstrated 
as well tolerated agents but with disappointing anticancer 
efficacy in clinical trials [22]. Combinations of TRA with 
other targeted therapies are of interest to override TRA 
resistance in cancer cells. In this study, we demonstrate that 
Mcl-1 is a key determinant of TRAIL resistance in glioma 
cells. The Mcl-1 inhibitor UMI-77 synergizes with TRAIL 
to induce apoptosis in glioma cells through releasing Bak 
and Bim from Mcl-1.

The importance of Mcl-1 in TRAIL resistance galva-
nizes the development of combination therapies of TRAIL 
with inhibition of Mcl-1 mostly by lowering its expres-
sion, including mitotic interfering agents induced protea-
some degradation of Mcl-1, CDK9 inhibitors induced tran-
scriptional elongation blockage and consequent decrease 
of Mcl-1 mRNA and NF-κB or STAT3 inhibitors induced 
transcription inhibition of Mcl-1 [15, 16, 21, 23, 24]. How-
ever, study combining TRAIL with direct inhibition of 
Mcl-1 is lacking. UMI-77 is a Noxa-like BH3 mimetic that 
specifically binds and inhibits Mcl-1 among anti-apoptotic 
proteins of Bcl-2 family. It shows promising anticancer effi-
cacy in a panel of pancreatic cancer cell lines [14]. Further-
more, UMI-77 sensitizes pancreatic cancer cells to radia-
tion with no harm to normal cells [25]. However, IC50s of 
UMI-77 in some of the cell lines are quite higher than those 
in others, possibly due to functional redundancy of pro-
survival Bcl-2 proteins. Similarly, IC50s in glioma cells are 
higher than those in HeLa cells and UMI-77-sensitive pan-
creatic cells. Raising UMI-77 doses to fully inhibit Mcl-1 
could improve curative effects but may cause adverse 
effects like cardiac failure as Mcl-1 is required for nor-
mal mitochondrial physiology [26, 27]. Given that as high 
as 60  mg/kg UMI-77 inhibited the progression of UMI-
77-sensitive pancreatic cells in a xenograft mouse model 
whereas 80 mg/kg UMI-77 is lethal to mice [14], UMI-77 
monotherapy is unsuitable for in vivo inhibition of Mcl-
1-independent tumors. Partial inhibition of Mcl-1 within 

Fig. 5   UMI-77 fails to improve apoptosis induced by TRAIL and 
Mcl-1 knockdown in U87 cells. Control shRNA and shMcl-1-ex-
pressing U87 cells were treated with UMI-77 (8  μM) for 24  h and 
further treated with TRAIL (30 ng/ml) for 24 h. Levels of apoptosis-
associated proteins were analyzed by Western blot. GAPDH was used 
as a loading control
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the therapeutic window by UMI-77 plus TRAIL, however, 
is feasible for both TRAIL- and UMI-77-resistant cancer 
cells. Apart from displacing of Bak from Mcl-1, which 
is demonstrated in our study and by others [14], UMI-77 
promotes the dissociation of BimEL from Mcl-1, resulting 
in the activation of Bak. However, UMI-77 also promotes 
the binding of Bcl-xL to Bax, which potentially dampens 
Bax activation. On the other hand, TRAIL increases Bim/
Mcl-1 complex, probably because tBid preferentially binds 

and disrupts the binding of Bcl-xL rather than Mcl-1 to 
Bim upon TRAIL stimulation [28]. Bim is a BH3-only pro-
tein that potentiates apoptosis either by neutralizing anti-
apoptotic Bcl-2 proteins, activating Bax and Bak directly 
or transforming Bcl-2 into a pro-apoptotic protein [29, 
30]. Hence, simultaneous inhibition of Bcl-xL and Mcl-1 
by TRAIL and UMI-77 respectively freed Bax, Bak and 
Bim to the greatest extent that surmounts the apoptosis 
threshold.

Fig. 6   UMI-77 displaces Bim and Bak from the sequestration by 
Mcl-1. a U87 cells treated with indicated concentration of UMI-
77 for 12  h and Mcl-1 was immunoprecipitated by the correspond-
ing antibody. Levels of proteins in precipitants and total cell lysates 
were analyzed by Western blot. b U87 cells were treated with UMI-

77 (8  μM) for 24  h and further treated with TRAIL (30  ng/ml) for 
6 h. Bcl-xL, Bim, Mcl-1 and conformational active Bax and Bak were 
immunoprecipitated by corresponding antibodies. Levels of proteins 
in precipitants (left panel) and lysates (right panel) were analyzed by 
Western blot. GAPDH was used as a loading control of lysates
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In conclusion, the Mcl-1 selective inhibitor UMI-77 
exerts on-target apoptotic-inducing effect in combination 
with TRAIL, which will potentially benefit patients with 
gliomas. Future explorations are required to investigate 
whether UMI-77 plus TRAIL or other targeted therapies 
may be extended to the treatment of other malignancies.
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