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975 significantly down-regulated (P < 0.05) in response to 
oxLDL exposure. In the same HUVEC samples, 518 of 
the 26,106 mRNAs screened were up-regulated and 572 
were down-regulated. Of these differentially expressed 
lncRNAs, CLDN10-AS1 and CTC-459I6.1 were the most 
up-regulated (~87-fold) and down-regulated (~28-fold), 
respectively. Bioinformatic assignment of the differen-
tially regulated genes into functional groups indicated that 
many are involved in signaling pathways among which are 
the cytokine receptor, chemokine, TNF, MAPK and Ras 
signaling pathways, olfactory transduction, and vascular 
smooth muscle cell function. This is the first report pro-
filing oxLDL-mediated changes in lncRNA and mRNA 
expression in human endothelial cells. The novel targets 

Abstract Oxidized low-density lipoprotein (oxLDL) 
plays a central role in the pathogenesis of atherosclerosis, 
in part via an effect to promote endothelial dysfunction. 
In the present study, we evaluated the expression profiles 
of long non-coding RNAs (lncRNAs) and protein-coding 
mRNAs in endothelial cells following oxLDL stimula-
tion. LncRNAs and mRNAs from human umbilical vein 
endothelial cells (HUVECs) were profiled with the Array-
star Human lncRNA Expression Microarray V3.0 follow-
ing 24 h of oxLDL treatment (100 µg/mL). Of the 30,584 
lncRNAs screened, 923 were significantly up-regulated and 
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revealed substantially extend the list of potential candidate 
genes involved in atherogenesis.
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piRNAs  PIWI-interacting RNAs
ROS  Reactive oxygen species
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t-UCRs  Transcribed ultra-conserved regions

Introduction

Atherosclerosis is a progressive inflammatory vascular 
disease that leads to atheromatous plaque development 
within the intima of the arteries [1–4]. Endothelial dys-
function plays a central role in the development and natu-
ral course of atherosclerosis [5–8]. Oxidized low-density 
lipoprotein cholesterol (oxLDL) is a well-established risk 
factor for atherothrombosis and exerts a plethora of effects 
to promote endothelial dysfunction, plaque progression, 
and inflammatory interactions between monocytes and the 
underlying vessel wall [9–11]. Understanding the molecu-
lar pinnings of how oxLDL incites endothelial activation 
may uncover novel approaches to limit atherosclerosis.

Non-coding RNAs (ncRNAs) form a high percentage of 
the mammalian genome. Two major subgroups of ncRNAs 
that have been identified are the long ncRNAs (lncRNAs) 
and the microRNAs (miRNAs) [12, 13]. LncRNAs are 
generally described as sequences that are longer than 200 
nucleotides. Due to the absence of open reading frames, 
lncRNAs do not possess any translational ability but they 
are however able to alter gene expressions and signaling 

pathways [14]. Although lncRNAs do not appear to be as 
evolutionarily conserved as protein-coding genes, the avail-
able evidence strongly indicate that lncRNAs are intimately 
involved in the regulation of tissue homeostasis as well as 
a wide variety of cellular functions that include prolifera-
tion, migration, invasion, angiogenesis, differentiation, and 
survival [14].

In recent years, lncRNAs have not only been implicated 
as novel regulators of multiple physiological and pathologi-
cal conditions but also as potential therapeutic targets due 
to their ability to function as a molecular signal to regu-
late gene transcription and epigenetic modifications [15]. 
Indeed there is a growing appreciation of the role of lncR-
NAs in the regulation of cardiovascular diseases (CVDs) 
[16]. For example, the lncRNA Novlnc6 was recently 
found to be associated with acute myocardial infarction and 
another Mhrt has been linked with heart failure along with 
other lncRNAs that are involved in controlling hypertrophy, 
mitochondrial function, and cardiomyocyte death [16–19].

The endothelial-expressed lncRNAs MALAT1 and Tie-
1-AS have been reported to control endothelial function in 
the vascular system [20, 21], and ANRIL has been dem-
onstrated to regulate cell proliferation, cell adhesion, and 
apoptosis—cellular activities crucial for atherosclerosis 
[22]. Furthermore, a recent report noted the negative tran-
scriptional regulatory role of lncRNA NAT APOA1-AS 
for APOA1, which is the main protein constituent of high-
density lipoprotein (HDL), an important lipoprotein that is 
associated with reduced atherosclerosis [23].

Overall, these studies project lncRNAs as evolving regu-
lators in CVDs and atherosclerosis. That said, our under-
standing of the underlying influence and function of lncR-
NAs in endothelial dysfunction and atherosclerosis remains 
still quite limited [24, 25]. In the present study, we per-
formed the first transcriptome profiling of lncRNA expres-
sion upon oxLDL treatment in endothelial cells.

Materials and methods

Cell culture

Human umbilical vein endothelial cells (HUVECs, Lonza) 
and Human coronary artery endothelial cells (HCAECs, 
Lonza) were cultured in endothelial cell growth medium-2 
 (EGMTM-2 Bulletkit™; Lonza) supplemented with growth 
factors, serum, and antibiotics at 37 °C in humidified 5% 
 CO2 incubator. Confluent HUVECs were maintained 
in 6-well plates for 24  h with or without the presence of 
oxLDL (100 µg/mL; Alfa Aesar). Cells were serum-starved 
overnight before they were treated with either oxLDL or 
the vehicle.
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RNA preparation

Total RNA, isolated from HUVECs using the TRIzol™ 
(Invitrogen) reagent and according to the manufacturer’s 
instructions, was quantified with the NanoDrop ND-1000 
spectrophotometer. RNA integrity was confirmed by stand-
ard denaturing agarose gel electrophoresis.

Microarray profiling

The expression profile of 30,584 human lncRNAs and 
26,106 protein-coding transcripts was conducted with the 
Arraystar Human LncRNA Microarray V3.0. Sample labe-
ling and array hybridization were performed on the Agilent 
Array platform. In brief, total RNA from each sample was 
amplified and transcribed into fluorescent cRNA (Arraystar 
Flash RNA Labeling Kit, Arraystar) before 1  µg of each 
labeled cRNA was hybridized onto the microarray slide. 
The hybridized arrays were subsequently washed, fixed, 
and scanned using the Agilent DNA Microarray Scanner 
 (Product#G2505C). Array images so collected were stud-
ied with the Agilent Feature Extraction software (version 
11.0.1.1). We utilized the GeneSpring GX v11.5.1 software 
package (Agilent Technologies) to conduct quantile nor-
malization and process the data. Statistical significance for 
differentially expressed (DE) genes was evaluated with the 
Student’s t-test and adjusted for multiple testing by the Ben-
jamini–Hochberg method to minimize the false discovery 
rate. Volcano plot filtering, set at a threshold of ≥ 2.0 folds, 
was used to screen for lncRNAs and mRNAs that exhibited 
significantly different (P < 0.05; unpaired t-test) expression 
levels in the two study groups. Pathway analysis was based 
on the current Kyoto Encyclopedia of Genes and Genomes 
(KEGG) database. Gene Ontology (GO) analysis was per-
formed with the topGO package of bioconductor system.

Validation qPCR

Confluent HUVECs and HCAECs were starved overnight 
and then maintained for 24  h with either the diluent or 
oxLDL (100  µg/mL). Total RNA was isolated and qPCR 
for lncRNAs was performed using standard protocols. The 
sequences for primers used to perform validation qPCR are 
described in Supplementary Table 1.

Results

Quality Assessment of lncRNAs and mRNAs data

RNA integrity and genomic DNA contamination of the 
six samples evaluated were measured by denaturing aga-
rose gel electrophoresis. The intensity of the upper 28S 

ribosomal RNA band in all of the samples was about twice 
that of the lower 18S band, thereby confirming RNA integ-
rity. The absence of smears above the 28S band attested to 
the purity of the RNA samples (Supplementary Fig.  1A). 
RNA quantity and purity were also confirmed with the 
NanoDrop ND-1000. All samples had an A260 /A280 ratio 
that was close to 2.0 and an A260/A230 ratio that exceeded 
1.8 (Supplementary Fig.  1A). Box plots that included the 
10th and  90th percentile values revealed comparable expres-
sion values after normalization (Supplementary Fig. 1B).

Scatter plots were generated to provide a profile of 
HUVEC lncRNAs (Fig. 1a) and mRNAs (Fig. 1b) that were 
up-regulated, down-regulated, or unaffected by oxLDL treat-
ment. Overall, the average fold-changes for DE lncRNAs 
and mRNAs under the two study conditions were similar 
(Fig. 1c). Volcano plot filtering uncovered 923 significantly 
up-regulated and 975 significantly down-regulated lncRNAs 
in HUVECs treated with oxLDL in comparison to vehicle-
treated control samples (Fig.  1d, P < 0.05). LncRNAs that 
demonstrated the greatest differences in expression ranged 
from 895 to 3307  bp. Specifically, CLDN10-AS1 (RNA 
length: 895  bp, chromosome 13) was the most up-regu-
lated lncRNA (~87 fold) and CTC-459I6.1 (RNA length: 
535 bp, chromosome 5) the most down-regulated (28 fold) 
in HUVECs subjected to oxLDL treatment. Table 1 lists the 
10 most up-/down-regulated lncRNAs in response to oxLDL 
treatment. OxLDL also produced changes at the transcript 
level; specifically the levels of 1090 mRNAs were altered 
following oxLDL exposure with 518 up-regulated and 572 
down-regulated (Fig.  1e, P < 0.05). Proinflammatory mac-
rophage marker HLA-DPB1 (Major Histocompatibility 
Complex, Class II, DP Beta-1) was the most up-regulated 
(~241 fold) mRNA transcript after oxLDL stimulation in 
endothelial cells. Validation qPCR performed for 7 up-reg-
ulated and 5 down-regulated lncRNA showed similar trend 
for HUVECs and HCAECs after oxLDL treatment (Table 2).

LncRNA chromosomal distribution and subtype 
analysis

Supplementary Fig. 2 shows the dendrograms generated for 
hierarchical analysis of clustered DE lncRNAs and mRNAs 
in the two study groups. Although lncRNAs modulated by 
oxLDL treatment were abundant and present on every chro-
mosome, they were most commonly found on chromosomes 
1, 2, and 5 (Fig.  2a). Further probing revealed that while 
these DE lncRNAs were generally expressed along the entire 
length of the chromosomes, there was notable clustering 
(Fig. 2b). LncRNA subgroup analysis, which helps identify 
the functional relationship between lncRNAs and their asso-
ciated protein-coding genes, demonstrated that the majority 
(~50%) of the DE lncRNAs were intergenic in origin fol-
lowed by intron and natural antisense lncRNAs (Fig. 2c).
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Fig. 1  LncRNA and mRNA 
expression profiles in HUVECs 
treated with oxLDL (100 µg/
mL) vs. control. a, b Scatter 
plots comparing the variation in 
lncRNA and mRNA expres-
sion. The values plotted are 
the averaged normalized signal 
values (log2 scaled) for the 
control (x axis) and the oxLDL 
treatment (y axis) groups. The 
green lines indicate fold-change. 
LncRNAs and mRNAs above 
the top green line and below 
the bottom green line exhibit 
at least a 2.0-fold difference 
between the two study groups. 
c Box-and-Whisker plots (10th, 
90th percentile) showing aver-
age fold-change of lncRNAs 
and mRNAs. Median intensity 
is denoted with a “−” sign and 
mean intensity denoted with 
a “+” sign. d, e Volcano plots 
detailing magnitude of expres-
sion difference. The vertical 
green lines correspond to 2.0-
fold up-regulation and 2.0-fold 
down-regulation of expression. 
The horizontal green line indi-
cates a p value of ≤ 0.05. Red 
points represent lncRNAs and 
mRNAs with statistically sig-
nificant differential expression 
(fold-change ≥ 2.0, P ≤ 0.05)
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LncRNAs and associated protein-coding transcripts

We conducted additional investigations to gather further 
insights into the DE lncRNAs and their associated protein-
coding transcripts. The 10 most up- and down-regulated 
lncRNAs with their known associated protein-coding genes 
are summarized in Fig.  3. Interestingly, all 20 lncRNAs 
demonstrated a direct correlation in fold-change with its 
associated mRNA (Fig. 3).

Bioinformatics analyses

Pathway analysis with the current KEGG database yielded 
several pertinent findings (Tables  3, 4). Briefly, lncRNAs 
up-regulated in response to oxLDL treatment are most 
commonly associated with the cytokine–cytokine recep-
tor interface, chemokine signaling pathway, TNF signal-
ing pathway, and estrogen signaling pathway (Table  3). 
The most down-regulated lncRNAs are notably involved 
in olfactory transduction, MAPK signaling pathway, Ras 
signaling pathway, cytoskeletal actin regulation, and vascu-
lar smooth muscle contraction (Table 4).

Table  5 details the results of the GO analysis that 
grouped the DE mRNAs under the following three cat-
egories: Biological Processes, Cellular Component, and 
Molecular Function. GO terms most broadly associated 
with up-regulated mRNAs were regulation of biological 
processes, extracellular space, and binding (Table  5). GO 
terms associated with down-regulated mRNA were mainly 
enriched in single-organism process, membrane compo-
nents, and carbohydrate derivative binding (Table 5).

Discussion

We have come a long way since the initial description of 
how modified LDL is involved in the transformation of 
macrophages to foam cells in the atherosclerotic process 
[26, 27]. It is now well established that foam cells release 
proinflammatory cytokines, reactive oxygen species (ROS), 
and matrix degrading proteolytic enzymes, which together 
promote plaque formation and destabilization [4]. These 
observations provided the impetus behind the notion that 
oxidative modification of LDL alters its biological signa-
ture such that it acquires the ability to nurture the athero-
sclerotic process via multiple avenues [9, 28]. Specifically, 
oxLDL is capable of inciting endothelial cell dysfunction, 
proliferation, apoptosis, and necrosis, all of which are criti-
cal components of the atherosclerotic state [29, 30]. Under 
physiological conditions, endothelial cells release nitric 
oxide (NO), which serves to maintain vascular tone [31]. 
In the presence of oxLDL, however, NO release is inhibited 
and the NO that is generated is quickly inactivated by the 

Table 1  Ten most up- and down-regulated lncRNAs in HUVECs 
exposed to oxLDL (100 µg/mL) for 24 h vs. control conditions

Sequence name RNA length Chr. Fold p value

Up-regulated lncRNAs
 CLDN10-AS1 895 13 86.34 1.24984E–06
 AL132709.5 737 14 84.24 2.5307E–06
 RP4-669L17.4 498 1 71.62 1.81325E–05
 AP001596.6 1078 21 61.44 9.40565E–06
 RP11-152P17.2 801 8 45.10 2.11527E–06
 ZNF295-AS1 1073 21 35.88 0.000239035
 RP11-466I1.1 492 11 34.26 0.000102274
 AC068282.3 2690 2 29.65 4.01824E–05
 RP11-534G20.3 3307 10 29.22 1.82726E–05
 HLA-DPB2 776 6 28.58 3.23277E–07

Down-regulated lncRNAs
 CTC-459I6.1 535 5 27.60 3.15432E–05
 AX748283 2093 1 19.56 0.002942431
 RP11-138B4.1 2114 4 18.71 0.001161294
 AL832163 2799 8 14.90 0.000274343
 DQ592442 2772 1 13.76 4.27425E–05
 XLOC_007697 909 9 12.19 2.9438E-06
 vPSORS1C3 593 6 12.16 0.000437692
 RP11-676J12.6 585 17 11.54 3.74753E–05
 BX284650.1 503 1 11.12 4.12326E–05
 XLOC_014114 1975 21 10.43 3.2299E–05

Table 2  Validation qPCR for differentially expressed lncRNAs in 
HUVECs and HCAECs exposed to oxLDL (100 µg/mL) for 24 h vs. 
control conditions

Sequence name Fold 
(HUVECs)

p value Fold 
(HCAECs)

p value

Up-regulated lncRNAs
 CLDN10-

AS1
7.74 ± 2.44 0.0069 4.44 ± 1.39 0.0343

 AL132709.5 4.05 ± 0.06 0.0235 2.34 ± 0.22 0.0167
 RP4-

669L17.4
5.31 ± 0.20 0.0005 4.33 ± 0.17 0.0027

 AP001596.6 2.88 ± 1.66 0.0137 2.20 ± 0.90 0.0055
 ZNF295-AS1 3.60 ± 1.54 0.04817 4.12 ± 2.49 0.0153
 RP11-466I1.1 4.82 ± 0.57 0.0103 2.70 ± 1.38 0.0332
 RP11-

534G20.3
2.09 ± 1.09 0.3370 4.12 ± 1.16 0.0422

Down-regulated lncRNAs
 CTC-459I6.1 3.20 ± 0.25 0.04043 2.35 ± 0.15 0.0452
 AX748283 1.07 ± 0.18 0.4164 1.29 ± 0.21 0.0585
 RP11-

138B4.1
1.18 ± 0.11 0.0657 2.06 ± 0.18 0.04231

 AL832163 2.29 ± 0.75 0.0304 2.12 ± 0.61 0.0254
 RP11-

676J12.6
1.24 ± 0.26 0.0425 1.21 ± 0.28 0.0436
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enhanced production of ROS [31–33]. OxLDL-associated 
endothelial cell loss—either via necrosis or apoptosis—not 
only augments vascular permeability and promotes smooth 
muscle cell (SMC) proliferation but also amplifies coagula-
tion which together aid in the process of atherogenesis [34, 
35].

In addition to its role in atherogenesis, oxLDL has been 
highlighted as a biomarker for CVD in recent years [36, 
37]. Mechanisms of oxLDL-mediated endothelial dysfunc-
tion have been well studied [38, 39]. Although the molec-
ular mechanisms have been studied for many years, the 
detailed epigenetic alterations with a special emphasis on 
the crosstalk between oxLDL and lncRNAs have remained 
unknown.

Although several thousands of lncRNAs have been 
recognized in mammals, our understanding of regulation 
and function of lncRNAs is still limited. However, due to 
recent rapid advancements in the molecular biology field, 
immense attention has been reaped by lncRNAs and their 
roles. The lncRNAs have already been reported in a broad 
range of physiological and pathological conditions but 
their function in the development of CVDs and especially 
in atherosclerosis is inadequately understood. MIAT and 
ANRIL were the earliest lncRNAs identified as a risk factor 
for CVDs [40–42]. ANRIL regulates genes involved in cell 
proliferation, cell adhesion, and apoptosis, and also cor-
relates with the gravity of atherosclerosis in humans [22, 
41]. Although these observations imply that lncRNAs can 

Fig. 2  Distribution, location, and classification of differentially 
expressed lncRNAs in HUVECs treated with oxLDL (100  µg/mL) 
versus control. Demonstration of a numbers and b chromosomal loca-

tion of DE lncRNAs on different chromosomes. c Bar graph repre-
senting types of differently expressed lncRNAs, depending upon their 
genomic location
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modulate numerous processes linked to CVDs including 
cell proliferation, endothelial function, lipid metabolism, 
and inflammation, comprehensive information on endothe-
lial lncRNAs regulated by oxLDL was missing.

Therefore, for investigating the outcome of oxLDL 
treatment on endothelial cell transcriptome, we performed 
lncRNA and mRNA microarray analysis on total RNA 
isolated from oxLDL-stimulated HUVECs. We identi-
fied novel lncRNAs and target genes providing insights 
into the differential regulation of lncRNAs and mRNAs 
by oxLDL in endothelial cells. A total of 30,584 lncRNAs 

were screened, where 923 were notably up-regulated 
and 975 were appreciably down-regulated (P < 0.05) 
in response to oxLDL in HUVECs. In a total of 26,106 
mRNAs screened, 518 were significantly up-regulated and 
572 significantly down-regulated. The validation qPCR 
performed for 10 most up- and down-regulated lncRNAs 
showed similar trend for 7/10 up-regulated and 5/10 down-
regulated lncRNAs (Table 2). The DE lncRNAs were dis-
persed over all the chromosomes, with maximum number 
identified for chromosome 1 (Fig.  2a, b). Majority of DE 
lncRNAs were intergenic in nature (Fig.  2c). Our data 
show that the first 20 lncRNAs with known target mRNA 
demonstrated a direct correlation in fold-change with its 
associated mRNA (Fig. 3). For most functional groups, it 
is challenging to predict the overall effects of oxLDL treat-
ment on HUVECs, since a variety of genes with diverse 
functional roles were differentially regulated simultane-
ously. However, pathway analysis revealed that DE mRNAs 
up-regulated in response to oxLDL treatment are primar-
ily involved in cytokine–cytokine receptor interface and 
pathways such as chemokine signaling, TNF signaling, 
and estrogen signaling (Table 3). The most down-regulated 
DE mRNAs are notably involved in olfactory transduction, 
MAPK signaling, Ras signaling, cytoskeletal actin regula-
tion, and vascular smooth muscle contraction (Table  4). 
Interestingly, profile of the DE genes assessed in this study 
showed some similarities to other reports by Deng et  al. 
and Minta et al. on DE genes in oxLDL-treated SMCs [43, 
44]. Among the top 15 up-regulated genes, HMOX1 was 

Fig. 3  Network co-expression 
and bioinformatics analyses of 
samples from HUVECs treated 
with oxLDL (100 µg/mL) vs. 
control. Representation of DE 
lncRNAs and associated genes 
with respect to fold-change. Ten 
significantly up-regulated and 
10 down-regulated lncRNAs 
with known target genes were 
selected for presentation in the 
figure

Table 3  Bioinformatics analyses of up-regulated pathways in 
HUVECs following oxLDL (100 µg/mL) exposure

Pathway analysis Up-regulated 
gene count

p value

Cytokine–cytokine receptor interaction 271 0.0001
Chemokine signaling pathway 189 0.0114
TNF signaling pathway 110 0.0129
Estrogen signaling pathway 100 0.0270
Rheumatoid arthritis 91 0.0011
Salmonella infection 86 0.0138
p53 signaling pathway 68 0.0195
Inflammatory bowel disease (IBD) 67 0.0042
Steroid hormone biosynthesis 57 0.0412
Legionellosis 55 0.0082
Butanoate metabolism 26 0.0003
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up-regulated in both studies conducted in SMCs along with 
our study in HUVECs [43, 44]. In another study, oxLDL 
treatment in human coronary artery SMCs induced a gene 
regulation profile similar to the gene appearance pattern 

observed in the aortas of  apoE−/− mice [45]. In accord-
ance with Reeve et al. and Minta et al., our data also docu-
mented that oxLDL induces expression of NQO1 [NAD(P)
H dehydrogenase quinone 1] not only in SMCs but also 
in endothelial cells [43, 45]. This understanding further 
backs the proposition that the effect of oxLDL on endothe-
lial cell assumes great significance for the development of 
atherosclerosis. Results of bioinformatics GO analysis, as 
described in Table  5, grouped the DE mRNAs under the 
following three categories: Biological Processes, Cellu-
lar Component, and Molecular Function. GO terms most 
broadly associated with up-regulated DE mRNAs were in 
regulation of biological, extracellular space, and binding 
(Table  5). GO terms associated with down-regulated DE 
mRNA were mainly enriched in single-organism process, 
membrane, and carbohydrate derivative process (Table 5). 
This is the first lncRNA and mRNA transcriptome profile 
of oxLDL-mediated changes in human endothelial cells. 
To confirm that our data are not HUVEC-specific, we also 
treated HCAECs with oxLDL and performed qPCR for 10 

Table 4  Bioinformatics analyses of down-regulated pathways in 
HUVECs following oxLDL (100 µg/mL) exposure

Pathway analysis Down-regulated 
gene count

p value

Olfactory transduction 405 0.0318
MAPK signaling pathway 257 0.0002
Ras signaling pathway 227 0.0175
Regulation of actin cytoskeleton 215 0.0018
Vascular smooth muscle contraction 131 0.0158
Axon guidance 127 0.0351
Prostate cancer 89 0.0048
PPAR signaling pathway 69 0.0042
Steroid biosynthesis 20 0.0025

Table 5  Results of bioinformatics GO (gene ontology) enrichment analyses to determine the roles of differentially expressed mRNAs in GO 
terms

Up-regulated Down-regulated

GO term Count % of total 
DE genes

p value GO term Count % of total 
DE genes

p value

Biological process Regulation of biological 
process

260 66.0 0.0293 Single-organism process 376 83.4 0.016

Regulation of metabolic 
process

167 42.3 0.0219 Biological regulation 307 68.3 0.036

Regulation of primary meta-
bolic process

154 39.0 0.0135 Regulation of biological 
process

295 65.7 0.028

Regulation of macromol-
ecule metabolic process

147 37.3 0.0067 Response to stimulus 270 60.1 2.18E–07

Regulation of nitrogen com-
pound metabolic process

120 30.4 0.0426 Cellular response to stimulus 216 48.1 8.12E–05

Cellular component Extracellular space 39 9.5 0.0293 Membrane 258 53.8 0.027
Extracellular matrix 17 4.2 0.0170 Membrane part 202 42.1 0.007
Endocytic vesicle 11 2.7 0.0128 Intrinsic component of 

membrane
182 37.9 0.0015

Integral component of orga-
nelle membrane

10 2.4 0.0389 Integral component of 
membrane

179 37.3 0.001

Integral component of 
endoplasmic reticulum 
membrane

7 1.7 0.0126 Cell periphery 158 32.9 0.001

Molecular function Binding 318 85.0 0.0075 Carbohydrate derivative 
binding

78 17.6 0.011

Ion binding 163 43.5 0.0112 Ribonucleotide binding 66 15.0 0.021
Cation binding 125 33.4 0.0007 Purine nucleotide binding 65 14.7 0.030
Metal ion binding 123 32.8 0.0008 Purine ribonucleotide bind-

ing
64 14.5 0.034

DNA binding 89 23.7 4.38E–06 Purine ribonucleoside 
triphosphate binding

63 14.2 0.031
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most up- and down-regulated lncRNAs, which showed sim-
ilar trend (Table 2).

Although interest in the contribution of lncRNAs to 
human health and disease is booming, the mechanism of 
action has only been pinpointed for a limited number of 
lncRNAs. Collaborative initiatives, such as the Encyclo-
pedia of DNA Elements (ENCODE) project, aiming to 
recognize every functional element in the human genome 
are required [46]. However, the lack of defined functional 
motifs and regulatory regions and low expression levels 
of some lncRNAs are the major challenges. Majority of 
the lncRNAs are expressed as countless transcript alter-
nates and the fact that they are poorly conserved challenges 
defining their specific biological roles and mechanisms of 
activity. Budding genomic, epigenomic, and bioinformatics 
approaches will be central in characterizing the lncRNAs. 
In order to avoid confusion and to facilitate the use and 
reproduction of the data, we have provided more detailed 
information (e.g., size, chromosomal localization, etc.) of 
oxLDL-associated DE lncRNAs in HUVECs. In our study, 
several lncRNAs were observed to be differentially regu-
lated, which has not been stated before. Additional studies 
on novel genes reported in our study will offer first-hand 
cues regarding the mechanisms of CVD development by 
oxLDL. We conceive that our recent investigation fur-
ther adds to the current understanding of the molecular 
mechanism of oxLDL-mediated endothelial cell dysfunc-
tion and apoptosis, and may provide targets for future 
therapeutic interventions against different CVDs including 
atherosclerosis.
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