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dephosphorylation rates of both juvenile and adult 
enzymes. This is the first report on the effects of polyam-
ines on phosphoenzyme-linked partial reactions in juvenile 
and adult M. amazonicum gill  (Na+,  K+)-ATPases. Our 
findings suggest that the phosphorylation/dephosphoryla-
tion steps of this gill enzyme may be regulated by polyam-
ines during ontogenetic development.
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Introduction

The sodium–potassium ATPase is an ATP-powered ion 
pump that establishes elevated  Na+ and  K+ concentra-
tion gradients across the plasma membranes of all ani-
mal cells by exchanging cytoplasmic  Na+ for extracellu-
lar  K+, converting the chemical energy derived from ATP 
hydrolysis into asymmetrical ion distributions [1, 2]. The 
 (Na+,  K+)-ATPase is an oligomeric, tissue-specific pro-
tein [3], consisting of a catalytic α-subunit and a β-subunit 
in equimolar ratios, together with an FXYD2 peptide, the 
γ-subunit [4–6]. The α-subunit, of ≈ 110  kDa, consists 
of 10 transmembrane segments and contains the protein 
kinase, and the nucleotide-, ouabain- and cation-binding 
sites [7]. The β-subunit, of ≈ 31  kDa, is a highly glyco-
sylated, single span, type II membrane protein associated 
with transmembrane helices αM7 to αM10 [8]. This sub-
unit is required for the correct folding, stabilization, and 
expression of the active α-subunit protomer in the plasma 
membrane, and for occlusion of the  K+ binding sites [9]. 
In many cell types, the αβ-complex interacts with a small 
regulatory transmembrane protein belonging to the FXYD 
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family, a group of small amphiphilic peptides that exhibit 
the FXYD motif. This ≈ 7-kDa γ-subunit is a single-
span membrane protein associated with transmembrane 
helix αM9, and regulates pump activity [5, 10, 11]. This 
γ-subunit (FXYD2) represents a functional constituent of 
the crustacean  (Na+,  K+)-ATPase [12] that responds to pig 
FXYD2 by increasing  NH4

+ affinities and the maximum 
rate of ATP hydrolysis, without causing major changes in 
ATP or  Na+ and  K+ affinities [12].

Like other P-type ATPases, the  (Na+,K+)-ATPase forms 
a phosphorylated enzyme intermediate (EP) owing to the 
transfer of the γ-phosphate from ATP to a conserved aspar-
tate residue,  D369, in the P-domain [7, 13]. During its cata-
lytic cycle, the  (Na+,  K+)-ATPase takes on either the  E1 or 
the  E2 conformation, depending on the binding, debinding 
and occlusion of  Na+ and  K+ at their respective ion-bind-
ing sites, and the phosphorylation or dephosphorylation of 
the  D369 residue [13–16]. ATP and ADP bind to the  (Na+, 
 K+)-ATPase in the  E1 conformation with similar affini-
ties, although the properties of the enzyme when in ATP 
and ADP-complexes are very different due to rearrange-
ment of the N and A domains relative to the P domain [17]. 
Thus, ATP binding induces changes strikingly different 
from ADP binding, resulting in a structural transition from 
an’open’ to a’closed’ conformation that facilitates phospho-
rylation [18].

The same aspartic acid residue is phosphorylated both 
by ATP and inorganic phosphate and is mutually exclu-
sive for these substrates [19]. Phosphorylation of the  (Na+, 
 K+)-ATPase by  Mg2+-ATP at low physiological  Na+ con-
centrations or by inorganic phosphate and  Mg2+, without 
 K+, results in the formation of phosphorylated intermedi-
ates, mainly  E2P. Dephosphorylation of  E2P formed from 
ATP is accelerated by  K+, but that from inorganic phos-
phate is retarded [20].  E2P is the main component of the 
phosphorylated enzyme while  E1P occurs only at high  Na+ 
concentrations or when the enzyme is partially inhibited 
by N-ethyl maleimide or oligomycin [21, 22].  E1P may not 
bind to ouabain while  E2P binds to ouabain in the absence 
of free  Mg2+ [23, 24].

Enzyme phosphorylation is not adequately explained by 
the Albers-Post model, since the sum of ADP-sensitive and 
 K+-sensitive pools of the measured phosphoenzyme excede 
total EP by 150% [25]. At least one more phosphorylated 
intermediate is known from electric eel and pig kidney 
preparations [25–27]. Thus, EP is sensitive to both ADP 
and  K+ and is likely an intermediate form that appears after 
the formation of  E1P and before  E2P, carrying at least one 
 Na+ still bound at the cation sites [25]. Several signaling 
pathways are thought to regulate  (Na+,  K+)-ATPase func-
tion; however, most of the mechanisms underlying phos-
phorylation remain elusive. Indeed, whether phosphoryla-
tion is important for auto-regulation of  (Na+,  K+)-ATPase 

activity should be investigated to clarify the role of phos-
phorylation in modulating enzyme activity [28].

In osmoregulating crustaceans, various organs such 
as the gills, antennal glands, and intestine are involved 
in ion transport [29–31]. Various enzymes and ion trans-
porters participate in translocating ions across the gill epi-
thelia, including the  (Na+,K+)-ATPase, V(H+)-ATPase 
and carbonic anhydrase, and the  Cl−/HCO3

− and  Na+/H+ 
exchangers [32, 33]. Although its role in osmoregulation 
varies depending on the organism and cell type, the  (Na+, 
 K+)-ATPase is the main enzyme that underpins osmoregu-
latory ability [33–35]. The  (Na+,  K+)-ATPase is particu-
larly abundant in the basal invaginations of the gill epithe-
lial ionocytes [36–38].

The Amazon River shrimp Macrobrachium amazonicum 
is endemic to South America [39, 40] and its presumptive 
natural distribution includes the Orinoco, Amazon, and 
Paraguay/Lower Paraná river basins [41]. This diadromous 
shrimp has diversified into coastal populations that inhabit 
rivers close to estuaries, and continental populations liv-
ing in rivers, lakes, and other inland water bodies [42, 43]. 
Based on significant morphological differences between 
geographically separated populations from the Amazon 
delta and the Pantanal region of Brazil, the latter popula-
tion has been designated as a new species, Macrobrachium 
pantanalensis [44]. Although these two groups differ in 
external morphology and meristic characters [45], recent 
findings suggest, however, that these populations belong to 
the same species [46]. Coastal populations of M. amazoni-
cum exhibit a lengthy larval sequence dependent on brack-
ish water for development to the post-larva. The juvenile 
stage then migrates back to fresh water to mature into the 
adult form [47]. Adult M. amazonicum are strong hyper-
osmotic and ionic regulators [48], an ability underpinned 
by gill  (Na+,  K+)-ATPase activity that has been kinetically 
characterized in several ontogenetic stages [49–51].

The polyamines putrescine, spermidine, and spermine 
are ubiquitous, polycationic metabolites present in both 
prokaryotic and eukaryotic cells that play various roles in 
cell growth and differentiation. They are positively charged, 
basic nitrogen compounds (Fig. 1) of low molecular weight, 
synthesized by microorganisms, plants, and animals. Their 
regulated biosynthetic pathways are very intricate and 
have attracted much attention in recent decades [52–56]. 
Two general mechanisms regulate intracellular polyam-
ine titers: ATP concentration and  Na+ gradient-dependent 
transport across the cell membrane, together with de novo 
biosynthesis [57–60]. Polyamines are presumed to have 
multiple effects on a large number of cellular events such 
as stabilization of acidic cellular components [52–54]; 
modulating V(H+)-ATPase pump activity [56]; interacting 
with membrane components [61–63]; formation of ternary 
compounds with  Mg2+-ATP affecting the catalytic activity 
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of protein kinases [64]; acting as scavengers of reactive 
oxygen species and free radicals and as stimulators of the 
cellular antioxidant system [65]; binding to phospholipids 
[66]; inhibiting  (Na+,  K+)-ATPase activity in various ver-
tebrate tissues by binding to amino acid residues [67–71]; 
affecting mitochondrial calcium homeostasis; modulating 
RNA-, DNA- and ATP-related functions; and modulating 
ion channel function [53].

In euryhaline decapods, polyamines present in the 
hemolymph and gill tissues [72, 73] may be involved 
in osmoregulatory mechanisms [72, 74, 75]. Putres-
cine, spermidine, and spermine titers of between 16 and 
150  nmol  g−1 wet tissue have been measured in the gills 
of the crabs Eriocheir sinensis and Callinectes sapidus [72, 
73]; the anterior and posterior gills of E. sinensis show dif-
ferences in polyamine concentrations [73]. Exposure of C. 
sapidus to seawater increases putrescine and spermidine 
titers in the posterior gills and decreases  (Na+,  K+)-ATPase 
activity [72]. Putrescine, spermine, and spermidine used 
at 1 to 5  mmol  L−1 in  vitro inhibit C. danae gill  (Na+, 
 K+)-ATPase by 40% [74]. Competition between spermine 
and spermidine and  Na+ and  K+ for the cation binding sites 
on the enzyme affect both  VM and  KM for ATP hydrolysis 
by the gill  (Na+,K+)-ATPase of low salinity-acclimated C. 
ornatus [75]. The effects of exogenous polyamines on gill 
microsomal  (Na+,  K+)-ATPase activity in the freshwater 
shrimp M. amazonicum at varying ATP,  Mg2+,  Na+, and 
 K+ concentrations [76] reveal that over the range of  10−5 
to 2.10−1 mol L−1, putrescine and spermidine, respectively, 
inhibited activity in juveniles by 43% and 97%, and in 
adults by 35% and 72%. Spermine had no effect in either 
stage [76]. KI values for inhibition by spermidine and 
putrescine of  (Na+,  K+)-ATPase activity in juveniles were, 
respectively, 3.2 ± 0.2 mmol L−1 and 55.8 ± 1.7 mmol L−1, 
and 14.3 ± 1.1  mmol  L−1 and 23.7 ± 1.6  mmol  L−1 in 
adults (M.N. Lucena, unpublished data). These findings 
reveal ontogenetic stage-specific effects, although the role 
of polyamines in regulating  (Na+,  K+)-ATPase activity 

remains to be clarified. Some organisms respond to saline 
stress by increasing polyamine titers [77]. However, little 
information is available on the effects of polyamines either 
on activity or phosphorylation of the crustacean  (Na+, 
 K+)-ATPase in vitro [74, 75]. This plethora of sometimes 
conflicting results does not explain adequately the role of 
polyamines in either osmoregulation or the ontogeny of 
crustaceans.

To better understand the mechanism by which polyam-
ines inhibit ATP hydrolysis by the gill  (Na+,  K+)-ATPase 
in the present study, we examine the effects of spermi-
dine, putrescine, and spermine on the formation, stabil-
ity, and dephosphorylation of the  (Na+,  K+)-ATPase 
phosphoenzyme.

Materials and Methods

Material

All solutions were prepared using Millipore MilliQ 
ultrapure, apyrogenic water. Tris (hydroxymethyl) amino 
methane (Tris), ATP di-Tris salt, 4-(2-hydroxyethyl)piper-
azine-1-ethanesulfonic acid (HEPES), imidazole, pyruvate 
kinase (PK), lactic dehydrogenase (LDH), NADH, EDTA, 
perchloric acid, phosphoric acid, sucrose, sodium pyroph-
osphate, putrescine, spermidine, and spermine were pur-
chased from the Sigma Chemical Co. (Saint Louis, USA). 
The protease inhibitor cocktail (1 mmol L−1 benzamidine, 
5  µmol  L−1 antipain, 5  µmol  L−1 leupeptin, 1  µmol  L−1 
pepstatin A, and 5 µmol L−1 phenyl-methane-sulfonyl-flu-
oride) was from Calbiochem (San Diego, USA). [γ-32P]Pi 
was from the Brazilian Institute for Atomic Energy (IPEN). 
All enzymes employed in [γ-32P]ATP synthesis were pur-
chased from Boehringer Mannheim (Germany).

Shrimps

Amazon river shrimps, Macrobrachium amazonicum, were 
produced at the Aquaculture Center, UNESP, Jaboticabal, 
São Paulo, Brazil from brood stock collected in fresh water 
at Furo das Marinhas near Santa Bárbara do Pará (1° 13′ 
25″ S; 48° 17′ 40″ W), northeastern Pará State, Brazil, in 
2001 [78]. Juveniles were collected from freshwater rear-
ing tanks and held in carboys containing 32 L aerated fresh 
water from the rearing tank. Adult male and non-ovigerous 
female shrimps were collected from freshwater ponds and 
maintained in carboys containing 32 L aerated pond water. 
Juveniles and adults were used in stage C of the intermolt 
cycle, confirmed by stereoscopic microscopy [79]. The 
juvenile is an early benthonic freshwater stage while adult 
shrimps are well established in fresh water.

Fig. 1  Molecular structure of putrescine, spermidine and spermine
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Gill dissection

For each homogenate prepared, shrimps were anesthetized 
by chilling on crushed ice immediately before dissection 
and gill homogenization. After removal of the branchioste-
gites, all the gills from juvenile (20 individuals/preparation, 
≈700 µg wet gill mass) and adult (20 individuals/prepara-
tion, ≈6  g wet gill mass) shrimps were rapidly dissected, 
diced, and homogenized in a Potter homogenizer (600 rpm) 
in 20  mmol  L−1 imidazole buffer, pH 6.8, containing 
6 mmol L−1 EDTA, 250 mmol L−1 sucrose, and a protease 
inhibitor cocktail (20 mL buffer/g wet tissue). A high-yield, 
gill microsomal fraction was prepared by differential cen-
trifugation as follows.

Preparation of gill microsomes

After centrifuging the crude extract at 20,000 × g for 
35 min at 4 °C, the supernatant was placed on crushed ice 
and the pellet was re-suspended in an equal volume of the 
imidazole homogenization buffer. After further centrifu-
gation as above, the two supernatants were gently pooled 
and centrifuged at 100,000 × g for 90  min at 4 °C. The 
resulting pellet, containing the microsomal fraction, was 
homogenized in 20  mmol  L−1 imidazole buffer, pH 6.8, 
containing 6 mmol L−1 EDTA and 250 mmol L−1 sucrose 
(15 mL buffer/g wet tissue). Finally, 0.5-mL aliquots were 
rapidly frozen in liquid nitrogen and stored at −20 °C. No 
appreciable loss of  (Na+,  K+)-ATPase activity was seen 
after two-month’s storage at −20 °C. Enzyme activity, 
measured immediately after microsome preparation, was 
considered to represent 100%  (Na+,  K+)-ATPase activity 
(activity at time = 0 h). When required, the stored aliquots 
were thawed, placed on crushed ice and used within an 
8-h period. Prior to all experiments, enzyme activity was 
measured. When activity was <80% of that measured at 
time = 0 h, the preparation was discarded.

Measurement of ATP hydrolysis

When necessary, ATPase activity was assayed at 25 °C 
using a pyruvate kinase/lactate dehydrogenase coupling 
system in which ATP hydrolysis was coupled to NADH 
oxidation according to [80]. The kinetic parameters  VM 
(maximum velocity),  KM (Michaelis–Menten constant), 
and the  nH (Hill coefficient) values were calculated accord-
ing to [81].

Effect of exogenous polyamines on enzyme 
phosphorylation and dephosphorylation

The effect of exogenous spermidine and putrescine on 
phosphorylation and dephosphorylation of the gill  (Na+, 

 K+)-ATPase of juveniles was evaluated by preincubat-
ing the enzyme with 10 mmol  L−1 spermidine or 25 mmol 
 L−1 putrescine for 10  min, at 25 °C, before the phospho-
rylation/dephosphorylation assays. The adult gill prepa-
ration was preincubated with 20 mmol  L−1 spermidine or 
50 mmol  L−1 putrescine. These concentrations correspond 
to those providing 50% inhibition of the respective  (Na+, 
 K+)-ATPase activity (for details see [76]). Controls were 
performed using choline chloride to evaluate the influence 
of ionic strength on inhibitory effects.

Synthesis of [γ-32P]ATP

Synthesis of [γ-32P]ATP was performed as described by 
[82] modified according to [83].

Gill  (Na+,  K+)-ATPase phosphorylation

The enzyme (30 µg) was preincubated at 4 °C for 10 min in 
an assay medium containing 50 mmol L−1 HEPES buffer, 
pH 7.5, 5  mmol  L−1  MgCl2, 100  mmol  L−1 NaCl, and 
0.5 mmol L−1 EGTA with or without spermine, spermidine, 
or putrescine. The phosphorylation reaction was initiated 
by adding 0.02 mL of 1.25 mmol L−1[γ-32P]ATP in a final 
volume of 0.5 mL. After 5 min at 4 °C, the phosphorylation 
reaction was stopped by adding 200 µL of 125 mmol L−1 
perchloric acid containing 5 mmol L−1 phosphoric acid and 
5 mmol L−1 sodium pyrophosphate. The resulting mixture 
containing the 32P-phosphorylated enzyme (EP) was fil-
tered on 0.45 µm HAWP 29,325 Millipore filters. The fil-
ters were washed three times with 2 mL of 125 mmol L−1 
perchloric acid then four times with 50  mmol  L−1 per-
chloric acid [84] and were dried over an air flow. Radio-
activity was counted using a Packard Tri-Carb 2100 LSC 
Liquid Scintillator spectrometer. Controls were performed 
using the enzyme previously denatured with perchloric acid 
before the addition of [γ-32P]-ATP. Each phosphorylation 
curve was repeated three times using a different microso-
mal preparation (N = 3).

Dephosphorylation of the [γ-32P]ATP-phosphorylated 
gill  (Na+,  K+)-ATPase

After 5-min phosphorylation of the gill  (Na+,K+)-ATPase 
by 0.02 mL of 1.25 mmol L−1 [γ-32P]ATP at 4 °C, as above, 
EP dephosphorylation was initiated using an eightfold dilu-
tion (3.8 mL final volume of non-radioactive assay reac-
tion) with 12.5 mmol L−1 ATP, prepared in the same assay 
medium, and performed for up to 60 s [85, 86]. The radi-
oactivity remaining on the filters was estimated as above. 
Each dephosphorylation curve was repeated three times 
using a different microsomal preparation (N = 3).
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Effect of  K+ on [γ-32P]ATP-phosphorylated gill  (Na+, 
 K+)-ATPase dephosphorylation

After 5-min phosphorylation by 0.02 mL of 1.25 mmol L−1 
[γ-32P]ATP of the gill  (Na+,K+)-ATPase, at 4 °C, as above, 
EP dephosphorylation was performed for 60  s at 0 °C, 
by adding  K+ over a wide concentration range (5.10−5 to 
5.10−2 mol L−1). The radioactivity remaining on the filters 
was estimated as above. Each dephosphorylation curve was 
repeated three times using a different microsomal prepara-
tion (N = 3).

Measurement of protein

Protein concentration was estimated according to [87], 
using bovine serum albumin as the standard.

Estimation of kinetic constants for enzyme 
phosphorylation/dephosphorylation

The time course of  (Na+,  K+)-ATPase phosphoenzyme for-
mation (phosphorylation) was characterized as a first-order 
rate constant, kobs, calculated by the ratio Ln 2/t0.5, where 
t0.5 is the time for phosphorylation to reach half  [EP]max 
[85]. The first-order phosphorylation rate constant, kphos, 
was calculated from the ratio r0/[EP]max [85], where r0 rep-
resents EP formation (nmol.mg  protein−1) at time = t0.5 (s). 
The dephosphorylation curves were characterized by first-
order dephosphorylation rate constants for the disappear-
ance of EP, kdephos, estimated from the ratio Ln 2/t0.5 for the 
decay of EP.

Statistical analyses

Data were analyzed using a one-way analysis of variance 
(polyamine) followed by Student–Newman–Keuls (SNK) 
multiple means testing. Effects and differences were con-
sidered significant at P ≤ 0.05. The kinetic parameters 
furnished in the tables are calculated values and represent 
the mean (± SEM) derived from the three (N = 3) different 
microsomal preparations.

Results

Demonstration of the absence of sealed membrane 
vesicles

The  (Na+,  K+)-ATPase activity of gill microsomal prepa-
rations from juvenile and adult shrimps, assayed without 
alamethicin showed maximum activities of 194.4 ± 9.6 and 
133.3 ± 6.4 nmol Pi  min−1  mg−1 protein, respectively.  (Na+, 
 K+)-ATPase activity assayed with increasing alamethicin 

concentrations (1 to 20 µg/µg microsomal protein) showed 
activities of 190.8 ± 10.6 and 139.3 ± 7.9  nmol Pi  min−1 
 mg−1 protein for juveniles and adults, respectively. These 
findings indicate that sealed vesicles were not present in the 
assay reaction and that the substrate is fully accessible to 
the enzyme.

Effect of spermidine and putrescine on [γ-32P]ATP 
phosphorylation of gill  (Na+,  K+)-ATPase

Spermidine and putrescine inhibited  (Na+,  K+)-ATPase 
phosphorylation in juveniles and adult shrimp gill prepa-
rations. In the absence of spermidine or putrescine, maxi-
mum EP formation in juveniles was 1.57 ± 0.14 nmol.mg−1 
(Fig.  2), decreasing to 0.84 ± 0.05  nmol.mg  protein−1 and 
1.06 ± 0.09  nmol.mg  protein−1 with spermidine or putres-
cine, respectively. These values represent decreases of 
46% and 32% with respect to the maximum capacity of EP 
formation. Compared to the control first-order rate con-
stant (kobs  =  0.087 ± 0.005  s−1), those for spermidine and 
putrescine were 0.053 ± 0.003  s−1 and 0.049 ± 0.003  s−1, 
respectively. Using the t0.5 from each phosphorylation 
curve, first-order rate constants (kphos) of 0.063 ± 0.003 s−1, 
0.025 ± 0.001 s−1, and 0.041 ± 0.002 s−1 were estimated for 
control, spermidine, and putrescine, respectively.

In adults, maximum EP formation without polyam-
ines was 0.96 ± 0.08  nmol  mg−1 (Fig.  2). With spermi-
dine or putrescine, maximum rates of EP formation were 
0.48 ± 0.04  nmol.mg  protein−1 and 0.89 ± 0.07  nmol.
mg  protein−1, respectively, representing 50% and 92% 
of the maximum capacity for EP formation. Rate con-
stants (kobs) for adult EP formation were 0.089 ± 0.006 s−1 
and 0.059 ± 0.004  s−1 for spermidine and putrescine, 
respectively, similar to the control (0.079 ± 0.005  s−1). 
Similar phosphorylation rate constants (kphos) were esti-
mated for spermidine (0.030 ± 0.001  s−1) and putrescine 
(0.039 ± 0.002  s−1), about ≈35% lower than the control 
(0.054 ± 0.003 s−1) (Table 1).

Negligible inhibition (< 10%) was found for gill  (Na+, 
 K+)-ATPase phosphorylation by [γ-32P] in the presence of 
spermine for both juveniles and adults (data not shown).

Effect of spermidine and putrescine on  K+-mediated 
dephosphorylation of [γ-32P]ATP-phosphorylated gill 
 (Na+,  K+)-ATPase

In the absence of polyamines and  K+, the maximum EP 
titer for juvenile  (Na+,  K+)-ATPase was 1.57 ± 0.14 nmol.
mg  protein−1 (Fig.  3). However, with  K+ from 10 to 4 
mol  L−1 to 3.10−2  mol  L−1, EP levels decreased to 
0.11 ± 0.008 nmol.mg  protein−1. With putrescine and with-
out  K+, the maximum EP titer was 1.06 ± 0.09  nmol.mg 
 protein−1 decreasing to 0.02 ± 0.001  nmol.mg  protein−1 
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with increasing  K+ over the same concentration range. 
Similarly, with spermidine and without  K+, maximum 
EP formation was 0.84 ± 0.06  nmol.mg  protein−1. As  K+ 
increased from 10 to 4 mol L−1 to 3.10−2 mol L−1, EP level 
decreased to 0.01 ± 0.001 nmol.mg  protein−1.

In adults, maximum EP formation was 1.07 ± 0.08 nmol.
mg  protein−1 without polyamines and  K+ (Fig.  3). 
 K+-stimulated dephosphorylation over the range 2.5.10−4 
mol  L−1  K+ to 3.10−2 mol  L−1  K+ reduced EP levels to 
0.11 ± 0.008  nmol.mg  protein−1. As seen in juveniles, 
with putrescine and spermidine and without  K+, maxi-
mum EP levels were 0.89 ± 0.06  nmol.mg  protein−1 
and 0.48 ± 0.04  nmol.mg  protein−1, respectively. As  K+ 
increased over the range of 2.5.10−4 mol  L−1 to 3.10−2 
mol  L−1, EP levels decreased to 0.08 ± 0.004  nmol.mg 
 protein−1 and 0.009 ± 0.0001  nmol.mg  protein−1, for 
putrescine and spermidine, respectively.

Negligible EP title was obtained in the presence of sper-
mine for both juveniles and adults (not shown).

Effect of spermidine and putrescine 
on dephosphorylation of γ-32[P]ATP-phosphorylated 
gill  (Na+,  K+)-ATPase

In the absence of polyamines and with 20  mmol  L−1 
KCl, dephosphorylation of juvenile EP decreased from 
1.60 ± 0.13  nmol.mg  protein−1 to 0.58 ± 0.09  nmol.mg 
 protein−1 with a rate constant of 0.063 ± 0.003  s−1 after 
eightfold dilution (Fig. 4), a surprisingly high dephospho-
rylation offset (0.58 ± 0.09  nmol.mg  protein−1) not seen 
in adults. However, with putrescine the initial EP con-
centration decreased from 0.85 ± 0.08  nmol.mg  protein−1 
to 0.08 ± 0.004  nmol.mg  protein−1 after a 60  s reac-
tion (Fig.  4). For spermidine, the initial EP concentra-
tion decreased from 0.42 ± 0.04  nmol.mg  protein−1 to 
0.009 ± 0.001  nmol.mg−1 (Fig.  4). Single dephosphoryla-
tion first-order rate constants (kdephos) of 0.252 ± 0.015 s−1 
and 0.207 ± 0.012  s−1 were estimated for spermidine and 

Fig. 2  Effect of spermidine and putrescine on [γ-32P]ATP phospho-
rylation of gill  (Na+,  K+)-ATPase from juvenile and adult M. ama-
zonicum. The gill enzyme from juvenile or adult (≈30  µg) shrimps 
was preincubated for 10  min at 4 °C in the assay medium; phos-
phorylation was initiated by adding 1.25  mmol  L−1 [γ-32P]ATP, 
as described in the “Material and methods” section. Mean values 
from duplicate reactions were used to fit each corresponding curve, 
which was repeated utilizing three different microsomal prepara-
tions (±SEM, N = 3). Juvenile: (filled circle) Control; (open circle) 
10  mmol  L−1 spermidine; (open square) 25  mmol  L−1 putrescine. 
Adult: (filled circle) Control; (open circle) 20 mmol L−1 spermidine; 
(open square) 50 mmol L−1 putrescine

Table 1  Effect of spermidine and putrescine on the time course (t0.5) of phosphoenzyme formation (kobs, kphos), and on dephosphorylation 
(kdephos) of [γ-32P]ATP-phosphorylated gill  (Na+,  K+)-ATPase from juvenile and adult M. amazonicum

a Phosphorylation fast step
b Phosphorylation slow step, estimated from respective components of the biphasic kinetic response

Parameter  (s−1) Juvenile Adult

Control Spermidine
(10 mmol L−1)

Putrescine
(25 mmol L−1)

Control Spermidine
(20 mmol L−1)

Putrescine
(50 mmol L−1)

t0.5 8.95 12.85 14.15 8.78 7.81 11.35
kobs 0.087 ± 0.005 0.053 ± 0.003 0.049 ± 0.003 0.079 ± 0.005 0.089 ± 0.006 0.059 ± 0.004
kphos 0.063 ± 0.003 0.025 ± 0.001 0.041 ± 0.002 0.054 ± 0.003 0.030 ± 0.001 0.039 ± 0.002
kdephos 0.127 ± 0.007 0.252 ± 0.015 0.207 ± 0.012 0.022 ± 0.001a

0.376 ± 0.022b
0.115 ± 0.007a

0.888 ± 0.053b
0.017 ± 0.001a

0.410 ± 0.025b
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putrescine, respectively, almost twofold greater than the 
control (kdephos= 0.127 ± 0.007 s−1) (Table 1).

Interestingly, for the adult enzyme, initial EP val-
ues of 1.08 ± 0.09  nmol.mg  protein−1 decreased to 
0.13 ± 0.009  nmol.mg  protein−1, after 60  s, following 
a biphasic dephosphorylation kinetic process with rate 
constants of 0.022 ± 0.001  s−1 and 0.376 ± 0.022  s−1, 
for the fast and slow dephosphorylation steps, respec-
tively (Fig. 4; Table 1). Dephosphorylation assayed with 
putrescine resulted in EP concentrations varying from 

0.80 ± 0.07  nmol.mg  protein−1 to 0.12 ± 0.008  nmol.mg 
 protein−1 after 60 s (Fig. 4). For spermidine, EP concen-
tration decreased from 0.45 ± 0.03  nmol.mg  protein−1 
to 0.009 ± 0.001  nmol.mg  protein−1 (Fig.  4). For both 
polyamines, dephosphorylation also followed a biphasic 
kinetic process. For the fast step, first-order rate con-
stants of 0.115 ± 0.007  s−1 and 0.017 ± 0.001  s−1 were 
estimated for spermidine and putrescine, respectively 
(Table  1). For the slow step, first-order rate constants 
were 0.888 ± 0.053 s−1 and 0.410 ± 0.025 s−1 for spermi-
dine and putrescine, respectively.

Fig. 3  Effect of spermidine and putrescine on  K+-mediated dephos-
phorylation of [γ-32P]ATP-phosphorylated gill  (Na+,K+)-ATPase 
from juvenile and adult M. amazonicum. The gill enzyme from 
juvenile or adult (≈30  µg) shrimps was preincubated for 10  min at 
4 °C in the assay medium; phosphorylation was initiated by adding 
1.25 mmol L−1 [γ-32P]ATP, as described in the “Material and Meth-
ods” section. Dephosphorylation was initiated by adding increas-
ing KCl concentrations to the reaction medium. Mean values from 
duplicate reactions were used to fit each corresponding curve, which 
was repeated using three different microsomal preparations (±SEM, 
N = 3). Juvenile: (open circle) Control; (open triangle) 10 mmol L−1 
spermidine; (open square) 25 mmol L−1 putrescine. Adult: (open cir-
cle) Control; (open triangle) 20 mmol L−1 spermidine; (open square) 
50 mmol L−1 putrescine. Filled symbols (filled circle, filled triangle, 
filled square) represent the EP concentrations prior to the addition of 
 K+ for the control, spermidine, and putrescine assays, respectively, at 
the same polyamine concentrations

Fig. 4  Effect of spermidine and putrescine on dephosphorylation 
of [γ-32P]ATP-phosphorylated gill  (Na+,K+)-ATPase from juvenile 
and adult M. amazonicum. The gill enzyme from juvenile or adult 
(≈30  µg) shrimps was preincubated for 10  min at 4 °C in the assay 
medium; phosphorylation was initiated by adding 1.25  mmol  L−1 
[γ-32P]ATP, as described in the “Material and methods” section. 
Dephosphorylation was initiated after 5-min reaction time by diluting 
the reaction medium eightfold with 12.5 mmol L−1 ATP. Mean val-
ues for duplicate reactions were used to fit each corresponding curve, 
each of which was repeated utilizing three different microsomal prep-
arations (±SEM, N = 3). Juvenile: (filled circle) Control; (open circle) 
10  mmol  L−1 spermidine; (open square) 25  mmol  L−1 putrescine. 
Adult: (filled circle) Control; (open circle) 20 mmol L−1 spermidine; 
(open square) 50 mmol L−1 putrescine
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There was a negligible effect of spermine on gill  (Na+, 
 K+)-ATPase dephosphorylation by [γ-32P] in both juveniles 
and adults (data not shown).

Discussion

We have examined the effects of the polyamines spermine, 
putrescine, and spermidine on the phosphorylation/dephos-
phorylation rates of a gill  (Na+,  K+)-ATPase from juve-
nile and adult M. amazonicum. Putrescine and spermidine 
impair either phosphoenzyme formation, and stimulate EP 
decomposition, which reduces the net hydrolysis velocity. 
The time course of phosphointermediate (EP) formation 
is greater in adult shrimps than in juveniles for spermi-
dine, but similar for putrescine. Dephosphorylation rates 
were higher in adults than juveniles for spermidine and 
putrescine and were always higher than in controls without 
polyamines. Spermine had negligible effects on phospho-
rylation/dephosphorylation rates in both juvenile and adult 
shrimps.

Both spermidine and putrescine partially inhibited for-
mation of the phosphorylated intermediate form of the 
gill  (Na+,  K+)-ATPase in adult and juvenile M. amazoni-
cum. The inhibitory effect of spermidine is similar to that 
seen in the  (Na+,  K+)-ATPases from blue crab gill [74] and 
mammalian brain microsomal membrane [70]. However, 
although EP levels in adult shrimps estimated at a high 
 Na+ concentration are similar to those of the blue crab C. 
danae [74], putrescine had little effect on EP levels in adult 
shrimps, even at a high  Na+ concentration, suggesting that 
this polyamine stabilizes the steady-state phosphorylated 
intermediate in adult M. amazonicum.

The  E2P dephosphorylation is  K+-dependent and is 
enhanced by polyamines. This suggests that the binding of 
these organic cations to the  (Na+,  K+)-ATPase increases 
water entropy, destabilizing the acyl bond at the substrate 
binding site, increasing the rate of dephosphorylation [88]. 
Our findings suggest that polyamines inhibit M. amazoni-
cum gill  (Na+,  K+)-ATPase activity during at least two 
steps of the catalytic cycle. Since putrescine and spermi-
dine increased the EP dephosphorylation rate, polyamines 
may replace potassium ions at these cation sites, increas-
ing dephosphorylation rates. However, these polyamines 
decreased EP formation, inhibiting ATP hydrolysis, with 
a possible increase in the  E1-Na+ form, which may act as 
a rate-limiting step in the hydrolysis cycle of the M. ama-
zonicum gill  (Na+,  K+)-ATPase.

In addition to charge density, data from [76] suggest 
that the effectiveness of polyamines as inhibitors may be 
species-specific. Spermidine, possessing three positive 
charges, inhibits  (Na+,  K+)-ATPase activity more effec-
tively than putrescine with two positive charges; spermine, 

with four positive charges, has no inhibitory effect. In con-
trast to the C. danae, enzyme in which the greater size 
and charge density of spermine induced stronger inhibi-
tory effects [74], in M. amazonicum, putrescine, that has 
a smaller size and charge density, was a more effective 
inhibitor of  (Na+,  K+)-ATPase activity than spermine. 
Apparently, the presence of four positive charges in sper-
mine hinders its interaction with the inhibitory site on the 
M. amazonicum  (Na+,  K+)-ATPase, suggesting species-
specific differences at the cation sites. The negligible inhi-
bition by spermine of gill  (Na+,  K+)-ATPase activity in 
both juvenile and adult M. amazonicum contrasts with the 
considerable inhibition seen in C. danae (≈ 20%) and C. 
ornatus (≈ 58%) and Clibanarius vittatus (≈ 48%) [74, 75]. 
In vertebrate tissue, spermine stimulates  (Na+,  K+)-ATPase 
activity under specific low ionic and substrate concentra-
tions [71]. However, it is difficult to envisage a role for 
spermine in modulating  (Na+,  K+)-ATPase activity in the 
ionocyte plasma membrane of M. amazonicum gills since 
this polyamine is restricted to the cell nucleus [55]. The 
high spermine concentration found in the gills of C. sapi-
dus suggests that spermine may function as a salvage com-
pound or reserve pool to be converted back to putrescine, 
as seen in vertebrates [72, 89].

Putrescine exerted a greater inhibitory effect on gill 
 (Na+,  K+)-ATPase activity in adult (≈37%) and juve-
nile (≈ 40%) M. amazonicum [76] compared to C. danae 
(≈20%) [74] and C. ornatus [75], but only slightly affected 
ATP binding in both juvenile and adult M. amazonicum. In 
the brine shrimp Artemia franciscana and in C. sapidus, 
the decrease in gill  (Na+,  K+)-ATPase activity is accompa-
nied by an increase in putrescine concentration in the gill 
tissue [72, 90]. Putrescine increases the apparent  K0.5 for 
 Na+, allosterically affecting C. sapidus  (Na+,  K+)-ATPase 
activity [72]. Spermidine also affected the maximum rate 
of ATP hydrolysis in juveniles (≈ 60%) and adults (≈ 50%) 
[76] similarly to C. ornatus [75] and to C. danae [74]. 
The slight alterations in  KM for ATP in the M. amazoni-
cum enzyme incubated with polyamines contrasts with 
the 5-fold greater affinity for the C. ornatus enzyme [75]. 
Apparently, the effects of polyamines on ATP hydrolysis by 
the M. amazonicum gill  (Na+,  K+)-ATPase reflect a mixed-
type inhibition [76].

The greater the availability of positive charges in poly-
amine structure, the greater the ease of interaction with the 
cation-binding domain of the  (Na+,  K+)-ATPase, a motif 
classically described as rich in acidic amino acid residues 
in mammals [69, 91]. Owing to structure and charge dif-
ferences, competition between  Mg2+-ATP and spermi-
dine or putrescine for the same binding site on the  (Na+, 
 K+)-ATPase seems unlikely [67]. However, under sub-
optimal  Na+ and  K+ concentrations in the assay condi-
tions, putrescine, spermine, and spermidine significantly 
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inhibit the ATPase reaction [70, 74, 75], suggesting that 
the polyamines probably act at multiple sites during the 
 (Na+,  K+)-ATPase reaction cycle, inducing conformational 
changes that prevent substrate binding [70]. However, sper-
midine did not affect  (Na+,  K+)-ATPase affinity for ATP 
[74]. These different inhibitory effects of polyamines on 
 (Na+,  K+)-ATPase are not uncommon. At physiological 
pH, their amino groups are protonated and the fact that 
these positive charges are distributed along the different 
lengths of the carbon chain may allow specific interactions 
of each polyamine, leading to different effects on different 
targets.

Polyamines inhibit pumping activity by competing with 
 Na+ at the  Na+-binding sites, and by inhibiting enzyme 
dephosphorylation [74]. Our data suggest that phospho-
rylation rates alone are reduced in the presence of polyam-
ines, reinforcing their inhibitory profile in this partial reac-
tion of the ATPase cycle. Since the phosphorylation- and 
cation-binding sites communicate through a helix extend-
ing from  Ala749 to  Phe786 (sheet α1), and since this helix 
begins about 0.5 nm from the phosphorylation site, enzyme 
phosphorylation may induce H5 helix movement, causing a 
local conformational change at the cation-binding site that 
modifies cation affinity [92]. Whether this finding reflects 
structural differences between the juvenile and adult 
enzymes remains to be clarified.

(Na+,  K+)-ATPase activity is altered during the ontog-
eny of M. amazonicum [51]. However, whether these 
changes are due to regulation of pre-existing enzyme or 
to increased gene transcription and mRNA translation, or 
to post-translational modifications remains unclear.  (Na+, 
 K+)-ATPase from mammalian sources is regulated by pro-
tein kinase A, C and tyrosine kinase-related receptors like 
the insulin and EGF receptors [11, 93–96]. The effects of 
polyamines on the gill  (Na+,  K+)-ATPase behavior of M. 
amazonicum [76, 80] may reflect ontogenetic changes that 
correlate with the regulation of endogenous enzyme activ-
ity such as protein kinase phosphorylation or protein–pro-
tein interactions. Another important source of regulation 
comes from interaction with members of the FXYD family 
of proteins in which cation affinity and  VM are the param-
eters usually critically regulated by FXYDs [97, 98]. How-
ever, despite some findings on protein kinase and FXYD-
linked regulation of the C. danae  (Na+,  K+)-ATPase [12], 
whether crustacean ATPases respond to these modulators 
similarly to the mammalian ATPase is largely unknown.

Conclusions

Polyamines may be involved in osmotic and ionic regula-
tion by interacting directly with the  (Na+,  K+)-ATPase. 
They may be carried by the hemolymph to target tissues 

such as the gills when transport or metabolic adjustments 
are required [73]. Since polyamines can alter membrane 
permeability and ion transport [99], they may participate in 
adjustments to fluctuations in environmental salinity such 
as alterations in membrane permeability to water and ions. 
Our findings for juvenile and adult M. amazonicum suggest 
that the inhibitory effects of putrescine and spermidine on 
the kinetic behavior of the gill  (Na+,  K+)-ATPase may be 
both stage- and species-specific, and are apparently due to 
differences in phosphoenzyme formation/decomposition. 
However, whether the changes in  (Na+,  K+)-ATPase activ-
ity in the gills of M. amazonicum might be regulated in situ 
by polyamine levels remain to be investigated. Further elu-
cidation of the biochemical and physiological functions of 
polyamines should contribute to a better understanding of 
their putative role in regulating cell activities.
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