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targeting cardiac hypertrophy by blocking the phosphati-
dylinositol 3-kinase–AKT signaling pathway. Thus, our 
study suggests that isorhamnetin may represent a potential 
therapeutic strategy for the treatment of cardiac hypertro-
phy and heart failure.
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Introduction

Cardiac hypertrophy is an adaptive response of the heart 
to pressure overload, and is characterized by an increase in 
myocardial mass and accumulation of extracellular matrix 
[1, 2]. Although the hypertrophic response is initially a 
compensatory mechanism that augments cardiac output, 
prolonged hypertrophy can lead to ventricular dilatation 
and heart failure, which is increasing in prevalence and 
is a debilitating disease with high rates of mortality and 
morbidity [3]. In the previous researches, a series of stud-
ies have illuminated the signaling transduction pathways 
that induce myocardial hypertrophy [4, 5]. These signal-
ing pathways including the PKC pathway [6], the mitogen-
activated protein kineses (MAPK) pathway [7], and the 
phosphatidylinositol 3-kinase (PI3K)–AKT pathway [8], 
which directly modify transcriptional regulatory factors 
promoting alterations in cardiac gene expression and result 
in cardiac hypertrophy. However, the molecular modulators 
that antagonize the development of cardiac remodeling and 
the transition to heart failure remain incompletely defined. 
Therefore, promoting or blocking the signals and their 
transduction processes will be a key strategy for prevent-
ing the development of heart failure resulting from cardiac 
hypertrophy.

Abstract  Isorhamnetin, a flavonoid compound extracted 
from the Chinese herb Hippophae rhamnoides L., is well 
known for its anti-inflammatory, anti-oxidative, anti-adi-
pogenic, anti-proliferative, and anti-tumor activities. How-
ever, the role of isorhamnetin in cardiac hypertrophy has 
not been reported. The aims of the present study were to 
find whether isorhamnetin could alleviate cardiac hypertro-
phy and to define the underlying molecular mechanisms. 
Here, we investigated the effects of isorhamnetin (100 mg/
kg/day) on cardiac hypertrophy induced by aortic banding 
in mice. Cardiac hypertrophy was evaluated by echocardio-
graphic, hemodynamic, pathological, and molecular analy-
ses. Our data demonstrated that isorhamnetin could inhibit 
cardiac hypertrophy and fibrosis 8 weeks after aortic band-
ing. The results further revealed that the effect of isorham-
netin on cardiac hypertrophy was mediated by blocking the 
activation of phosphatidylinositol 3-kinase–AKT signaling 
pathway. In vitro studies performed in neonatal rat cardio-
myocytes confirmed that isorhamnetin could attenuate car-
diomyocyte hypertrophy induced by angiotensin II, which 
was associated with phosphatidylinositol 3-kinase–AKT 
signaling pathway. In conclusion, these data indicate for 
the first time that isorhamnetin has protective potential for 
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Chinese medicine extracts, such as polyphenols from 
grapes and grape products, have recently attracted con-
siderable attention for their protective effect on cardio-
myocytes hypertrophy [9, 10]. Isorhamnetin (molecu-
lar formula: C16H12O7), a flavonol aglycone, isolated 
from the traditional Chinese medicine H. rhamnoides 
L., was frequently used in traditional medicine to pre-
vent and treat diverse diseases [11]. Isorhamnetin has 
been shown to play a variety of roles in anti-oxidation, 
anti-inflammation, anti-tumor, anti-viral, and neuro-
degenerative injury protection and is also considered 
to have health benefits in humans [12–14]. It has been 
reported that isorhamnetin could protect rat ventricular 
myocytes from ischemia and reperfusion injury [15]. 
Yun Luo et  al. have demonstrated that isorhamnetin 
could inhibit the H2O2-induced activation of the intrinsic 
apoptotic pathway by scavenging free ROS and extracel-
lular signal-regulated kinase 1/2 (ERK1/2) inactivation 
[16]. Yun Luo et al. also found that isorhamnetin could 
protect heart against doxorubicin-induced cardiotoxic-
ity in  vivo and in  vitro [17]. In addition, Bao and col-
leagues found that isorhamnetin had protective effects on 
ox-LDL-induced endothelial cell injuries by increasing 
antioxidant activity and activating p38 MAPK signaling 
pathway [18]. In the type 2 diabetic rat model, isorham-
netin was found to be able to inhibit the NF-κB signaling 
activity, attenuate oxidative stress, and decrease the pro-
duction of inflammatory mediators [19]. Besides, pre-
sent studies indicate that isorhamnetin can suppress skin 
cancer [20], breast cancer [21], colon cancer [22], and 
atherosclerosis [23] by inhibiting PI3K/AKT activation. 
Seeing that isorhamnetin can regulate multiple hyper-
trophy-related signalings like ERK1/2, MAPKs, NF-κB, 
and PI3K/AKT in different experimental models, and 
it also plays a protective role in the cardiovascular dis-
eases, we fully speculated that isorhamnetin may have a 
protective effect on cardiac hypertrophy. Therefore, this 
study was designed to determine whether isorhamnetin 
has the protective properties against cardiac hypertrophy 
and to explore the possible molecular mechanisms.

In the present study, we investigate whether isorham-
netin could ameliorate cardiac hypertrophy induced by 
pressure overload in mice. Our results show that isor-
hamnetin mitigated cardiac hypertrophy and fibrosis 
induced by pressure overload and preserved cardiac 
function. Mechanistically, we discovered that isorham-
netin-prevented maladaptive remodeling was partially 
dependent on the regulation of the PI3K–Akt signaling 
pathway. Based on our results, we believe that isorham-
netin would become a potential therapeutic strategy for 
the treatment of cardiac hypertrophy and heart failure.

Methods and materials

Reagents

Isorhamnetin (purity, 98%) was purchased from Shanghai 
Winherb Medical S&T Development (Shanghai, China). 
The following primary antibodies were used in our experi-
ments: Anti-GAPDH (MB001) was purchased from Bio-
world Technology; LY294002 (#9901), anti-AKT (#4691), 
anti-phospho-AKT (#4060), anti-GSK3β (#9315), anti-
phospho-GSK3β (#9322), anti-mTOR (#2983), anti-phos-
pho-mTOR (#2971), anti-eIF-4E (#2067), anti-phospho-
eIF-4E (#9741), anti-PI3K (#4257), anti-phospho-PI3K 
(#4228),anti-P70S6K (#2708), and anti-phospho-P70S6K 
(#9208) were purchased from Cell Signaling Technology. 
The BCA protein assay kit was purchased from Pierce 
(Rockford, IL, USA). Peroxidase-conjugated secondary 
antibodies (Jackson Immuno Research Laboratories, West 
Grove, PA, USA) were utilized for the visualization of 
primary antibody binding. The primary antibodies were 
diluted at the ratio of 1:1000, and the dilution ratio of the 
second antibody was 1:10,000. Fetal calf serum was pur-
chased from HyClone (Waltham, MA, USA). The cell cul-
ture reagents and all of the other reagents were purchased 
from Sigma (St. Louis, MO, USA).

Animals and animal models

All of the animal procedures were performed in accord-
ance with the Guide for the Care and Use of Laboratory 
Animals published by the US National Institutes of Health 
(NIH Publication No. 85-23, revised 1996) and approved 
by the Animal Care and Use Committee of Department 
of Cardiology, Zhengzhou University. The male C57B/
L6J mice used in the experiment were obtained from Insti-
tute of Laboratory Animal Science, Chinese Academy of 
Medical Sciences (Beijing, China). Mice were randomly 
assigned into four groups. Isorhamnetin suspension was 
prepared using 0.5% carboxy methylcellulose solution for 
animal experiments. Suspensions were freshly prepared 
and administered at a constant volume of 1 ml/100 g body 
weight by oral gavage once a day. The control group of 
these animal experiments was given the same volume of 
liquid comprising solely of the vehicle solution (0.5% car-
boxy methylcellulose).

Aortic banding (AB) was conducted as described previ-
ously [24]. Treatment with 100 mg/kg/day of isorhamnetin 
or vehicle for 8 weeks after AB surgery or sham operation 
allowed for critical evaluation. Adequate constriction of 
the aorta was determined by Doppler analysis. A similar 
procedure, without constricting the aorta, was performed 
in the sham-operated group. The wall thickness and inter-
nal diameter of the left ventricle (LV) were assessed using 
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echocardiography at the indicated time after surgery. At 
the end of these procedures, the hearts, lungs, and tibiae 
from the sacrificed mice were harvested, weighed, and ana-
lyzed to compare the heart weight/body weight (HW/BW, 
mg/g), lung weight/body weight (LW/BW, mg/g), and heart 
weight/tibia length (HW/TL, mg/mm) ratios between the 
isorhamnetin-treated mice and vehicle-treated mice.

Echocardiography and hemodynamic evaluations

Echocardiography was performed in mice anesthetized with 
1.5% isoflurane using a MyLab 30CV (Esaote SpA) with a 
10-MHz linear-array ultrasound transducer in accordance 
with previously described methods [25]. The LV dimen-
sions were assessed in the parasternal long-axis and the 
short-axis views at a frame rate of 120  Hz. The LV end-
systolic diameter (LVESD) and LV end-diastolic diameter 
(LVEDD) were measured from the M-mode tracing with a 
sweep speed of 50 mm/s at the mid-papillary muscle level.

For the hemodynamic measurements, a microtip cath-
eter transducer (SPR-839, Millar Instruments, Houston, 
TX, USA) was inserted into the right carotid artery and 
advanced into the left ventricle of mice anesthetized with 
1.5% isoflurane. After stabilization for 15  min, pressure, 
volume signals, and heart rate were continuously recorded 
using a Millar Pressure–Volume System (MPVS-400, Mil-
lar Instruments, Houston, TX, USA). The results were ana-
lyzed with Chart 5.0 software.

Histological analysis

The animals were sacrificed 8  weeks after AB or sham 
surgery. The hearts were arrested with a 10% potassium 
chloride solution at end-diastole and then fixed in 10% for-
malin. Paraffin-embedded hearts were cut transversely into 
4–5-µm sections. Heart sections were stained with HE and 
PSR (to detect collagen). Cross-sectional areas of the myo-
cytes were visualized with FITC-conjugated WGA (Invitro-
gen) staining, and the cell size was measured using a quan-
titative digital image analysis system (Image-Pro Plus 6.0).

Neonatal rat cardiomyocytes (NRCMs) culture

Primary cultured NRCMs were prepared as previ-
ously described. In brief, the hearts of 1–2-day-old 
Sprague–Dawley rats were excised and digested with PBS 
containing 0.03% trypsin and 0.04% collagenase type II to 
isolate the cardiomyocytes from the fibroblasts. The cardio-
myocytes were then seeded at a density of 1 × 106 cells/well 
in six-well culture plates coated with fibronectin in plating 
medium, which consisted of F10 medium supplemented 
with 10% fetal calf serum and penicillin/streptomycin.

Immunofluorescence analysis

Immunofluorescence analysis was performed using standard 
immunocytochemical techniques. Briefly, NRCMs were pre-
treated with LY294002 for 1 h and then treated the cells with 
angiotensin (Ang) II for 48  h after treat with Isorhamnetin 
or vehicle for 24 h. Subsequently, the cardiomyocytes were 
fixed with 3.7% formaldehyde for 15 min, permeabilized with 
0.1% Triton X-100 in PBS for 40 min, blocked with a 10% 
BSA solution for 1 h at room temperature and then incubated 
with an anti-α-actinin antibody (1:100 dilution). The surface 
areas were measured using Image-Pro Plus 6.0 software.

Western blotting and quantitative real‑time PCR

Whole cell lysates were obtained by homogenizing the hearts 
or NRCMs in RIPA lysis buffer. The proteins (50 μg) were 
resolved via SDS–PAGE (Invitrogen) and transferred to a 
PVDF membrane (Millipore). The membrane was blocked 
with 10% non-fat milk and then incubated with the indicated 
primary antibodies overnight at 4 °C. After incubation with 
secondary antibodies for 1 h at room temperature, the mem-
branes were treated with ECL reagents (170–5061, Bio-Rad) 
prior to visualization using a Fluor Chem E imager (Cell 
Biosciences) according to the manufacturer’s instructions. 
The specific protein expression levels were normalized to 
GAPDH on the same nitrocellulose membrane.

Total RNA was isolated from heart tissues or NRCMs 
using TRIzol Reagent (Invitrogen), and the Transcriptor 
First Strand cDNA Synthesis Kit (Roche) was used to syn-
thesize cDNA. The mRNA levels of the indicated genes 
were quantified with real-time PCR using SYBR Green 
(Roche). The real-time PCR primers that were used are 
shown in Table 2 (in supplementary material).

Statistical analysis

The data are represented as the mean ± SD. Student’s two-
tailed t test was used to compare the means of two groups 
of samples, and two-way analysis of variance with general 
linear model procedures using a univariate approach was 
applied for more than two groups. A value of P < 0.05 was 
considered a statistically significant difference. All of the 
statistical analysis was performed with SPSS software (ver-
sion 17.0, SPSS Inc.).

Results

Isorhamnetin inhibited cardiac hypertrophy in vitro

To determine the possible role of isorhamnetin in cardiac 
remodeling, we first evaluated the effect of isorhamnetin 
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on cardiomyocyte hypertrophy in vitro, using primary cul-
tured NRCMs in a well-controlled experimental setting. 
Cardiac myocytes were pretreated with isorhamnetin at the 
indicated concentrations for 24 h and subsequently stimu-
lated with Ang II for 48  h, followed by immunostaining 
with α-actinin to measure the cell size. Our results revealed 
isorhamnetin treatment markedly attenuated the increase in 
cardiac myocyte size seen in the presence of Ang II after 
48 h of culture (Fig. 1a, b). In addition, isorhamnetin mark-
edly reduced the increased mRNA levels of atrial natriu-
retic peptide (ANP), B-type natriuretic peptide (BNP), 
and β-myosin heavy chain (β-MHC) induced by Ang II, 
especially in isorhamnetin (50 μM) group (Fig. 1c). How-
ever, the inhibitory effect of isorhamnetin did not occur in 
a dose-dependent manner. These data suggested that isor-
hamnetin could inhibit cardiac hypertrophy in vitro.

Isorhamnetin protected against cardiac hypertrophy 
induced by pressure overload

After exploring the functional contribution of isorham-
netin on cardiomyocyte hypertrophy in  vitro, we next 
sought to identify whether isorhamnetin could antagonize 

the hypertrophic response induced by pressure overload. 
Mice were randomly assigned to four groups: isorhamne-
tin-treated mice and vehicle-treated mice were subjected 
to either AB or sham surgery for 8  weeks. It is impor-
tant to pay attention to that under basal conditions, mice 
treated with isorhamnetin did not show any pathological/
physiological alterations in cardiac structure or function 
with vehicle-treated mice. However, compared to the 
AB-induced vehicle-treated mice, the myocardial hyper-
trophic response was significantly blocked in isorhamne-
tin-treated mice after 8 weeks of AB, as shown by direct 
examination of the gross heart, the cardiomyocyte cross-
sectional area (CSA) accessed by hematoxylin–eosin 
(HE), and wheat germ agglutinin–fluorescein (WGA) iso-
thiocyanate staining (Fig. 2a, b). In parallel, the ratios of 
heart weight/body weight, heart weight/tibia length, and 
lung weight/body weight were significantly decreased in 
isorhamnetin-treated mice compared with the vehicle-
treated mice after 8 weeks of AB (Fig. 2c and Table 1 in 
supplementary material). Together, the above data dem-
onstrated that isorhamnetin could retard the progression 
of cardiac hypertrophy induced by pressure overload.

*
# #

# #

0

2000

4000

6000

C
el

l S
ur

fa
ce

 A
re

a 
(µ

m
2 )

control AngII AngII+Isor 5μM

AngII+Isor 25μM AngII+Isor 50μM AngII+Isor 100μM

A

*
*

*

# # ## # ## # ## # #

0

4

8

12

16 control

AngII

AngII+Isor 5μM

AngII+Isor 25μM

AngII+Isor 50μM

AngII+Isor 100μM

R
el

at
iv

e 
m

R
N

A 
Le

ve
ls

ANP BNP β-MHC

B

C

Fig. 1   Isorhamnetin inhibited cardiac hypertrophy in vitro. a Repre-
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Isorhamnetin improved the impaired cardiac function 
after AB

To examine the protective effect of isorhamnetin on 
hypertrophy induced by pressure overload, we assessed 
the cardiac function by echocardiography. Although the 
LV dimensions and wall thickness were significantly 
increased in both the vehicle-treated and isorhamnetin-
treated mice after AB, vehicle-treated mice exhibited dete-
riorated cardiac hypertrophy and dysfunction compared 
with isorhamnetin-treated mice, as measured by echocar-
diographic parameters, LVEDD, LVESD, and fractional 
shortening (FS) (Fig.  3a, b and Table  1 in supplemen-
tary material). Moreover, we measured the expression of 
hypertrophy markers induced by pressure overload with 
quantitative real-time PCR. The mRNA levels of ANP, 
BNP, and β-MHC were obviously increased in both isor-
hamnetin-treated mice and vehicle-treated mice after AB. 
However, these increased levels were more significant in 

vehicle-treated mice than that in the isorhamnetin-treated 
mice 8  weeks after AB (Fig.  3c). Collectively, these data 
suggest that isorhamnetin is responsible for the preserva-
tion of the cardiac function induced by pressure overload.

Isorhamnetin attenuated fibrosis in pressure overload 
hearts

Pathological cardiac hypertrophy is accompanied by 
increased fibrosis, which is characterized by the overpro-
duction of extracellular matrix proteins in the heart2. To 
further define the effect of isorhamnetin on maladaptive 
cardiac remodeling, we assessed the effect of isorhamne-
tin on cardiac fibrosis. The extent of fibrosis was detected 
by both picrosirius red staining and quantitative analysis. 
Our results showed that interstitial and perivascular fibro-
sis was dramatically increased in the vehicle-treated hearts 
subjected to chronic AB, which was remarkably limited 
in isorhamnetin-treated hearts (Fig.  4a, b). Finally, we 
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measured the synthesis of collagen by analyzing the mRNA 
expression levels of fibrotic markers [eg, collagen I, col-
lagen III, and connective tissue growth factor (CTGF)] 
(Fig.  4c), which also demonstrated a blunted fibrotic 
response in isorhamnetin-treated mice, compared with 
vehicle-treated mice. Together, our results suggested that 
isorhamnetin could alleviate myocardial fibrosis induced by 
pressure overload.

Isorhamnetin inhibits PI3K–AKT signaling pathway 
in response to hypertrophic stimuli

The above results suggest that isorhamnetin might attenu-
ate pressure overload-induced cardiac remodeling. How-
ever, the molecular mechanism by which isorhamnetin 
regulates the hypertrophic response remains unknown. 
Given that the PI3K–AKT cascade signaling path-
way has been proved to play an important part in the 

development of cardiac hypertrophy, we first examined 
whether isorhamnetin affected the AB-induced activa-
tion of PI3K–AKT signaling pathway. As expected, we 
observed that PI3K, AKT, glycogen synthase kinase3β 
(GSK3β), mTOR, p70 ribosomal S6 protein kinase 
(p70S6K), and eIF-4E were significantly phosphorylated 
in AB mice. However, isorhamnetin dramatically reduced 
the phosphorylation levels of Akt, GSK3b, mTOR, PI3K, 
P70S6K, and eIF-4E, compared with those of vehicle-
treated hearts after AB (Fig.  5a, b). Although MAPK 
signaling plays an important role in the conformation 
and the development of cardiac hypertrophy, there is not 
much difference in the assessment of MAPK activation 
between the groups (data not shown). The above results 
suggest that the regulation of isorhamnetin on hyper-
trophy might be associated with PI3K–AKT rather than 
MAPK signaling pathway.
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Fig. 3   Isorhamnetin improved the impaired cardiac function after 
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(n = 6 mice per experimental group). c Real-time PCR analyses of the 
hypertrophy markers ANP, BNP, and β-MHC induced by AB or sham 
surgery in each group of mice (n = 4). *P < 0.05 versus vehicle/Sham. 
#P < 0.05 versus vehicle/AB after AB
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Protective effect of isorhamnetin against cardiac 
hypertrophy is largely dependent on the regulation 
of PI3K–AKT signaling pathway

To further examine whether PI3K–AKT signaling has a 
causative role in isorhamnetin-protected cardiac hyper-
trophy, additional in  vitro experiments were performed. 
We pretreated NRCMs with LY294002 (a PI3K inhibitor 
that prevents PI3K phosphorylation) for 1 h and then with 
Ang II for 48 h after being treated with isorhamnetin or 
vehicle for 24 h. As expected, cells treated with vehicle 
showed pronounced hypertrophy induced by Ang II as 
assessed by surface area measurements and the expres-
sion of hypertrophic hallmarks. Moreover, the hyper-
trophic response was strongly blunted in the LY294002-
treated cells compared with cells treated with Ang II 
alone (Fig. 6a, b). However, LY294002 did not affect the 
decreased hypertrophic response in isorhamnetin-treated 
cells (Fig. 6c). Collectively, these figures suggest that the 
protective effect of isorhamnetin against pathological car-
diac hypertrophy, at least partly, is by blocking the acti-
vation of PI3K–AKT signaling pathway.

Discussion

Heart failure has become one of the most important causes 
of illness and death in modern times. Although many stud-
ies have been carried out on the process of cardiac hyper-
trophy to heart failure, mechanisms that inhibit the process 
have not been well defined. Therefore, it is vital for us to 
identify the molecular mechanisms of cardiac hypertrophy 
and the functional clarification of the anti-hypertrophic 
targets. In recent decades, multiple signaling pathways 
mediating the hypertrophic development process have been 
identified, such as the MAPKs, calcineurin/NFAT, and the 
PI3K/AKT pathway. Effective blockading of these sign-
aling pathways might provide promising approaches for 
inhibiting cardiac hypertrophy and heart failure. Thus, the 
current challenge will be to find promising pharmacologi-
cal agents that selectively modulate the specific signaling 
pathways and thus to prevent pathological cardiac hyper-
trophy. Unfortunately, up to now, no effective drugs target-
ing the molecular changes involved in cardiac hypertrophy 
have been found. In our study, we used a model of cardiac 
remodeling following mechanical overload. In the present 
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b Fibrotic areas were quantified using an image-analyzing system 

(n = 33–36 fields). c Real-time PCR analyses of the fibrotic markers 
[collagen I, collagen III, and connective tissue growth factor (CTGF)] 
in the indicated mice (n = 4). *P < 0.05 versus vehicle/Sham. 
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study, our data showed that isorhamnetin prevents myo-
cardial hypertrophy and fibrosis in response to stress. Fur-
thermore, we demonstrated that isorhamnetin ameliorates 
cardiac hypertrophy partially through the regulation of 
PI3K–AKT signaling transduction pathway. To our knowl-
edge, our study results are the first to demonstrate that isor-
hamnetin could alleviate adverse cardiac remodeling and 
regulate hypertrophic signaling pathway due to chronic 
pressure overload.

The underlying mechanisms by which isorhamnetin 
regulates cardiac remodeling remain largely unknown. 
Although the hypertrophic response is just an accommoda-
tion response at first, sustained myocardium hypertrophy 
may cause ventricular arrhythmias, heart failure, and sub-
sequent cardiovascular mortality, which is one of the most 
important causes for cardiovascular diseases death. It is 
generally accepted that MAPK cascade is a key pathway in 
the process of cardiac hypertrophy [26, 27]. MAPK sign-
aling transduction contains a series of kinases, including 
p38, c-Jun N-terminal kinase 1/2 (JNK1/2), and ERK1/2. 
The activation of these kinases could directly regulate tran-
scription factors, modulate cardiac gene expression, and 
lead to cardiac hypertrophy. A recent study reported that 

isorhamnetin could inhibit cell proliferation and induce 
apoptosis through MAPK signaling pathway in breast can-
cer [21]; however, the phosphorylation of p38, JNK1/2, and 
ERK1/2 that were significantly affected in isorhamnetin-
treated mice could not be observed. These results demon-
strate that the regulatory effect of isorhamnetin on MAPK 
cascades might be tissue/cell dependent.

We then examined the PI3K–AKT signaling pathway, 
the role of which in cardiac hypertrophy is well estab-
lished. Chronic PI3K activation in the heart accentuated 
cardiac hypertrophy and myocardial dysfunction, whereas 
the hearts lacking PI3K showed blunted hypertrophic 
response to physiological stimuli [28]. The hypertrophic 
response following PI3K activation is apparently associ-
ated with PI3K downstream AKT [29], which is a serine/
threonine kinase involved in the regulation of a variety of 
cellular functions including metabolism, glucose uptake, 
proliferation, and protein synthesis, all assigned towards 
a single goal of cell survival. Targeted overexpression of 
constitutively active AKT in the heart resulted in increased 
myocyte size and cardiac hypertrophy. Activated AKT 
subsequently stimulates cell protein synthetic machinery 
by inhibition of GSK3β, which could inhibit both normal 
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Fig. 5   Isorhamnetin inhibited PI3K–AKT signaling pathway in 
response to hypertrophic stimuli. a, b The levels of total and phos-
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sion in heart tissues of mice in the indicated groups (n = 4). a Rep-
resentative blots, b Quantitative results. *P < 0.05 versus vehicle/
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size of the heart and pressure overload-induced hypertro-
phy [30]. mTOR is a large serine–threonine protein kinase, 
which is activated by phosphorylation of TSC2 by AKT. 
Activation of mTOR and its downstream targets results in 
increased cell size which is associated with cardiac hyper-
trophy [31]. Furthermore, mTOR is believed to act primar-
ily through p70S6K- and eIF-4E-binding proteins, which 
are both important regulators of protein synthesis in cardiac 
hypertrophy [32, 33]. An important finding of the current 
study is that PI3K and AKT activation were almost entirely 
blunted in isorhamnetin-treated mice. Consistent with 
the activation of PI3K and AKT, the phosphorylation of 
GSK3β, mTOR, p70S6K, and eIF-4E after AB were sig-
nificantly attenuated by isorhamnetin treatment.

To further examine whether PI3K–AKT signaling has 
a causative role in isorhamnetin-protected cardiac hyper-
trophy, we pretreated NRCMs with LY294002. As a PI3K 
inhibitor, though LY294002 has been found to inhibit other 
protein kinases, like CK2 (casein kinase 2) and Pim-1 [34, 
35], LY294002 was commonly used as a PI3K inhibitor 
in scientific research and has helped to validate pathway 
inhibition [36, 37]. Interestingly, the results showed that 

isorhamnetin could not further blunt LY294002, which 
induced decreased hypertrophic response. These data indi-
cate that the protective effect of isorhamnetin against path-
ological cardiac hypertrophy may be dependent, at least 
partly, on the blockade of PI3K–AKT signaling pathway. 
However, further investigations are needed to determine 
the molecular mechanism by which isorhamnetin inhibits 
PI3K–AKT pathway.

Fibrosis is another classical feature of pathological car-
diac hypertrophy, which is characterized by the deposition 
of the extracellular matrix. Previous study reported that 
isorhamnetin could attenuate CCl4-induced liver fibrosis 
by inhibiting TGF-β/Smad signaling. To further investigate 
the mechanism by which isorhamnetin ameliorates car-
diac hypertrophy, we examined the effect of isorhamnetin 
on cardiac fibrosis. In our study, we found that isorham-
netin could retard the development of fibrosis in pressure 
overload-induced hearts by detecting LV collagen volume. 
In addition, our results showed that the mRNA expression 
levels of known mediators of fibrosis markers were almost 
normalized by isorhamnetin treatment. This study is the 
first to report that isorhamnetin could ameliorate cardiac 
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Fig. 6   Isorhamnetin-mediated cardiac hypertrophy is largely depend-
ent on the regulation of PI3K–AKT signaling pathway. a Representa-
tive images of cardiomyocytes that were pretreated with LY294002 
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fibrosis and reduce the expression of fibrotic mediators 
induced by pressure overload.

In conclusion, the present study evidences that isorham-
netin mitigates cardiac hypertrophy and fibrosis induced 
by pressure overload through the inhibition of PI3K–AKT 
signaling pathway, which indicates there is a great possibil-
ity that isorhamnetin can be applied clinically for the treat-
ment of cardiac hypertrophy and heart failure. However, 
future study and clinical trials are needed to confirm the 
new potential clinical prospect of isorhamnetin.
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