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Abstract 1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) is

known to suppress NF-kB activity by interfering with its

pathways. The aim of this study was to investigate the

ability of 1,25(OH)2D3 in reducing the reactivation of the

HIV virus J-LAT cells, an established model of latently

infected cells, which were treated with TNFalpha (100 ng/

ml) for 2 h with or without 24 h 1,25(OH)2D3 (100 nM)

pretreatment. Reactivation of HIV RNA in J-LAT was

evaluated in terms of green fluorescent protein (GFP)

expression. The same experimental setting was repeated on

T cells from HIV-infected patients. Treatment with

TNFalpha was associated with a 16 % increase in GFP?

cells and a five-fold increase in unspliced HIV RNA

expression (p\ 0.04). Pretreatment of J-LAT cells with

1,25(OH)2D3 for 24 h followed by TNFalpha (100 ng/ml)

for 2 h reduced the percentage of GFP? cells by 8 %;

moreover, a 2.4-fold decrease in unspliced HIV RNA

expression was observed (p\ 0.002). In T cells from

patients, treatment with TNFalpha significantly increased

unspliced HIV RNA expression (sixfold increase,

p\ 0.02), whereas prestimulation with 1,25(OH)2D3

reduced its expression (2.5-fold decrease, p\ 0.02) com-

pared to controls.1,25(OH)2D3 is able to reduce the ability

of TNFalpha to upregulate the transcription of HIV RNA

from latently infected cells. These data provide further

understanding of the pathogenic mechanisms regulating

viral reactivation from latent reservoirs, along with new

insight in viral internalization.
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Abbreviations

CD4 Cluster of differentiation 4

TNF-a. Tumor necrosis factor

1,25a(OH)2D3 Vitamin D3

Vitamin D VitD3

SD Standard Deviation

MO Monocyte

LY Lymphocyte

NFKB Nuclear factor kappa B

GFP Green fluorescent protein

Introduction

1a,25-dihydroxyvitamin-D3 (1,25(OH)2D3) has pleiotropic

effects on cellular growth control, cell differentiation, and

modulation of the immune response. Several experimental

evidences have been obtained in the last decade that sup-

ports the key role played by the 1,25(OH)2D3 in the control

of both innate and acquired immune responses [1–4].

Lanolin in the skin is converted to 7-dehydrocholesterol,

which is converted to pre–vitamin D with exposure to

ultraviolet (UV) rays from the sun. Pre-vitamin D enters

the circulation and is metabolized to 25-hydroxyvitamin D,

the major circulating form of the vitamin (which has a

circulating half-life of approximately 15 days). It is sub-

sequently converted to the active form, 1,25-dihydroxyvi-

tamin D3 (called Vitamin D3), in the kidneys by the 25-

hydroxyvitamin-D3 1-a-hydroxylase (CYP27B1) enzyme

[5]. HIV patients frequently have low Vitamin D3 levels
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[6, 7]. Additionally, patients treated with nonnucleoside

reverse transcriptase inhibitors and protease inhibitors are

at increased risk of Vitamin D3 deficiency [8–11]. There-

fore, Vitamin D3 deficiency is common in HIV-infected

patients regardless of treatment status, viral load, or

CD4?lymphocyte count. There is growing recognition of

an association between Vitamin D deficiency and the

pathogenesis and course of HIV disease. Vitamin D defi-

ciency is common in HIV infection. It is present in

25–75 % of infected persons and has been associated with

more rapid disease progression. Infants born from HIV-

infected women with Vitamin D deficiency are at increased

risk of infection and have decreased survival. A number of

studies have indicated associations between low vitamin D

levels and HIV disease. In the cells, Vitamin D3 binds the

nuclear Vitamin D3 Receptor (VDR) that operates as a

transcription factor activating or repressing specific target

genes [12].

Several papers have shown the capacity of Vitamin D3

to modulate the NFjB pathways. It has been shown that

VDR signaling intrinsically suppresses NF-kB activation

since the base-line NFjB activity is elevated in the case of

genetic VDR deletion [13, 14]. It has been reported that

1,25(OH)2D3 arrests p65 nuclear translocation, blocks

NFjB DNA binding, increases IkBa levels, or stabilizes

IkBa protein [13–19]. It has also been shown that

1,25(OH)2D3 suppresses RelB transcription [20] and

reduces p105/p50 and c-rel protein levels [21]. Interest-

ingly, p65 has been reported to physically interact with

ligated VDR to modulate the transactivating activity of the

VDR [22]. Despite all of these reports, a convincing

mechanism to explain the relatively rapid inhibitory action

of vitamin D hormone on NF-kB activity is still lacking.

The role of NFjB in activating HIV transcription has

been extensively analyzed. In normal human CD4? T

lymphocytes, NFjB binding activity is low and consists

predominantly of p50, but not p65, DNA binding. T cell

activation results in the formation of p50–p65 NFjB
complexes and enhancer-dependent HIV LTR transactiva-

tion, indicating that unstimulated CD4? T lymphocytes

offer a cellular environment of low permissiveness to HIV

LTR function. In HIV-infected T cells, NFjB-dependent
transactivation is essential for HIV LTR induction. Inter-

estingly, even the function of HIV Tat in resting CD4 T

lymphocytes depends on kB responsive elements in the

LTR [23].

In the present study, we have evaluated the capacity of

Vitamin D3 to interfere with the transcription of HIV-1

virus. In order to demonstrate our hypothesis, we used the

J-LAT cell line 8.4, which has a latent HIV provirus in

which GFP replaces Nef coding sequence, and CD4? T

cells from HIV drug-naı̈ve patients with high viral load.

We show that Vitamin D3 has the ability to reduce the

production of HIV RNA, likely via NFjB. These results

indicate that the Vitamin d3 is an excellent candidate to

reduce HIV viral transcription.

Methods

Cells and HIV-1 RNA reactivation

J-LAT 8.4 cells were kindly provided by Professor Guido

Poli (University of Milano). Cells (5 9 105/mL-1) were

cultured in Gibco RPMI-1640 media, supplemented with

10 % FBS and 5 % penicillin, streptomycin at 37 �C, and
5 % CO2 under sterile conditions. For HIV-1 RNA reac-

tivation experiments, cells were mixed with TNFalpha

(100 ng/ml) for 2 h with or without a 24-h pretreatment

with 1,25(OH)2D3 (100 nM). After that, the cells were

collected for flow cytometry and the RNA/protein analysis.

Primary cells

Human peripheral blood mononuclear cells (PBMCs) were

obtained by Ficoll (FicollHistopaque; Sigma) density cen-

trifugation from 45 blood samples (10 ml) of highly vire-

mic HIV-1 drug-naı̈ve patients (cART naı̈ve patients) (see

Table 1) (Unit of Infectious Diseases, Catania, Italy).

CD4? T cells were negatively selected using magnetic

beads (CD4? T cell isolation kit II; MiltenyiBiotec) as per

manufacturer’s instructions. CD14? cells were isolated

from PBMCs using the MACS CD14 isolation kit (Mil-

tenyiBiotec) according to the manufacturer’s instructions.

CD4? T cells and CD14? were cultured in RPMI 1640

supplemented with 10 % FBS, 100 IU penicillin, 100 ng/

ml streptomycin, 0.1 HEPES, and 2 mMl-glutamine.

Lymphocyte and monocyte analyses were performed by

multicolor flow cytometry (Cytomics FC 500, Beckman

Coulter) using the following antibodies (Beckman Coul-

ter): anti-CD14, anti-CD64, and anti-CD11c (BD Bio-

sciences). Monocytes identified as CD14 ?, CD11c?, and

CD64? cells have shown purity greater than 90–95 %

(data not shown). The cells were treated as described in the

section ‘‘Cell treatment.’’ All of the patients gave informed

written consent, and this study was reviewed and approved

by the Institutional Ethical Committee board of Hospital

Clinic (Unit of Infectious Diseases, Catania, Italy).

Table 1 HIV-1 high viral load

Subjects recruited 45

Middle age 50 years ± 7.7

Median CD4? counts 123.5 cell/ll

Viral load average 12,480
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Cells treatments

Preliminary studies were performed to assess 1a,25(OH)2D3

dose and time of treatment (data not shown). Cells were

treated with different concentrations of 1a,25(OH)2D3 (100,

500, and 1000 nM) at different times (8, 16, and 24 h). Same

concentrations of ethanol were used as control. Thereafter,

we carried out the following cellular treatments:

1a,25(OH)2D3 (100 nM) for 24 h, TNFalpha (100 ng/ml)

(Peprotech, Milan, Italy) for 2 h, and a 24-h pretreatment

with 1a,25(OH)2D3 (100 nM) with a subsequent stimulation

with TNFalpha (100 ng/ml) for 2 h. Treated cells with

ethanol and PBS were used as a control.

Vitamin D3 [1a,25(OH)2D3]

A stock solution of 5 mM 1a,25(OH)2D3 (Sigma-Aldrich,

Milan, Italy) was prepared in 100 % ethanol and stored as

sterile aliquots at -20 �C. All treatments with

1a,25(OH)2D3 were carried out in dark condition.

RNA extraction, reverse transcription-PCR (RT-

PCR), and quantitative PCR (qPCR) for expression

analysis

Total RNA and DNA were extracted from cells using

TRIzol reagent (Invitrogen Life Technologies, Italy)

according to manufacturer’s instructions. cDNA was

obtained from 100 ng of total RNA using RevertAid First

Strand cDNA Synthesis kit (Thermo Scientific, Milan,

Italy) in a 20 ll reaction solution. The indicated gene

products were analyzed by PCR with specific oligonu-

cleotides, followed by visualization in agarose gels. Where

indicated, the quantification of gene products was per-

formed by real-time PCR using LightCycler 480 SYBR

green I master mix (Roche, Indianapolis, IN). Each value

was corrected by human glyceraldehyde-3-phosphate

dehydrogenase (GAPDH) and expressed as relative units.

Sequences of oligonucleotides used for real-time PCR are

shown in Table 2. Data are presented as mean% ± SD of

at least three independent experiments. Differences were

analyzed by Student’s t test, with p\ 0.05 being consid-

ered statistically significant.

NFKB inhibitor treatment

J-LAT cells were pretreated at 37 �C for 45 min with 5 lM
[24] of the NFjB inhibitor Bay11-7082 (Calbiochem, San

Diego, CA) (2, 14), or dimethyl sulfoxide as solvent con-

trol, prior to the stimulation Bay11-7082 showed no toxi-

city on J-LAT cells at the tested concentrations (data not

shown). Cells were then stimulated with TNFalpha

(100 ng/ml) and incubated at 37 �C. At 2-h post-TNFalpha

exposition, cells were collected, and total RNA was iso-

lated using TRIzol reagent (Invitrogen Life Technologies,

Italy) according to the manufacturer’s protocol and the

proteins were extracted with NE-PERTM Nuclear and

Cytoplasmic Extraction Reagents (Thermo Scientific,

Milan, Italy). The RNA was reverse transcribed into

cDNA, as previous described.

Western blot

Cells were harvested by trypsinization and cytoplasmatic

proteins were extracted using NE-PERTM Nuclear and

Cytoplasmic Extraction Reagents (Thermo Scientific,

Milan, Italy). The lysates were collected for Western blot

analysis. Protein concentrations were determined according

to the Bradford method [25]. Protein levels were visualized

by immunoblotting with antibodies against human NFKB

p65 (sc-372, Santa Cruz Biotechnology, DBA, Italy),

human b-Actin (sc-69879, Santa Cruz Biotechnology,

DBA, Italy), and human Laminin b1 (sc-377000, Santa

Cruz Biotechnology, DBA, Italy). Briefly, 40 lg of lysate

supernatant was resolved by SDS/polyacrylamide gel

electrophoresis on 4–20 % Mini-PROTEAN� TGXTM

(BIO-RAD, Milan, Italy) and transferred to a nitrocellulose

membrane trans-Blot Turbo mini nitrocellulose (BIO-

RAD, Milan, Italy) using a semidry transfer apparatus

(BIO-RAD, Hercules, CA). The membranes were incu-

bated with 5 % milk in 10 mM Tris–HCl (pH 7.4),

150 mM NaCl, 0.05 % Tween 20 (TBST) buffer at 4 �C
overnight. After washing with TBST, the membranes were

incubated with a 1:2000 dilution of anti-NFjB p65, anti-b
Actin or anti-Laminb1 antibodies for 1 h at room temper-

ature with constant shaking. The filters were then washed

and probed with horseradish peroxidase-conjugated

Table 2 Primer sequence for

Real-time PCR
Name Sequence Tm Size

HIV-1 RNA-LTR F GCCTCAATAAAGCTTGCCTTGA 64 101*

HIV-1 RNA-LTR R TCCACACTGACTAAAAGGGTCTGA 70

GAPDH F CTGCACCACCAACTGCTTAG 62 272*

GAPDH R AGGTCCACCACTGACACGTT 62

* [46]

** [47]
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antirabbit IgG-HRP (sc-2030 Santa Cruz Biotechnology,

DBA, Italy) for NFjB p65, goat antimouse IgG-HRP (sc-

2005 Santa Cruz Biotechnology, DBA, Italy) for b-actin
and Lamininb1 at a dilution of 1:2000. Detection was

performed with the TMB-Blotting 1-Step Solution

according to the manufacturer’s instructions (Invitrogen

Life Technologies, Italy).

Flow cytometry analysis for J-LAT GFP

fluorescence

GFP fluorescence was measured using a Cytomics FC500

MPL cytometer (Beckman Coulter, Fullerton, CA). A two-

parameter analysis was used to distinguish GFP-derived

fluorescence from the background. Fluorescence was rep-

resented on a logarithmic scale.

Statistical analysis

Statistical analysis was performed using Graph-Pad Prism

5 software. Data are expressed as mean ± standard devi-

ation (SD). Significance was assessed by Two-tailed paired

Student’s t test. Values of p\ 0.05 were considered sta-

tistically significant.

Results

Vitamin D3 reduces the number of J-LAT GFP1

positive cells after stimulation with TNFalpha

In this study, we used the J-LAT 8.4 cell line, which bears

a latent HIV provirus in which GFP replaces the Nef

coding sequence. These cells are commonly used to assess

the HIV provirus reactivation. Reactivation of HIV pro-

virus in this system determines the expression of the green

fluorescent protein (GFP). In a preliminary step, we eval-

uated whether the treatment with TNFalpha (100 ng/ml)

for 24 h was able to induce the expression of HIV-1 RNA.

It is known that treatment of J-LAT cells with TNFalpha

induces the efficient expression of HIV-1 RNA via NFjB
[26–28]. We observed that TNFalpha (100 ng/ml) was able

to induce HIV-1 reactivation as detected by determining

RNA expression levels (2 h, fold 3.36, p\ 0.05; 4 h, fold

5.15 p\ 0.05 and 24 h, fold 20.14, p\ 0.005) and per-

centage of GFP? cells (Fig. 1a, c). In addition, the inhi-

bition of NFjB p65 with BAY 11-7082 (5 lM for 2 h)

(Fig. 1b) reduced the internalization of p65, the expression

of HIV RNA (Fig. 1c), and the percentage of GFP? cells

(Fig. 1d).

Fig. 1 TNFalpha induces the

reactivation of HIV latent virus

via NFjB. a Time point

expression of HIV-1 RNA in

J-LAT 8.4 treated with

TNFalpha (100 ng/ml);

b Western blotting analysis of

NFKB p65 in J-LAT treated

with BAY11-7082 (5 lM) and

TNFalpha; c RNA expression of

HIV-1 RNA in J-LAT treated

with BAY11-7082 (5 lM) and

TNFalpha (100 ng/ml);

d Fluorescence analysis for

J-LAT GFP ? cells treated with

BAY11-7082 (5 lM) and

TNFalpha (100 ng/ml). Data are

expressed as mean ± SD of at

least three independent

experiments.

*P\ 0.01,**P\ 0.001,

***P\ 0.0001, ns not

significant, compared to cells

untreated. The figure shows

representative data from one of

three replicate experiments

52 Mol Cell Biochem (2016) 418:49–57

123



We show that 24-h pretreatment with 1a,25(OH)2D3

(100 nM) and subsequent stimulation with TNFalpha

(100 ng/ml) is associated to a significant reduction in the

percentage of GFP? cells (8.35 vs. 16.22 % in the control

TNFalpha-treated group) (Fig. 2). The 24-h pretreatment

with 1a,25(OH)2D3 (100 nM) significantly reduces the p65

nuclear translocation (fold 0.56, p\ 0.0002) in J-LAT 8.4

cells under stimulation with TNFalpha (100 ng/ml for 2 h)

(Fig. 3). This finding could justify the reduction of HIV-1

RNA expression (Fig. 4a). In particular, 1a,25(OH)2D3

treatment for 24 h significantly reduces the expression of

HIV-1 RNA (fold 0.6, p\ 0.005) compared to the control

(untreated J-LAT cells) and the stimulation of J-LAT cells

with TNFalpha after 24 h of 1a,25(OH)2D3 exposition is

associated to significantly lower HIV-1 RNA levels (fold

2.1, p\ 0.005) compared to J-LAT cells stimulated with

TNFalpha alone (fold 4.9, p\ 0.00) (Fig. 4a).

Vitamin D3 reduces the expression of HIV RNA

in HIV patients CD41T cells

In order to confirm the data obtained using the J-LAT cells,

we replicated the same experimental conditions on

CD4? T cells isolated from HIV drug-naive patients with

high viral load ([10,000 RNA copies/ml).

We show that the CD4? lymphocytes (LY) from HIV-1

patients present significantly higher levels of HIV RNA

(fold 53.94, p\ 0.005) compared to monocytes (MO).

Vitamin d3 treatment significantly reduced HIV RNA

expression levels (fold 21.74 p\ 0.005) compared to the

untreated cells. TNFalpha stimulation significantly

increased the levels of LTR after 2 h of exposure (fold

79.53, p\ 0.005) compared to control cells and LTR

levels were reduced in the cells pretreated for 24hs with

Vitamin D3 (fold 34.03, p\ 0.005) (Fig. 4b). These data

Fig. 2 Vitamin D3 interferes with the TNFalpha activation pathways

of GFP fluorescence analysis in J-LAT 8.4 treated with TNFalpha

(100 ng/ml) for 2 h (h) with or without 24 h pretreatment with

1,25(OH)2D3 (VitD3) (100 nM). TNFalpha stimulation increases the

GFP? cells after 2 h (16.22 %) and treatment with VitD3

significantly reduces the number of GFP? cells (8.35 %). The

analysis was performed using a Cytomics FC500 MPL cytometer

(Beckman Coulter, Fullerton, CA). A two-parameter analysis was

used to distinguish GFP-derived fluorescence from the background.

Fluorescence was represented in a logarithmic scale
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confirm the antiviral role played by the Vitamin D3 in HIV

infection.

Discussion

In this article, we demonstrate that Vitamin D3 is able to

modulate the expression of HIV-1 RNA in J-LAT cells and

in HIV-1 drug-naı̈ve patients CD4 T cells (Fig. 5). Our

results show that treatment of J-LAT cells with TNFalpha

determines an increase in the expression of HIV provirus.

Furthermore, the inhibition of NFjB significantly reduces

the expression of LTR and the percentage of GFP? cells in

the J-LAT cell line. These results are in accordance with

the evidence that the NFjB signal transduction pathway is

essential for viral transcription [29]. Previous studies have

found that the intracellular efficiency of HIV-1 gene

expression and replication is due in part to the ability of

HIV-1 to co-opt host signaling pathways to activate viral

transcription [30]. The promoter-proximal (enhancer)

region of the HIV-1 long terminal repeat (LTR) contains

two adjacent NFjB binding sites (–109 to –79) that play a

central role in mediating inducible HIV-1 gene expression.

In fact, transdominant mutants of IkBa that block NFjB

Fig. 3 p65 nuclear translocation in J-LAT with and without Vitamin

D3 exposition. J-LAT treated with TNFalpha (100 ng/ml) signifi-

cantly increases the p65 nuclear translocation (fold 2.5, p\ 0.0001).

J-LAT pretreatment with Vitamin D3 (100 nM) reduces significantly

the p65 nuclear translocation (fold 0.8, p\ 0.0001). In J-LAT co-

stimulated with Vitamin D3 and TNFalpha, we have shown that the

p65 nuclear translocation was reduced significantly (fold 0.56,

p\ 0.0001). Data are expressed as mean ± SD of at least three

independent experiments. *P\ 0.01, **P\ 0.001, ***P\ 0.0001

compared to untreated cells. The figure shows representative data

from one of three replicate experiments Fig. 4 Modulation of HIV RNA by Vitamin D3 in J-LAT cells and

HIV CD4?Tcells. a PCR analysis in J-LAT 8.4 treated with

TNFalpha (100 ng/ml) for 2 h with or without 24 h pretreatment

with 1,25(OH)2D3 (VitD3) (100 nM). VIT D3 treatment for 24 h

significantly reduces the expression of HIV-1 RNA (fold 0.6,

p\ 0.005) compared to the control (J-LAT untreated) and J-LAT

stimulation with TNFalpha after 2 h of Vitamin D3 exposition

produces significantly lower levels (fold 2.1, p\ 0.005) compared to

J-LAT treated with TNFalpha alone (fold 4.9, p\ 0.00). b PCR

analysis in CD4?T cells isolated from HIV naive patients with high

viral load. TNFalpha stimulation significantly increases the levels of

HIV-1 RNA after 2 h of exposition (fold 79.53, p\ 0.005) compared

to monocyte (MO), lymphocyte (LY) and was reduced in the cells

treated for 24hs with vitamin D3 (fold 34.03, p\ 0.005). Data are

expressed as mean ± SD of at least three independent experiments.

*P\ 0.01, **P\ 0.001, ***P\ 0.0001 compared to untreated cells
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induction also inhibit de novo HIV-1 infection in T cells by

interfering with viral transcription [31–33]. Additional

evidences come from the internalization of the p50/p65

complex. In normal human CD4?T lymphocytes, NFjB
binding activity is low and consists predominantly of p50,

but not p65, binding to the DNA. T cell activation results in

the formation of p50-p65 NFjB complexes and enhancer-

dependent HIV-1 LTR transactivation [29], indicating that

unstimulated CD4?T lymphocytes offer a cellular envi-

ronment of low permissiveness to HIV-1 LTR function. In

HIV-1-infected T cells, the NFjB-dependent transactiva-
tion is essential for HIV-1-LTR induction. Interestingly,

even the function of HIV-1 Tat in resting CD4?T lym-

phocytes depends on kB responsive elements in the LTR

sequence. Furthermore, CD4?T lymphocytes carrying an

infectious HIV-1 provirus with point mutations in these

elements fail to transcribe viral RNA upon cell activation

[23]. However, other studies indicate that NFjB sites are

not absolutely required for viral growth, since HIV-1 will

grow, albeit slowly, in the absence of NFjB domains [34].

In light of this evidences, it seems clear that the inhi-

bition of NFjB pathways is a hotspot for the transcription

of HIV-1 virus. It is evident that the use of natural com-

pounds that interfere with the NFjB pathways is ideal for

the treatment of virus replication. Vitamin D3 is one of the

most potent natural inhibitors of NFjB. Consistently, many

studies have shown that 1,25(OH)2D3 down-regulates a

variety of genes, including IL-12, IL-8, MCP-1, PAI-1,

angiotensinogen, and microRNA-155 by blocking NFjB
activation [35, 36].

Severe hypovitaminosis D is common among HIV

patients. Ansemant and collaborators have shown in a

cross-sectional study that 36 % of HIV-infected outpatients

suffer from severe hypovitaminosis D [37]. Low serum

levels of 25-hydroxyvitamin D are associated with

impaired CD4 recovery following HAART [38], possibly

due to Vitamin D3-associated production of naive CD4

cells that occur during immune reconstitution [39].

Importantly, low serum 25-hydroxyvitamin D and 1,25-

dihydroxyvitamin D levels correlate with HIV-1 disease

progression and mortality [39] and low 25-hydroxyvitamin

D plasma levels seem to affect the probability of being

infected with HIV-1. Indeed, Mehta et al. [40] observed

that the risks of HIV-1 infection and neonatal death are

higher in children born to women with hypovitaminosis D.

Finally, independent reports suggest a protective role of

Vitamin D in TB and opportunistic infections in HIV-1

patients [41, 42], partly by inducing autophagy and by

inhibiting the expression, secretion and activity of MMP7,

MMP9, and MMP-10 [43–45].

In conclusion, the effects of vitamin D appear to be many-

fold. On one hand, vitamin D supplementation in HIV-in-

fected subjects can promote improved antibacterial immu-

nity. On the other hand, vitamin D inhibits viral replication

upon immune activation, by blocking the NFjB pathway.

Our data support the role for Vitamin D3 in the control of

Fig. 5 Graphical representation of Vitamin D3 action in J-LAT and in HIV-1 CD4?Tcells. The graphical representation shows the modulation

role played by the Vitamin D3 in J-LAT and in HIV-1 CD4?T cells isolated from HIV-1 naive patients with high viral load
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HIV-1 infection, and provide a biological explanation for the

benefits of Vitamin D3 in HIV-1 patients. Therefore, results

from this study provide support for the usefulness of vitamin

D supplementation in HIV-1 patients.
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