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Abstract Telocytes (TCs) are a novel cell type identified

among interstitial cells in various organs. TCs are charac-

terized by very long cell processes (tens to hundreds

micrometres) named telopodes (Tps) with uneven calibre:

dilations (podoms) and very thin segments (podomers).

However, little is known about the factors which influence

Tps conformation. Recently, extracellular matrix proteins

were found to influence Tps extension, adherence and

spreading. Here, we show that oxidative stress and ageing

influence formation of new Tps of TCs cultivated from

human non-pregnant myometrium. Using real-time

videomicroscopy, we found that ageing the TCs to passage

21 increased the ratio of Tps/TC number with about 50 %,

whereas oxidative stress hindered formation of new Tps in

both aged and young TCs (passage 7). Under oxidative

stress, newly formed cell processes were up to 25 % shorter.

Migration pathway length was decreased by 30–40 % for

both young and aged cells in an oxidative stress environment.

Contrary, addition of N-acetyl cysteine in cell culture med-

ium shifted TCs morphology to a long and slender profile. In

conclusion,we showed that TCs specificmorphology in vitro

is influenced by oxidative status balance, as well as ageing.
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Introduction

Telocytes (TCs) were identified as a new cell type among

interstitial cells [1]. The main feature that distinguishes

TCs from any other cell is their long and thin prolongations

named telopodes (Tps), ranging from tens to hundreds lm.

Therefore, TCs are shortly defined as ‘cells with Tps’ [2].

TCs were found in heart [3–5], including cardiac valves

[6], gastrointestinal tract [7, 8], liver [9], bone marrow [10],

blood vessels [11], kidney [12, 13], lung [14, 15], uterus

[16, 17], fallopian tubes [18] and even in the eye [19]. The

existence and spatial conformation of Tps were confirmed

by focused ion beam scanning electron microscope (FIB-

SEM) [20, 21]. Several reports presented the chromosomal

gene expression profiles [22–25], the microRNA profile

[26], proteomic profile [14, 27] and the secretome of TCs

[28]. Recent reviews on TCs are available [29–31].

The influence of extracellular matrix proteins [32] and

low level laser stimulation [33] on Tps formation were

reported. Since a recent paper identified TCs as interstitial

cells with a very high expression of mitochondrial super-

oxide dismutase (10 times over fibroblasts) [27], we were

interested to test the consequences of overwhelming their

antioxidant protection. There are data showing the effect of

altered SOD2 expression in various cell types: Wang et al.

indicated that overexpression of SOD2 in vascular smooth

muscle cells inhibited cell migration and proliferation [34],

while Zhang et al. reported that knockdown of SOD2 in

mouse embryonic fibroblasts leads to a senescence-like

phenotype, with decreased signals cell growth and
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proliferation [35]. Oxidative stress has been under intense

scrutiny as it has been shown to negatively influence the

cellular milieu and cell behaviour in a broad range of

pathologies [36], as well as in normal ageing [37].

Oxidative stress-linked cellular effects were thoroughly

investigated, from activation of cell signalling [38, 39],

oncogenic transformation [40], to cellular senescence [41],

cell cycle progression [42] and telomere length [43].

Cytoskeleton modifications and cell morphology changes

were also reported [44]. However, most studies involved

end-point analysis, which could overlook early cellular

events. We propose here time-lapse analysis of cell mor-

phology under oxidative stress in an attempt to identify a

morphological response pattern to oxidative stress. We

used TCs isolated from human non-pregnant myometrium,

which were thoroughly described in a previous report [17].

In conclusion, we show here that balance between oxida-

tive and reducing conditions, as well as ageing impact Tps

formation and morphology in cell culture.

Materials and methods

Cell cultures and cell treatments

Myometrium TCs were isolated as previously described

from human non-pregnant myometrium [17]. In brief,

biopsy pieces were stereo-dissected and minced, treated

with 10 mg/ml collagenase Ia in complete cell medium.

Dissociated cells were separated from non-digested tissue

by filtration through a cell strainer (100 lm), collected by

centrifugation at 2509g for 10 min at room temperature

and seeded in 25-cm2 plastic culture flasks at a density of

5 9 104 cells/cm2.

Redox status was modified by treatment with 200 lM
H2O2 and N-acetylcysteine (NAc), in concentrations

ranging from 200 to 10 mM.

Cell viability analysis

5000 cells were plated in each well and left to adhere

overnight. The following day serial dilutions of H2O2 or

NAc were added in triplicates for 24 h. Then, MTS was

added to each well, according to manufacturer’s protocol

(CellTiter 96� AQueous One Solution Cell Proliferation

Assay, Promega) After 3 h at 37 �C in a humidified, 5 %

CO2 atmosphere, the absorbance at 490 nm was recorded

using an ELISA plate reader.

Time-lapse videomicroscopy

Cells were seeded at a density of 5000 cells/chamber in 4

chamber 35 mm bottom glass dishes (HIQ4 glass dishes,

Ibdi), allowed to adhere overnight, and then treated with

H2O2 or NAc at the indicated concentrations for at least

24 h. Treated cells were recorded every 10 min in a Nikon

BioStation IM (EU, Amsterdam) compact cell incubation

and monitoring unit. Data were collected from at least nine

different microscopic fields from each chamber. Analysis

of Tps and cell migration was performed using NIS-Ele-

ments BR3.0 Microscope Imaging Software (EU,

Amsterdam).

Measurement of intracellular oxidative stress

5000 cells were plated in 4 chamber 35 mm bottom glass

dishes (HIQ4 glass dishes, Ibdi) and incubated with 5 lM
CellROX green (Life Technologies, C10444) in complete

media and treated with H2O2 200 lM. Cell staining was

documented in real-time, every 20 min, using the Nikon

BioStation cell incubator. Data were collected for 20 h.

Tps length and cell migration analysis

Tp lengths used for statistical analysis represented the

average of three measurements taken at three successive

time points, between 2 and 8 h of cell treatment. Cell

migration was assessed as the sum of all linear trajectories

of the nucleolar-associated heterochromatin. Migration was

assessed for the same duration for all cases (e.g. 4 h)

during the first 8 h of cell treatment.

Statistical analysis

Statistical analysis was performed using two-tailed

unpaired t test using SPSSv19 software. Statistical signif-

icance for Tps length (n = 15) and migration pathway

length (n = 10) was reached for *p\ 0.05.

Ethical statement

The study was performed in accordance to the declaration

of Helsinki and it was approved by the local Bioethics

Committee of the University of Medicine and Pharmacy,

Bucharest. Written informed consent was given by all

patients.

Results

Ageing the TCs cell culture to passage 21 increased

Tps formation

Given the extensive data accumulated on the relationship

between ageing and oxidative stress, including SOD2

involvement in cellular senescence [45], we were interested
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to see if ageing our cell culture (20 passages) would

influence Tps formation. We found that the aged cell cul-

ture exhibited increased number of Tps with specific,

moniliform aspect (Fig. 1b), versus earlier passage (pas-

sage 7, Fig. 1a). By quantifying the ratio between Tps/TCs

in aged and young cell cultures, we observed that ageing

increased Tps formation with about 50 % (Fig. 1).

Time-lapse videomicroscopy showed that oxidative

stress decreased formation of Tps in a time-

dependant manner, as well as the migration pathway

length of TCs

We exposed TCs culture (passage 7) to 200 lM H2O2 for

24 h to observe the effect on Tps formation in real time.

Dosage was chosen lower than the literature reports on

H2O2-induced apoptosis, ranging from 3 to 500 lM [46–

48]. Non-apoptotic effects were reported with concentra-

tions up to 300 lM [49]. We did perform, however, a

toxicity curve on TCs culture to establish that the chosen

concentration is not cytotoxic in this particular case.

We observed that formation of Tps is hindered and the

effect is time-dependant, being most obvious during the

first 8–10 h (Fig. 2). Also, the effect persists throughout

various passages. Length measurement of new Tps formed

during the first 10 h of oxidative stress yielded a 25 %

decrease versus control.

Migration was also affected, as migration pathway

length decreased up to 40 % under oxidative stress versus

control.

Aged cells exhibit increased vulnerability

to hydrogen peroxide treatment, in terms of Tps

formation

We assessed whether hindered formation of Tps under

oxidative stress is influenced by ageing. The aged cell

culture (passage 21) was exposed to the same experimental

Fig. 1 Human non-pregnant myometrium. TCs cell culture passage 7

(a) and passage 21(b). Ageing increased the number of Tps with

specific moniliform aspect (white arrows). The ratio of Tps/TCs

number on a given field was increased in aged cells (p = passage).

Statistical significance was performed using two-tailed, unpaired t test

(*p\ 0.05) (c)
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Fig. 2 Assessment of Tps length and TCs migration under oxidative

stress by videomicroscopy in human non-pregnant myometrium TCs.

Myometrium TCs were recorded for 24 h under standard cell culture

conditions (a) and oxidative stress (200 lM H2O2) (b). Oxidative
stress hindered cells’ ability to form Tps (white asterisk). Cell

prolongation’s mean length was assessed by measuring length at

different time points. The mean value was further used for statistical

analysis (n = 10) (c). Migration length was assessed by following

migration pathway of nucleoli as cell marker (n = 10) (d). H2O2

toxicity was assessed using an MTS assay. Each point represents the

mean ± SD of 3 replicates (e). Statistical significance was performed

using two-tailed, unpaired t test (*p\ 0.05)
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conditions as passage 7, in order to analyse the length of

Tps and migration pathway.

Oxidative stress produced the same effect on aged cells

as it did on young cell culture—impairment of Tps for-

mation, but with a greater impact. Aged TCs failed almost

completely to extend new Tps during the first 8–10 h of

H2O2 exposure (supplementary movie 1) and the effect

extended up to 15 h (Fig. 3b). Migration pathway was

decreased with approximately 30 % under oxidative stress

versus control (c).

Fig. 3 Impairment of Tps formation under oxidative stress in aged

TCs. Aged TCs were recorded for 24 h under standard cell culture

conditions versus oxidative stress (200 lM H2O2) in a time-lapse cell

culture setup. At t0, TCs exhibited normal morphology, with long,

moniliform Tps (a), whereas after 13 h of oxidative stress, formation

of such prolongations was still severely impaired (b). Migration

length was decreased under oxidative stress (c). Statistical signifi-
cance was performed using two-tailed, unpaired t test (*p\ 0.05)

Mol Cell Biochem (2015) 410:165–174 169

123



Next, we stained cells with a marker for intracellular

reactive oxygen species, compatible cu cell culturing,

which allowed us to observe in real-time generation of

cytoplasmic oxidative stress. Thus, we noticed that aged

cells showed increased basal levels of oxidative stress

when compared to young cells (Fig. 4).

High doses of N-acetyl cysteine preserve cellular

morphology to the point of inertness

We were interested to see whether an antioxidant treatment

would produce opposite changes of cell morphology and

migration. Therefore, after MTS evaluation of cell toxicity,

we treated TCs with 200 mM NAc. However, at this

dosage, cells were practically ‘‘frozen’’: they did not

modify their shape, nor migrated or divided during 24 h of

treatment. We repeated the experiment with 100 mM and

obtained the same result (supplementary movie 2). Fur-

thermore, cells did not recover motility after we replaced

NAc-containing media with normal media. At 10 mM

NAc, cells regain motility; but after 30 h, they begun to

change shape to an elongated cell body, extending long and

stable cell prolongations (Fig. 4b). Migration pathway

length was not significantly modified under reducing con-

ditions versus control (Figs. 4c, 5).

Discussion

Our main observations are that oxidative stress hindered

Tps formation, while reducing environment promoted the

stabilization of cellular processes. We aimed to achieve an

experimental setup, simple, reliable, reproducible, starting

from previously reported and widely accepted experimen-

tal conditions that would allow us to study TCs morphol-

ogy. We chose external oxidative stress with H2O2 for the

following reasons: (i) H2O2 has been used for quite some

time in oxidative stress studies (comprehensively reviewed

in [50] and (ii) its effects on apoptosis [51], senescence

[52], cell signalling [53–55] and cell cycle progression [42]

are thoroughly investigated. The downside of most of

earlier studies with H2O2 is the end-point type of analysis,

sometime extended to several days post-treatment.

Although intensely studied in cell and molecular biol-

ogy, little is known about oxidative stress effects on cell

morphology and even less regarding cell prolongations.

Most data are collected from neuronal biology and there

are several recent reports to highlight the involvement of

oxidative stress in dendrite and axon formation. Gioran

et al. showed that mutations of mitochondrial complex I

subunits in C. elegans and subsequent impaired oxidative

phosphorylation caused an unexpected outgrowth of

Fig. 4 Cell staining with reactive oxygen species-dependant dye.

Both aged cells (upper panel) and young cells (lowe panel) were

incubated with 5 lM CellROX green and recorded for 20 h, every

20 min, with both green filter (a, c) and phase contrast. Fluorescent

spots (white circles) were detected in basal conditions more

frequently in aged than young cells. Overlapping of phase-contrast

and fluorescent images of aged (b) and young (d) cell culture
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dendritic arbors and ectopic structures [56]. Zou et al. used

a bigenic mouse model, which overexpressed SOD only in

Ca/calmodulin-dependent protein kinase-(CaMKII)

positive neurons in an otherwise EC-SOD-deficient envi-

ronment and reported an increased dendritic arborisation

[57]. Jackson et al. argued that rabies-infected dorsal root

ganglia developed axonal injury via oxidative stress; this

mechanism ‘‘may explain previous observations of the

degeneration of neuronal processes’’ [58].

We investigated cell behaviour under oxidative stress in

a time-lapse videomicroscopy setup which allowed us to

observe early modifications. We noticed that a 24-h end-

point study would overlook important cell behaviour and

morphology alterations. Also, the time window to observe

significant changes differs between young and old cells.

Oxidative stress hindered the cells’ ability to form Tps.

Notably, the cells do not lose the already established cell

processes, just the ability to generate new ones. Contrary,

when treated with NAC, cells tend to extend their bodies

and form long cell processes. The effect is, however, vis-

ible after at least 30 h. Pretreatment with NAC for 1–24 h,

as reported in most studies [59–61], is insufficient for

occurrence of significant cell morphology changes.

Importantly, cell migration was impaired in both oxidative

and extreme reducing environments. Time-lapse analysis

of cell migration could provide more accurate results than

scratch-wound assay, regarding cell motility. Scratch-

wound assay evaluates the cover-up of a nude surface after

a given period of time, disregarding the contribution of

cells multiplication to the process. By time-lapse, we

analysed only those cells that did not entered mitosis

throughout the entire measured time interval. Also, most

assays are evaluated for a 24-h period [62, 63], which

extends beyond the optimum time for migration assessment

under oxidative stress.

Evaluation of cell migration under different redox con-

ditions may have putative important impact on therapeu-

tics. For example, totally opposite pathological processes,

such as chronic liver diseases and hepatocellular carcinoma

[64], share an oxidative microenvironment. From such a

perspective, oxidative balance emerges as a delicate equi-

librium to be further tilted towards the desired effect—

increased migration for stem cells and precursor cells in

degenerative processes or decreased cell migration for

tumours. It is possible that oxidative stress could influence

the microvesicle release by TCs [65] or their secretome

[28].

Conclusions

Our study showed that TCs morphology can be changed by

ageing or by modifying the redox balance of the cell cul-

ture environment. Oxidative stress impaired the ability of

TCs to form Tps and the migration pathway length. Ageing

further aggravated this effect. Contrary, a reducing

Fig. 5 TCs morphology changes under 10 mM N-acetyl cysteine

treatment (control (a) versus treated cells (b)). Visible modifications of

cell morphology appear after 30 h and become distinct after 48 h of cell

treatment.Under reducingconditions, cell shapebecomesmore elongated

and cell prolongations more stable (b). NAc toxicity was assessed by

MTS assay. Each point represents the mean ± SD of 3 replicates (c)
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environment promotes the elongation of the cell body and

stabilization of cell processes, via a mechanism to be fur-

ther determined.
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