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Abstract Oxidative stress and mitochondrial dysfunction

are implicated in neuronal apoptosis associated with

Huntington’s disease. Naringin is the flavanone present in

grapefruit and related citrus species possess diverse phar-

macological and therapeutic properties including antioxi-

dant, anti-apoptotic, and neuroprotective properties. The

aim of this study was to investigate the protective effect of

naringin on 3-nitropropionic acid (3-NP)-induced neuro-

toxicity in pheochromocytoma cells (PC12) cells and to

explore its mechanism of action. Naringin protects PC12

cells from 3-NP neurotoxicity, as evaluated the by cell

viability assays. The lactate dehydrogenase release was

decreased upon naringin treatment in 3-NP-induced PC12

cells. Naringin treatment enhances the antioxidant defense

by increasing the activities of enzymatic antioxidants and

the level of reduced glutathione. The increase in levels of

reactive oxygen species and lipid peroxidation induced by

3-NP were significantly decreased by naringin. PC12 cells

induced with 3-NP showed decrease in the mitochondrial

membrane potential and mitochondrial respiratory complex

enzymes, succinate dehydrogenase and cytochrome c oxi-

dase activities, and it was significantly altered to near

normal upon naringin treatment. Naringin reduced the

3-NP-induced apoptosis through the modulation in

expressions of B-cell lymphoma 2 and Bcl-2-associated X

protein. Further, naringin enhances the nuclear transloca-

tion of Nrf2 and induces the NAD(P)H:quinone oxidore-

ductase-1 and Heme oxygenase-1 expressions through the

phosphatidylinositol-3-kinase (PI3K)/Akt signaling path-

way. Taken together, the above findings suggest that nar-

ingin augments cellular antioxidant defense capacity and

reduces the 3-NP-induced neurotoxicity in PC12 cells

through the PI-3K/Akt-dependent Nrf2 activation in PC12

cells.
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Introduction

3-Nitropropionic acid (3-NP) is a neurotoxin produced by

numerous fungal species and naturally exists in leguminous

plants. 3-NP inhibits the mitochondrial enzyme succinate

dehydrogenase, involved in both electron transport chain

and the tricarboxylic acid cycle [1]. 3-NP has been shown

to be responsible for the neurodegeneration caused in

human—by the ingestion of sugar cane, corn, and peanuts

contaminated by Arthrinium fungi [2]. Huntington’s dis-

ease (HD) is an autosomal dominant, inherited neurode-

generative disorder, clinically characterized by involuntary

choreic movements, cognitive impairment, and dementia

[3]. 3-NP can induce biochemical and pathological changes

and also selective striatal lesions in rats and non-human

primates, mimicking those in HD [4, 5].

Mitochondria play significant role in the process of

apoptosis and also in neurodegeneration [6]. Both HD and

3-NP neurotoxicity are characterized by the functional

impairment of mitochondrial complex II [1, 7]. Disruption

of mitochondrial activity is associated with the abnormal

production of reactive oxidative species (ROS) like

superoxide radical, hydrogen peroxide, hydroxyl radical,
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peroxyl radical and peroxynitrite, thereby generating

oxidative stress [8]. Oxidative stress has been shown to be

associated with the progression of striatal-lesion; a major

pathological feature of HD [9]. ROS in turn renders mito-

chondria susceptible to oxidative damage. Mitochondrial

dysfunction caused by ROS-induced oxidative damage has

been shown to involve in the development of apoptotic cell

death in HD as well as in 3-NP toxicity [10, 11].

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a

redox-sensitive transcription factor. Nrf2 is a key regulator

in the coordinated induction of numerous cytoprotective

and endogenous antioxidant genes and controls the physi-

ological and pathophysiological perturbations of oxidants

[12]. Under basal conditions, Nrf2 is anchored in the

cytoplasm through binding to Kelch-like ECH-associated

protein 1 (Keap1), and is maintained at a low level by

proteasomal degradation. During oxidative stress, Nrf2

dissociates from Keap1 and translocates into nucleus and

elicits the antioxidant response by the induction of target

gene products [13]. Nrf2 activation and consecutive cyto-

protective gene induction stimulate the restoration of bal-

ance between oxidants and antioxidants during oxidative

stress. Recently, numerous studies have demonstrated that

activation of Nrf2 pathway can intensely attenuate multiple

pathophysiological processes, including oxidative stress,

mitochondrial dysfunction, and apoptosis [14, 15]. Inter-

estingly, recent studies suggest that Nrf2 is regulated

through phosphatidylinositol-3-kinase (PI3K)/Akt signal-

ing pathway [16, 17]. Indeed, Nrf2 regulation by this

kinase appears to be an important mechanism in Nrf2-

mediated ARE activation.

Flavonoids are the most abundant polyphenolic sub-

stances in our diet, which is present in most of the plant

[18]. Recent studies have suggested that the flavonoids

exhibit protection against neurodegeneration [19, 20].

Naringin, a well-known flavanone glycoside of grape fruits,

e.g., Citrus paradise, Citrus unshiu, and Citrus sinensis, has

been reported to attenuate the oxidative stress, apoptosis,

and inflammation, demonstrated to possess neuroprotective

effect [21, 22]. Further, naringin has been reported to

possess various biological and pharmacological properties

including antioxidant, anti-carcinogenic, and anti-athero-

genic properties [23–25]. In our earlier studies, we have

demonstrated the naringin-mediated protection in 3-NP-

induced neurodegeneration through the Nrf2 signaling

pathway in rats [26, 27]. Further the naringin was previ-

ously reported to activate PI-3K/Akt signaling pathway

[28]. However, the protective effect of naringin by the PI-

3K/Akt-mediated Nrf2 activation in 3-NP-induced neuro-

toxicity in PC12 cells is not elucidated. The aim of the

present study is to investigate the protective effect of nar-

ingin on 3-NP-induced neurotoxicity in PC12 cells through

the PI-3K/Akt-dependent Nrf2 activation.

Materials and methods

Chemicals and reagents

PC12 cells were purchased from National Centre for Cell

Science, Pune, India. Roswell Park Memorial Institute

(RPMI) 1640 medium, trypsin–EDTA, L-glutamine, fetal

bovine serum (FBS), horse serum, and antibiotics were

purchased from Himedia Laboratories, Mumbai, India.

Poly-L-lysine solution, 1-(4,5-dimethylthiazol-2-yl)-3,5-

diphenylformazan (MTT), 20,70-dichlorofluorescin diac-

etate (DCFH2-DA), and 5, 50, 6, 60-tetrachloro-1, 10, 3,

30 tetraethylbenzimidazolylcarbocyanine iodide (JC-1)

were purchased from Sigma-Aldrich Company, St. Louis,

MO, USA. LY294002 was purchased from Life Tech-

nologies, Inc. All disposable wares used for cell culture

including tissue culture flasks, 96 and 6-well plates were

purchased from Tarsons Product Pvt. Ltd., Kolkata, India.

Cell culture

The PC12 cells were grown in poly-L-lysine-coated tissue

culture flask in RPMI-1640 medium supplemented with

10 % heat-inactivated FBS and 5 % heat-inactivated horse

serum, 1 % L-glutamine, and antibiotic solution containing

100 units/ml penicillin and 100 lg/ml streptomycin. Cul-

tures were maintained at 37 �C in a humidified atmosphere

containing 5 % CO2. For differentiation, cells were plated

on poly-L-lysine-coated (10 lg/ml) dishes. The differenti-

ation was induced 24 h after seeding by adding 50 ng/ml of

nerve growth factor (NGF 2.5 S) and incubated for 4 days.

Experimental design

After arriving at a dose and the time-dependent cell death

induced by 3-NP and an optimal dose at which naringin

protects from cell death, the following experimental design

was set up.

Group 1 Control treated with 0.1 % dimethyl sulfoxide

(DMSO).

Group 2 3-Nitropropionic acid (15 mM).

Group 3 3-Nitropropionic acid (15 mM) ? Naringin

(dissolved in 0.1 % DMSO) treated (10 lM).

Group 4 Naringin alone (10 lM).

Cell viability assay

Cell viability was assessed by MTT method by Yuan et al.

[29]. Briefly, 5 9 103 cells were plated in 96-well plates.

The cells were incubated for 12 h under 5 % CO2, 95 % O2

at 37 �C. Then, media were removed and replaced with
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serum-free medium containing 1 % BSA for 24 h. After

removing the BSA medium, cells were stimulated with

3-NP and were incubated with/without naringin. The con-

trol cells received 0.1 % DMSO. After 24 h, 100 ll of

0.5 % MTT stock solution was added to each well and then

incubated at 37 �C for 4 h. After incubation, the culture

medium was replaced with 100 ll of DMSO to solubilize

formazan crystals. Proliferation was expressed as absor-

bance at 650 nm recorded with a microtiter plate reader.

The amount of formazan produced was directly propor-

tional to the number of metabolically active cells. The cell

viability was calculated as percentage of viable cells and

then plotted on a graph.

Biochemical assays

The activity of lactate dehydrogenase (LDH) was assayed

by the method of King [30]. Superoxide dismutase (SOD)

was assayed by the method of Marklund and Marklund

[31]. Catalase (CAT) activity was assayed by the method of

Sinha [32]. Glutathione peroxidase (GPx) was assayed by

the method of Rotruck et al. [33]. Glutathione reductase

(GR) was assayed by the method of Staal et al. [34].

Reduced glutathione (GSH) was determined by the method

of Moron et al. [35]. The level of lipid peroxidation (LPO)

was assayed by the method of Ohkawa et al. [36]. Mito-

chondrial fractions were isolated by the method of More-

adith and Fiskum [37]. The Complex II (succinate

dehydrogenase) activity was assayed by Slater and Borner

[38]. The Complex IV (cytochrome c oxidase) activity was

assayed by Mutisya et al. [39].

Measurement of ROS

ROS was measured using the fluorescent probe H2DCF-

DA. The PC12 cells (5.0 9 103 cells/well) were exposed to

3-NP (15 mM) in the presence or absence of naringin

(10 lM) and incubated for 16 h. Briefly, after the corre-

sponding treatments, cells were incubated with 5 lM

H2DCF-DA for 30 min in dark. Fluorescence measurement

was performed at the excitation wavelength of 495 nm and

the emission wavelength of 530 nm in a spectrofluorome-

ter. For each experiment, fluorometric measurements were

performed in triplicate and expressed as fluorescence

intensity units [40].

Measurement of mitochondrial membrane potential

changes

Mitochondrial membrane potential determination (Dwm)

was measured using JC-1 as a probe according to the

method of Dey and Moraes [41]. The PC12 cells were

exposed to 3-NP (15 mM) in the presence or absence of

naringin (10 lM) and incubated for 16 h. Briefly, after the

corresponding treatments, cells were incubated with 10 lM

JC-1 for 6 min at 37 �C. The fluorescence was measured at

two different wavelengths. The ratio of the reading at

590 nm to the reading at 530 nm was considered as the

relative Dwm value.

Cytosolic and nuclear protein extraction

The extraction of cytosolic and nuclear fractions was per-

formed in PC12 cells to assess the Nrf2 expression. Briefly,

PC12 cells (8 9 106) were suspended in hypotonic buffer

[10 mM HEPES (pH 7.9), 1.5 mM MgCl2, 10 mM KCl,

1 mM dithiothreitol] containing protease inhibitors, and

their outer membranes were disrupted by homogenization,

and then centrifuged at 10,0009g for 20 min to collect the

supernatant containing cytosolic fraction. The resultant

nuclear pellet was resuspended, homogenized, and incu-

bated in nuclear extraction buffer [20 mM HEPES,

1.5 mM MgCl2, 0.42 M NaCl, 0.2 mM EDTA, 1 mM

dithiothreitol, 25 % glycerol] containing the protease

inhibitors and finally, centrifuged at 20,0009g for 5 min to

collect supernatant as nuclear fraction [42].

Western blot analyses

Cytosolic or nuclear protein (50 lg) was separated by

12 % SDS–polyacrylamide gel and then transferred elec-

trophoretically to a polyvinylidene fluoride membrane

(Millipore, USA). The membrane was blocked with 5 %

BSA and 0.1 % Tween-20 in Tris-buffered saline at room

temperature for 2 h. The membrane was then incubated

overnight with the rabbit polyclonal IgG Nrf2 (Santa Cruz

Biotech, CA, USA) at 4 �C. Then, the membrane was

washed thrice for 15 min and incubated with the secondary

horseradish peroxidase-linked antibody (Bangalore GeNei,

India) for 2 h. Membrane was then washed thrice for

15 min, and then the protein-antibody complexes were

detected by the addition of diaminobenzidine as a

substrate.

Reverse transcriptase polymerase chain reaction

Briefly, after treatment of PC12 cells with 3-NP and nar-

ingin for desired time period, the medium was removed.

The cells were washed with 1 ml of PBS, and then 700 ll

of Trizol reagent was added to harvest the cells. After

harvesting, 200 ll of chloroform was added; the samples

were covered tightly and shaken vigorously for 15 s and

allowed to stay on ice for 15 min. Then, the complemen-

tary DNAs (cDNA) were synthesized using AuPreP TM

Gold cDNA (Life Technologies Pvt. Ltd., Delhi, India)

according to the manufacturer’s instructions. The
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polymerase chain reactions (PCR) were performed using

PCR Master Mix (GeNet Bio, Chungnam, Korea) with

specific primers listed in Table 1. The PCR products were

resolved in 1.4 % agarose gel. The gene expressions were

shown as the ratio of densitometric value between target

mRNA and glyceraldehyde 3-phosphate dehydrogenase

(GAPDH).

Statistical methods

All the data were statistically evaluated with Statistical

Package for Social Sciences (SPSS.10) software. Hypoth-

esis testing method included one-way analysis of variance

(ANOVA) followed by least significant difference (LSD)

test. All the results were expressed as mean ± SD. The ‘p’

value of less than 0.05 was considered to indicate statistical

significance.

Results

Dose- and time-dependent effect of 3-NP on cell

viability

The dose- and time-dependent 3-NP toxicity was evaluated

by determining the reduction of MTT upon incubation of

differentiated PC12 cells for 0–40 h with increasing 3-NP

concentrations (1–25 mM). As shown in Fig. 1, increasing

the 3-NP concentration decreases cell viability in a dose-

and time-dependent manner. The viability of PC12 cells

was observed to be reduced to 60 % by 15 mM of 3-NP,

16 h after treatment and more drastically at 24 h. Further,

increasing the concentration of 3-NP also reduces the cell

viability, but there was no significant difference compared

to 15 mM concentration. Hence, the induction of PC12

cells with 15 mM of 3-NP for 24 h was followed for fur-

ther studies.

Protective effect of naringin on 3-NP-induced

neurotoxicity

To test whether naringin could reduce the cell death in

PC12 cells during 3-NP administration, MTT reduction

assay was performed. The cells were treated with 1–20 lM

of naringin 1 h prior to the 3-NP exposure and incubated

for 24 h. As shown in Fig. 2, naringin at the concentration

of 10 lM protected the PC12 cells from 3-NP toxicity

(p\ 0.05).

Effect of 3-NP and naringin on LDH activity

LDH is an enzyme found in the cells of many tissues,

including brain, which catalyzes the interconversion of

Table 1 RT-PCR primer pairs for amplification of mRNA

Genes Primer sequence

Bax Sense: CGAGTGTCTCCGGCGAATTG

Antisense: CACCCTGGTCTTGGATCCAG

Bcl-2 Sense: GTACCTGCAGCTTCTTTCCCC

Antisense: AAGAAGGCCACAATCCTCCCC

GAPDH Sense: TCTGCTCCTCCCTGTTCTAGAGACA

Antisense: TCAGGTGAGCCCCAGCCTTCT

HO-1 Sense: ACTTTCAGAAGGGTCAGGTGTCC

Antisense: TTGAGCAGGAAGGCGGTCTTAG

NQO-1 Sense: CATTCCAGCCGACAACCAGA

Antisense: ATTCCCTCCTGCCCTAAACC

Fig. 1 Dose- and time-dependent effect of 3-nitropropionic acid on

PC12 cells. MTT cell viability assay was performed in PC12 cells

exposed to 3-NP at the concentrations of 1–25 mM for 0–40 h.

Results are expressed as the percentage of viable cells. Values are

represented as the mean ± SD of three independent experiments

Fig. 2 Dose-dependent effect of naringin on 3-nitropropionic acid-

induced cell death in PC12 cells. Naringin inhibits 3-NP-induced

cytotoxicity in PC12 cells; induced with 15 mM of 3-NP for 24 h.

Naringin (1–20 lM) was added 1 h before 3-NP administration.

Results are expressed as the percentage of viable cells. Values are

represented as the mean ± SD of three independent experiments.

Values are statistically significant at p\ 0.05, a3-NP versus control,
b3-NP ? Naringin versus 3-NP
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lactate to pyruvate. LDH is often used as a marker to detect

cellular damage during toxic insults [43]. Figure 3 shows

the effect of naringin on 3-NP-induced LDH release from

PC12 cells. Increased LDH release was observed in 3-NP-

induced PC12 cells (p\ 0.05) as compared to control.

Treatment with naringin significantly decreased the LDH

activity towards normal (p\ 0.05) as compared to 3-NP-

induced cells.

Naringin enhances the antioxidant status

The activation of endogenous antioxidant defense system

by flavonoids has attracted special attentions, besides the

direct quenching effect on ROS. The activities/level of

enzymatic and non-enzymatic antioxidant in 3-NP and

naringin-treated PC12 cells are shown in Table 2. The

activities of SOD, CAT, GPx, and GR, and the level of

GSH were decreased in 3-NP-induced cells (p\ 0.05) as

compared to control. Treatment with naringin significantly

ameliorated these antioxidants in 3-NP-induced cells

(p\ 0.05) and exhibits its protective effect.

Naringin decreases the lipid peroxidation in 3-NP-

induced PC12 cells

One of the consequences of oxidative stress is increase in

LPO, which is caused by an attack of free radicals on cell

membrane lipids. LPO is known to exert deleterious effects

on neuronal membrane integrity and fluidity [44]. 3-NP

caused an intense oxidative stress characterized by increase

in LPO product. Figure 4 shows the effect of naringin on

3-NP-induced LPO in PC12 cells. Treatment with naringin

renders protection to PC12 cells by reducing the level of

LPO (p\ 0.05), which was elevated upon 3-NP adminis-

tration. Naringin-alone treated cells show similar effect as

of control.

Naringin reduces the 3-NP-induced ROS generation

Oxidative stress refers to an imbalance between the pro-

duction of free radicals and the ability of cells to defend

against them. There is growing evidence implicating

oxidative stress as the major cause of cellular injury in

variety of human diseases including neurodegenerative

disease [45]. Figure 5A shows the ROS generation in

3-NP- and naringin-treated PC12 cells. Administration of

PC12 cells with 3-NP resulted in an elevated ROS pro-

duction (p\ 0.05) compared to control. Treatment with

naringin defended the PC12 cells by decreasing the 3-NP-

induced ROS accumulation (p\ 0.05) through its antiox-

idant property.

Naringin protects against 3-NP-induced

mitochondrial dysfunction

Mitochondria are the vulnerable target for various toxicants

because of their important role in maintaining cellular

integrity and function. The functional alterations occur in

mitochondria are due to the changes in mitochondrial

membrane potential. Disruption of the mitochondrial

membrane potential (i.e., depolarization) is one of the

earliest indicators of cellular disturbance. Protective effect

of naringin was examined on 3-NP-induced mitochondrial

depolarization in PC12 cells. As shown in Fig. 5B, the

administration of PC12 cells with 3-NP significantly

depolarizes mitochondria (p\ 0.05) compared to control.

Naringin treatment augmented the mitochondrial mem-

brane polarization in the cells exposed to 3-NP (p\ 0.05)

and exhibits its protective effect against 3-NP-induced

mitochondrial dysfunction.

The activities of mitochondrial respiratory chain

enzymes are presented in Fig. 6. The activities of succinate

dehydrogenase and cytochrome c oxidase were decreased

in 3-NP-induced cells compared to control. Naringin

treatment ameliorated the activities of these enzymes in

3-NP-induced PC12 cells.

Anti-apoptotic effect of naringin on 3-NP-induced

PC12 cells

Apoptosis is a highly organized form of cell death that is

common in variety of biological processes and pathological

conditions. Aberrant apoptosis has been implicated in the

pathogenesis of neurodegenerative diseases caused by

protein misfolding [46]. There is rising evidence suggest-

ing the role of apoptosis in 3-NP-induced HD [47]. To

study the anti-apoptotic effect of naringin, RT-PCR anal-

yses of B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X

protein (Bax) were performed in PC12 cells. Figure 7

shows that 3-NP exposure increased the mRNA expression

Fig. 3 Effect of naringin on 3-nitropropionic acid-induced lactate

dehydrogenase release from PC12 cells. Values are represented as the

mean ± SD of three independent experiments. Values are statistically

significant at p\ 0.05, a3-NP versus control, b3-NP ? Naringin

versus 3-NP, ns non-significant as compared to control
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of Bax with decrease in Bcl-2 expression (p\ 0.05) as

compared to control. Naringin modulated the expressions

of Bcl-2 and Bax towards normal level in the cells exposed

to 3-NP (p\ 0.05), showing its anti-apoptotic effect.

Naringin activates Nrf2 signaling pathway

The facts that ROS lead to neurodegeneration and antiox-

idant therapy has neuroprotective effects in HD may point

to a potential beneficial effect of the Nrf2 pathway. To

investigate whether naringin treatment in PC12 cells reg-

ulates key proteins involved in the cellular response to

oxidative stress, Nrf2 activation was analyzed. Figure 8

shows that 3-NP-induced PC12 cells had minor increase in

the Nrf2 activation as compared to control. Naringin

treatment exhibited significant increase in the nuclear

accumulation of Nrf2 in 3-NP-induced cells (p\ 0.05).

Figure 9 shows the mRNA expressions of NAD(P)H:-

quinone oxidoreductase-1 (NQO-1) and heme oxygenase-1

(HO-1) in 3-NP- and naringin-treated PC12 cells. Minor

increase in the expressions of NQO-1 and HO-1 was

observed in 3-NP-induced cells compared to control.

Administration of naringin significantly increased the

expressions of these genes and renders protection against

3-NP-induced neurotoxicity (p\ 0.05), which shows that

naringin activates the Nrf2 signaling pathway and exhibits

protection to 3-NP-induced cells.

PI-3K/Akt signaling was reported to involved in the

activation of Nrf2 and up-regulation of several antioxidant

gene expression [16]. Further, the activation of Akt by

naringin was well documented in earlier study [28]. In this

study, we investigated the involvement of PI-3K/Akt sig-

naling in naringin-driven activation of Nrf2 using

LY294002, the pharmacological inhibitor of PI-3K/Akt

signaling cascade. As shown in Figs. 10 and 11, naringin-

induced Nrf2 nuclear translocation and its target genes

NQO-1 and HO-1 expressions were significantly reduced

by LY294002 suggesting that PI-3K/Akt signaling is

involved in the activation of Nrf2 in PC12 cells.

Discussion

Attenuation of oxidative stress and mitochondrial dys-

function protects against neurodegenerative disease [48].

Induction of endogenous antioxidant genes by the tran-

scription factor Nrf2 is considered as the major regulator of

redox homeostasis. This is a promising strategy to combat

oxidative stress [49]. In this study, the protective effect of

naringin on 3-NP-induced neurotoxicity through the PI-3K/

Akt-mediated Nrf2 activation in PC12 cells was

investigated.

LDH release is an index of cell membrane integrity.

LDH activity was measured to determine the protective

effect of naringin on 3-NP-induced neurotoxicity in PC12

Table 2 Effect of

3-nitropropionic acid and

naringin on antioxidants in

PC12 cells

Antioxidants Control 3-NP 3-NP ? Naringin Naringin

SOD 7.14 ± 0.64 3.74 ± 0.42a 5.39 ± 0.36b 7.24 ± 0.57ns

CAT 2.67 ± 0.25 1.25 ± 0.13a 2.14 ± 0.16b 2.81 ± 0.23ns

GPx 0.19 ± 0.02 0.11 ± 0.01a 0.16 ± 0.01b 0.20 ± 0.02ns

GR 0.10 ± 0.007 0.06 ± 0.005a 0.08 ± 0.009b 0.10 ± 0.009ns

GSH 46.23 ± 3.60 20.55 ± 2.10a 33.24 ± 2.68b 49.46 ± 4.40ns

Values are represented as the mean ± SD of three independent experiments. Values are statistically sig-

nificant at p\ 0.05

Enzyme activities are expressed as SOD: units/min/mg protein. CAT: lmoles of H2O2 hydrolyzed/min/mg

protein. GPx: lmoles of NADPH oxidized/min/mg protein. GR: lmoles of NADPH oxidized/min/mg

protein. GSH: lmoles of GSH/mg protein

ns non-significant as compared to control
a 3-NP versus control
b 3-NP ? Naringin versus 3-NP

Fig. 4 Effect of naringin on 3-nitropropionic acid-induced lipid

peroxidation in PC12 cells. Values are represented as the mean ± SD

of three independent experiments. Values are statistically significant

at p\ 0.05, a3-NP versus control, b3-NP ? Naringin versus 3-NP, ns

non-significant as compared to control
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cells. 3-NP-induced oxidative damage has been character-

ized by detrimental changes in the LDH activity, resulting

in reduction of cell viability. The LDH activity was found

to be increased after 3-NP administration. The loss of

intracellular LDH and its release into the culture medium is

an indicator of cell death due to cell membrane damage

induced by 3-NP [50]. Naringin decreased the LDH release

and indicates its protective effect through the maintenance

of plasma membrane integrity.

Oxidative stress has been reported in 3-NP-induced

neurotoxicity through depleted GSH level, and altered

profiles of antioxidant enzymes with elevated levels of

ROS [51]. It is essential to scavenge free radicals produced

during the metabolism of toxic substances and protect cells

from oxidative injuries. Therefore, the effect of naringin on

antioxidants was examined. The activities of enzymatic

antioxidants and level of GSH were found to be decreased

in the cells exposed to 3-NP, whereas treatment with nar-

ingin significantly augmented the antioxidants in 3-NP

exposed cells. The results of this study demonstrate that

naringin reduces oxidative damage in 3-NP-induced neu-

rotoxicity. The protective efficacy of naringin also partly

attributed to its ability to enhance the antioxidant status in

brain [52].

An increase in the lipid peroxidation is one of the

consequences of oxidative stress. Measurement of malon-

dialdehyde (MDA), the most abundant product arising

from LPO, has been extensively used as an index of

oxidative stress. In this study, 3-NP-induced PC12 cells

showed increased level of LPO as similar to the previous

report [53]. Naringin treatment decreased the LPO in PC12

cells through its ability to scavenge free radicals produced

by the 3-NP.

Oxidative stress is a major deleterious event observed in

HD [54]. Excessive generation of ROS induces mito-

chondrial membrane depolarization, damages the respira-

tory chain, and induces apoptosis in neurons. ROS

overproduction is one of the possible mechanisms for

Fig. 5 Effect of naringin on 3-nitropropionic acid-induced reactive

oxygen species and mitochondrial membrane potential in PC12 cells.

A ROS measurement: PC12 cells were exposed to 3-NP (15 mM) in

the presence or absence of naringin (10 lM) and incubated for 16 h.

The cells were incubated with 5 mM H2DCF-DA at 37 �C for 20 min

and then after washing, fluorescence was measured at 505 nm

excitation and 550 nm emission in spectroflourometer. B Mitochon-

drial membrane potential: PC12 cells were exposed to 3-NP (15 mM)

in the presence or absence of naringin (10 lM) and incubated for

16 h. Then, the cells were subsequently stained with JC-1. Relative

mitochondrial membrane potential values are expressed as the ratio of

reading at 590 nm to the reading at 530 nm. ROS and mitochondrial

membrane potential values are represented as the mean ± SD of three

independent experiments. Values are statistically significant at

p\ 0.05, a3-NP versus control, b3-NP ? Naringin versus 3-NP, ns

non-significant as compared to control

Fig. 6 Effect of naringin on succinate dehydrogenase and cyto-

chrome c oxidase activities in 3-nitropropionic acid-induced PC12

cells. Values are represented as the mean ± SD of three independent

experiments. Values are statistically significant at p\ 0.05, a3-NP

versus control, b3-NP ? Naringin versus 3-NP, ns non-significant as

compared to control
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3-NP-induced neuronal death. Considering the important

role of ROS in 3-NP-induced oxidative stress, the effect of

naringin on ROS in PC12 cells was investigated. Admin-

istration of PC12 cells with 3-NP resulted in an elevated

ROS production. Increase in the level of ROS has been

documented in cells treated with 3-NP [55]. In this study,

naringin protected the PC12 cells by decreasing the 3NP-

induced ROS accumulation by its ability to scavenge free

radical. Flavonoids have been shown to be effective

scavengers of ROS [56]. This data suggest that increase in

ROS generation by 3-NP causes cytotoxicity; however,

treatment with naringin inhibits the ROS generation, thus

rendering protection.

Recent studies have implicated the potential role of

mitochondria in cell death mechanisms, since mitochon-

drial dysfunction results in the release of factors that ini-

tiate and amplify numerous signals resulting in apoptosis

[57]. Further, mitochondrial dysfunction and concomitant

bio-energetic failure can lead to abnormal cellular ionic

homeostasis, eventually leading to neuronal death [58].

Several studies have reported the occurrence of mito-

chondrial dysfunction in brain of HD [59, 60]. In this study,

PC12 cells induced with 3-NP exhibited mitochondrial

depolarization and decrease in mitochondrial respiratory

chain enzymes, succinate dehydrogenase and cytochrome

c oxidase activities, and these cells might be undergoing

the apoptotic processes as similar to previous report [61].

The naringin treatment protected PC12 cells from mito-

chondrial damage by ameliorating 3-NP-mediated reduc-

tion in mitochondrial transmembrane potential. Further,

naringin offered considerable degree of protection against

the decrease in mitochondrial complex enzyme activities,

suggesting its potential to preserve the integrity of mito-

chondrial respiratory chain through its antioxidant effect.

Fig. 7 Reverse transcriptase

polymerase chain reaction

analyses of Bcl-2 and Bax in

PC12 cells. A 1.4 % agarose gel

electrophoresis of RT-PCR

products. M 100 bp molecular

weight marker, Lane-1 control,

Lane-2 3-NP-induced, Lane-3:

Naringin-treated, Lane-4

Naringin alone. B Quantitative

data expressing the ratio of Bcl-

2 or Bax/GAPDH mRNA

levels. Values are represented as

the mean ± SD of three

independent experiments.

Values are given statistically

significant at p\ 0.05, a3-NP

versus control, b3-

NP ? Naringin versus 3-NP, ns

non-significant as compared to

control
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Fig. 8 Immunoblot analysis of Nrf2 in nucleus and cytosolic

fractions of PC12 cells. A Immunoblot analysis was performed with

the antibody against Nrf2. Lane-1 control, Lane-2 3-NP-induced,

Lane-3 Naringin-treated, Lane-4 Naringin alone. B Quantitative data

expressing the corresponding protein levels were assessed using

densitometry and are expressed as the ratio of Nrf2 with lamin B/b-

actin. Values are represented as the mean ± SD of three independent

experiments. Values are given statistically significant at p\ 0.05,
b3-NP ? Naringin versus 3-NP, cNaringin alone versus control, ns

non-significant as compared to control

Fig. 9 Reverse transcriptase polymerase chain reaction analyses of

NQO-1 and HO-1 in PC12 cells. A 1.4 % agarose gel electrophoresis

of RT-PCR products. M 100 bp molecular weight marker, Lane-1

control, Lane-2 3-NP-induced, Lane-3 Naringin-treated, Lane-4

Naringin alone. B Quantitative data expressing the ratio of NQO-1

or HO-1/GAPDH mRNA levels. Values are represented as the

mean ± SD of three independent experiments. Values are given

statistically significant at p\ 0.05, b3-NP ? Naringin versus 3-NP,
cNaringin alone versus control, ns non-significant as compared to

control
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Fig. 10 Immunoblot analysis of Nrf2 in nucleus and cytosolic

fractions of PC12 cells in the presence of PI-3K inhibitor

LY294002. A Immunoblot blot analysis was performed with the

antibody against Nrf2. Lane-1 control, Lane-2 Naringin alone, Lane-3

Naringin ? LY294002. B Quantitative data expressing the

corresponding protein levels were assessed using densitometry and

are expressed as the ratio of Nrf2 with lamin B/b-actin. Values are

given statistically significant at p\ 0.05, aNaringin alone versus

control; bNaringin ? LY294002 versus Naringin

Fig. 11 Reverse transcriptase polymerase chain reaction analyses of

NQO-1 and HO-1 of PC12 cells in the presence of PI-3K inhibitor

LY294002. A 1.4 % agarose gel electrophoresis of RT-PCR products.

M 100 bp molecular weight marker, Lane-1 control, Lane-2 Naringin

alone, Lane-3 Naringin ? LY294002. B Quantitative data expressing

the ratio of NQO-1 or HO-1/GAPDH mRNA levels. Values are given

statistically significant at p\ 0.05, aNaringin alone versus control,
bNaringin ? LY294002 versus Naringin
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These results indicate that, 3-NP-induced cell death via

mitochondrial dysfunction is decreased by the flavonoid

naringin.

The mitochondrial death pathway is regulated by a fine

balance between pro-apoptotic and pro-survival Bcl-2

family members [62]. In this study, 3-NP-administered

PC12 cells exhibited decreased expression of Bcl-2 with

elevated Bax. Naringin treatment decreased the apoptosis

by ameliorating the expressions of Bcl-2 and Bax in cells

exposed to 3-NP. Naringin has been previously reported to

modulate the Bcl-2 genes and protect neurons from apop-

tosis [63]. Further, studies have shown that, Bcl-2 expres-

sion protects PC12 cells from 3-NP-induced mitochondrial

dependent apoptosis [64]. This shows that naringin is

effective enough to combat the 3-NP-induced cell death.

Activation of Nrf2 can confer significant protection to

neurons, and drugs that activate this pathway have efficacy

in blocking neuronal death [65, 66]. Certainly, a recent

work has demonstrated that treatment with flavonoid could

activate the Nrf2 pathway and confer protection against

neurodegenerative diseases [67]. In the present study,

increased Nrf2 nuclear accumulation was observed in

naringin-treated cells. Thus, the assenting neuroprotective

effect of naringin on 3-NP-induced neurotoxicity is through

the modulation of Nrf2-signaling pathway. The induction

of protective enzyme defense systems is important for

defending cells from oxidative damage. The increased

expressions of NQO-1 and HO-1 provide protection against

ROS as a part of an adaptive response [68]. In this study,

naringin-treated cells showed increased expressions of

NQO-1 and HO-1 compared with 3-NP-induced cells,

demonstrating that naringin reduces oxidative damage in

PC12 cells induced by 3-NP with increased expressions of

NQO-1 and HO-1 through Nrf2 activation.

The molecular mechanism underlying the Nrf2 activa-

tion by naringin has been the subject of extensive investi-

gations. The PI-3K/Akt is a key survival-promoting

signaling pathway that enhances cellular tolerance against

multiple apoptotic insults [17, 69]. PI-3K/Akt-mediated

Nrf2 activation determines the signals to govern the cel-

lular defense system against inflammatory and oxidative

insults [17]. Both P-I3K/Akt and Nrf2 pathways are

implicated in the transcriptional regulation of NQO-1 and

HO-1 [70]. Naringin was previously reported to activate

PI-3K/Akt signaling [28]. In this study, inhibition of PI-3K

by specific inhibitor LY294002 reduced the naringin-in-

duced accumulation of Nrf2 in nucleus, and NQO-1 and

HO-1 expression. These findings suggest that PI-3K/Akt

signaling pathway is required for naringin-mediated Nrf2

activation, and subsequent expression of NQO-1 and HO-1

in PC12 cells.

Appending the results obtained from this study, a

mechanism involved in the protective efficacy of naringin

against the 3-NP-induced neurotoxicity is demonstrated.

This study provides evidence that naringin exhibits neu-

roprotective effect on 3-NP-induced neurotoxicity through

the PI-3K/Akt-dependent Nrf2 activation in PC12 cells.
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