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Abstract Post-translational modification of intracellular

proteins with O-linked b-N-acetylglucosamine (O-GlcNAc)

profoundly affects protein structure, function, and

metabolism. Although many skeletal muscle proteins are

O-GlcNAcylated, the modification has not been extensively

studied in this tissue, especially in the context of exercise.

This study investigated the effects of glutathione depletion

and acute exercise on O-GlcNAc protein modification in

rat skeletal muscle. Diethyl maleate (DEM) was used

to deplete intracellular glutathione and rats were subjected

to a treadmill run. White gastrocnemius and soleus

muscles were analyzed for glutathione status,

O-GlcNAc and O-GlcNAc transferase (OGT) protein levels,

and mRNA expression of OGT, O-GlcNAcase and gluta-

mine:fructose-6-phosphate amidotransferase. DEM and

exercise both reduced intracellular glutathione and increased

O-GlcNAc. DEM upregulated OGT protein expression. The

effects of the interventions were significant 4 h after exercise

(P \ 0.05). The changes in the mRNA levels of O-GlcNAc

enzymes were different in the two muscles, potentially

resulting from different rates of oxidative stress and meta-

bolic demands between the muscle types. These findings

indicate that oxidative environment promotes O-GlcNAcy-

lation in skeletal muscle and suggest an interrelationship

between cellular redox state and O-GlcNAc protein modi-

fication. This could represent one mechanism underlying

cellular adaptation to oxidative stress and health benefits of

exercise.

Keywords Diethyl maleate � Treadmill run � White

gastrocnemius � Soleus � O-GlcNAc

Introduction

During exercise, oxygen consumption rises dramatically,

resulting in an increased generation of reactive oxygen

species (ROS) within skeletal muscle [1]. This can disturb

the cellular oxidant-antioxidant balance and lead to oxi-

dative stress and oxidative damage. There is an increasing

body of evidence that ROS are crucial for cellular adap-

tations to oxidative stress and serve multiple beneficial

roles in cellular function and metabolism [2]. Exercise-

produced reactive species have been associated with

upregulation of the endogenous antioxidant system [3],

induction of heat shock proteins (HSPs) [4], increased

glucose uptake [5], and optimal contractile activity [6].
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Mechanisms that promote stress tolerance and survival

involve various energy and stress-sensing pathways. The

hexosamine biosynthesis pathway (HBP) acts as a cellular

stress and nutrient sensor and provides a substrate for post-

translational modification of proteins [7]. O-linked b-N-

acetylglucosamine (O-GlcNAc) is a monosaccharide that

binds to serine and threonine residues of intracellular

proteins, altering their structure, function, and thereby

metabolism. Glutamine:fructose-6-phosphate amidotrans-

ferase (GFAT) has been recognized as the rate-limiting

enzyme of the HBP and two isoforms have been identified,

GFAT1 and GFAT2, that differ in tissue distribution [8]

and regulation by post-translational modifications such as

phosphorylation [9]. Two highly conserved proteins, O-

GlcNAc transferase (OGT) and O-GlcNAcase (OGA),

catalyze the attachment and removal of the sugar unit on

and off proteins, respectively, and can form dynamic

complexes with each other and other enzymes, providing a

sensitive regulation of O-GlcNAc protein modification

[10]. O-GlcNAcylation has been suggested to play roles in

various processes, including the cellular response to stress

[11]. O-GlcNAc binds to several transcription factors [12],

HSPs [13] and antioxidant enzymes [14, 15], modulating

their expression, stability, and function. Furthermore,

it is involved in regulation of protein homeostasis [16],

participates in cellular immune response [17] and DNA

repair [18].

O-GlcNAc protein modification in skeletal muscle has

been scarcely investigated, particularly in the context of

exercise and exercise-induced oxidative stress. O-GlcNA-

cylated proteins are abundant in the muscle [19] and are

involved in the processes such as insulin signaling [20] and

muscle contraction [21]. Impaired O-GlcNAc cycling has

been associated with insulin resistance [20] and muscle

atrophy [22]. There have been reports demonstrating a link

between O-GlcNAcylation and redox signaling, with sev-

eral ROS-responsive enzymes recognized to be O-GlcNAc

modified [12, 14, 23]. The interaction could represent one

of the mechanisms underlying cellular adaptation to oxi-

dative stress.

This study investigated the effects of glutathione

depletion and acute exercise on protein O-GlcNAc modi-

fication in skeletal muscle. Rats were injected with diethyl

maleate (DEM) to deplete intracellular glutathione and/or

underwent a treadmill run to exhaustion. O-GlcNAc levels

and OGT protein expression were measured in the white

gastrocnemius and soleus muscles. mRNA levels of the

enzymes OGT, OGA, GFAT1, and GFAT2 were also

determined. It was hypothesized that DEM and exercise

would induce oxidative stress in skeletal muscle and pro-

mote O-GlcNAcylation. This would be supported by a

transient increase in the mRNA of GFAT isozymes and an

upregulated expression of OGT.

Materials and methods

Materials

The antibodies used for Western blot analysis included

anti-O-GlcNAc antibody (CTD110.6, Covance, Richmond,

CA), anti-OGT antibody (SQ-17, Sigma, St. Louis, MO),

anti-Tubulin (11H10, Cell Signaling, Danvers, MA),

and alkaline phosphatase-conjugated antibodies (Sigma).

O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino-N-

phenylcarbamate (PUGNAc) was purchased from Toronto

Research Chemicals Inc. (Toronto, ON) and CDP-star from

Roche Applied Science (Penzberg, Germany). Total RNA

was extracted using Sigma’s TRI Reagent and reverse

transcribed with the High Capacity cDNA Reverse Tran-

scription Kit from Invitrogen (Life Technologies, Carlsbad,

CA). The SYBR� Select Master Mix was obtained from

Applied Biosystems (Life Technologies) and the qRT-PCR

primers were purchased from Sigma.

Animals

The experiments were approved by The University of

Queensland Animal Ethics Committee in accordance with

National Health and Medical Research Council guidelines.

Ten-week-old male Wistar rats (Central Animal Breeding

House, The University of Queensland, Australia) were

housed two per cage, maintained on a 12-h light/dark cycle

and had ad libitum access to standard rat chow and tap

water. Animals were divided into six groups: (1) sedentary

(C; n = 8), (2) sedentary ? DEM (Cd; n = 8), (3) exercise

(E; n = 8), (4) exercise ? DEM (Ed; n = 8), (5) exer-

cise ? recovery (R; n = 8), and (6) exercise ? recov-

ery ? DEM (Rd; n = 5). DEM rats were given an

intraperitoneal injection of 3 mmol/kg body weight DEM

dissolved in extra light olive oil and control animals were

injected with the extra light olive oil 2 h prior to being

sacrificed or exercised.

Treadmill exercise

Rats were exercised on a modified treadmill divided into 8

lanes separated by clear plastic enclosures. All animals

were familiarized for 4 days to treadmill running prior to

the start of the study, at a 10 % uphill gradient at 1–1.2 km/h

for 30 min. The rats that were more willing to run were

placed into the exercise groups. According to the previous

research, this selection process is considered appropriate,

because health status and muscle physiology properties do

not differ between those rats willing to run or not [24]. Rats

ran up a 10 % grade at 1.2 km/h for the first 30 min, the

speed was then increased every 10 min by 0.1 km/h until

exhaustion. Exhaustion was defined as the inability of the
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animal to right itself when being laid on its side [25], with

time until exhaustion recorded for each animal.

Tissue collection

Animals were weighed and sacrificed via intraperitoneal

injection of sodium pentobarbital (100 mg/kg), directly after

exercise or 4 h after exercise. Under a surgical plane of

anesthesia, blood was taken via cardiac puncture and placed

on ice. Blood samples were centrifuged at 6009g for 10 min

and plasma aliquots were stored at -80 �C until analyzed.

The white gastrocnemius and soleus muscles were excised,

snap frozen in liquid nitrogen and stored at -80 �C.

Plasma isoprostanes

The levels of F(2)-isoprostanes in rat plasma samples were

analyzed with gas chromatography–tandem mass spec-

trometry (GC–MS–MS), using a modified method adopted

from Taylor et al. [26]. The isoprostanes were extracted

from serum after saponification with methanolic NaOH.

The samples were spiked with an internal standard

8-iso-PGF2a-d4 (Cayman Chemical Co., Ann Arbor, MI)

and incubated at 42 �C for 60 min. The samples were then

acidified with hydrochloric acid. After adding hexane, the

samples were mixed for 10 min before centrifugation at

3,0009g for 10 min. The supernatant was removed and the

remaining solution was extracted with ethyl acetate and

dried under nitrogen. The samples were reconstituted with

acetonitrile, transferred into vials with silanized glass

inserts and dried. This was followed by derivatization with

40 ll of 10 % (v/v) pentafluorobenzyl bromide/acetonitrile

solution and 20 ll of 10 % (v/v) diisopropylethylamine/

acetonitrile solution and a 30 min incubation at room

temperature. After the samples were dried under nitrogen,

10 ll of pyridine and 20 ll of a Bis(trimethyl-

silyl)trifluoroacetamide/Trimethylchlorosilane solution

(99:1) (Sigma) were added, followed by incubation at

45 �C for 20 min. Finally, 60 ll of hexane was added

and 1 ll of the sample was injected for analysis with

GC–MS–MS (Varian, Palo Alto, CA) in negative chemical

ionization mode.

Total and oxidized glutathione levels

Total (tGSH) and oxidized (GSSG) glutathione were

measured by modifying the method of Dudley et al. [27].

Frozen muscle tissue was homogenized in 20 ll of 5 %

(wt/vol) 5-sulfosalicylic acid (SSA)/mg tissue and centri-

fuged at 11,500 rpm for 5 min at 4 �C. The supernatant

was diluted 1:5.5 in ddH2O. Triethanolamine (4 M) was

added to neutralize the solution to ensure optimal pH for

the reaction. Separate aliquots of 100 ll were taken for

tGSH and GSSG determination. 125 ll of 0.3 mM

NADPH, 16 ll of 6.0 mM 5,50-dithiobis(2-nitrobenzoic

acid), and 48 ll of either sample, standard, or 5 % SSA

were pipetted in a plate. The reaction mixture was incu-

bated at 37 �C for 4 min. Next, 8 ll of glutathione

reductase enzyme (1.0 U/100 ll) was added and the reac-

tion was monitored at 405 nm every 5 min for a period of

25 min. Absorbance was recorded on a plate reader (Flu-

ostar Optima, BMG Labtech, Victoria, Australia). Total

glutathione in each sample was determined from a cali-

bration curve produced using known glutathione standards.

The supernatant sample for the GSSG assay was deriva-

tized in 16 ll of the following solution: 30.8 % trietha-

nolamine, 0.4 % SSA, and 9 % 2-vinylpyridine in ddH2O.

The mixture was incubated for 10 min at room temperature

(on a rotator). To quantify the amount of GSSG, known

standards of oxidized glutathione were derivatized and

assayed. The samples were then analyzed as for total glu-

tathione above.

Immunoblotting

Muscle tissue was weighed and pulverized under liquid

nitrogen and homogenized in ice-cold Western Extraction

Buffer containing: RIPA Buffer pH 7.5 (50 mM Tris,

1 mM EDTA, 10 % (v/v) glycerol, 1 % (v/v) Triton

X-100), 50 mM NaF, 5 mM Na4P2O7, 1 mM PMSF, 1 mM

DTT, 0.5 % (v/v) Protease Inhibitor Cocktail (Sigma), and

40 lM PUGNAc (Toronto Research Chemicals Inc.).

Protein concentration was determined with Pierce� BCA

Protein Assay Kit (Pierce, Rockford, IL). The samples

were added Sample Reducing Buffer pH 6.8 (0.5 M Tris,

6 % (v/v) SDS, 30 % (v/v) glycerol, bromophenol blue and

30 mM DTT), boiled for 5 min and stored at -80 �C for

further analysis. Forty microgram of proteins was separated

by SDS-PAGE and transferred to PVDF membranes.

The membranes were probed with mouse monoclonal anti-

O-GlcNAc antibody (CTD110.6, Covance; 1:800) or rabbit

monoclonal anti-OGT antibody (SQ-17, Sigma; 1:700)

overnight at 4 �C, followed by incubation with appropriate

alkaline phosphatase-labeled secondary antibodies for 1 h

at room temperature diluted 1:1,800. Tubulin (11H10, Cell

Signaling; 1:700) was used as a protein loading control.

Immunoblots were developed with chemiluminescence

(CDP-Star, Roche), exposed to X-ray film and densitom-

etry analyzed using Scion Image Beta 4.02 software (Scion

Corporation, Frederick, MD). Densitometric values for

O-GlcNAc and OGT bands were normalized against cor-

responding tubulin values and the ratios were used in sta-

tistical analysis.
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Real-time reverse transcription polymerase chain

reaction (qRT-PCR) analysis

RNA extraction

Total RNA was extracted from frozen muscle tissue using

TRI Reagent (Sigma). 20–30 mg of muscle tissue was

homogenized in 1 ml of TRI Reagent in a polytron

homogenizer and centrifuged at 12,0009g for 10 min at

4 �C. Supernatant was added 0.2 ml of chloroform, vor-

texed, and incubated for 3 min at room temperature. After

centrifuging for 15 min at 12,0009g at 4 �C, the upper

aqueous phase containing RNA was transferred into fresh

tubes. 0.5 ml of isopropanol and 1.5 ll of glycogen were

added, samples were mixed, incubated at room temperature

for 10 min, and centrifuged at 12,0009g for 10 min at

4 �C. The supernatant was removed and the RNA pellet

was washed in 1 ml of 75 % (v/v) ethanol. The samples

were vortexed and centrifuged at 7,5009g for 5 min at

4 �C. The pellets were then dried and dissolved in 30 ll

RNA-free water and stored at -80 �C until later analysis.

RNA concentration was determined spectrophotometrically

(UV/VIS spectrophotometer) and A260/280 ratio was cal-

culated to assess RNA purity. Gel agarose electrophoresis

was used to check RNA integrity.

qRT-PCR

Following total RNA concentration determination, 500 ng

of total RNA was reverse transcribed to synthesize cDNA,

using High Capacity cDNA Reverse Transcription Kit

(Life Technologies). For each sample, a reverse transcrip-

tion reaction mixture (20 ll total) was prepared containing

500 ng of total RNA diluted with 4.2 ll RNase-free water,

2 ll 109 reverse transcription buffer, 0.8 ll 259 deoxy-

nucleoside triphosphate (dNTP) mixture (dATP, dCTP,

dGTP, dTTP, MgCl2, RNase inhibitor, oligo(dT)15 primer),

and 1 ll of reverse transcriptase enzyme. The mixture was

treated at 25 �C for 10 min, followed by 120 min at 37 �C,

then heated to 85 �C for 5 min and quick chilled to 4 �C on

ice, yielding the cDNA product. 180 ll of RNase-free

water was then added and the solution was frozen at

-80 �C until qRT-PCR analysis was performed. The pre-

designed primers for OGT, OGA, GFAT1, and GFAT2

genes were purchased from Sigma. Primer sequences for

GAPDH genes were obtained from literature [28]. GAPDH

was used as an internal reference for detecting relative

change in the quantity of target mRNA. Melting curves

were performed to ensure that prominent PCR product was

being produced by each primer in the absence of primer

dimmers. The primer sequences are presented in Table 1.

Statistical analysis

Values are presented as mean ± SEM. Student’s t test was

used to determine the differences in time to fatigue

between non-treated and DEM-treated exercised rats. All

other data were analyzed using two-way ANOVA with

Tukey’s post hoc analysis where appropriate. Data that

were not normally distributed and/or of unequal variance

underwent logarithmic transformations, and the subsequent

analyses were performed on the transformed data. Statis-

tical significance was established at P \ 0.05.

Results

Time to fatigue, plasma isoprostanes and skeletal

muscle total and oxidized glutathione

Time to fatigue was significantly reduced in DEM-treated

rats (51 ± 5 min) compared to controls (68 ± 5 min)

(P \ 0.05). Plasma isoprostane levels were significantly

increased with DEM in sedentary rats (P \ 0.05) and

returned to baseline 4 h after exercise (data not shown).

Non-treated animals showed significantly higher isopros-

tane levels immediately after exercise when compared to

the measures 4 h after exercise (P \ 0.05). Furthermore,

DEM-treated rats had significantly lower levels of tGSH

compared to non-treated animals in both muscles 4 h after

exercise and directly after exercise in the white gastroc-

nemius (P \ 0.05; Fig. 1). In addition, non-treated rats

showed significantly reduced tGSH levels in the white

gastrocnemius 4 h after exercise, relative to sedentary

controls (P \ 0.05). No significant differences between

groups were detected in this muscle when comparing

Table 1 Primer sequences used to probe genes of interest

Gene Forward primer (50–30) Reverse primer (50–30) GenBank Accession No.

OGT AAAGCATTAGAGGTCTTCCC CATCTCCTTTAAAGTGTTTCCC NM_017107

OGA AATTGCAAAGGGAAAGACTC CTCTTGATATCCCACACATAG NM_131904

GFPT1 (GFAT1) GGCAAAGACAAGAAAGGAAG CAGAAAGATGACACGATTGG NM_001005879

GFPT2 (GFAT2) AAAGAGTCATTCAGCAGTTG CATTCTCAATAGTGCATGTCC NM_001002819

GAPDH TGGTCCAGGGTTTCTTACT ATTCTTCCACCTTTGATGC NM_001001303
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GSSG levels (P [ 0.05), there was a trend for an increased

GSSG/tGSH ratio in DEM-treated rats 4 h after exercise

(P = 0.083). In the soleus of DEM-treated animals, the

decrease in tGSH 4 h post-exercise was accompanied by

reduced GSSG levels (P \ 0.05).

O-GlcNAcylation and OGT protein expression

DEM increased O-GlcNAc levels, which was significant in

the control group in the white gastrocnemius and 4 h after

exercise in both muscles (P \ 0.05; Fig. 2B). Moreover,

exercise itself promoted O-GlcNAcylation, as indicated by

higher O-GlcNAc levels in the white gastrocnemius of non-

treated animals sacrificed immediately or 4 h post-exercise,

relative to sedentary controls (P \ 0.05). O-GlcNAc levels

of individual proteins (Fig. 2A: bands a, b, c, d, e, f) were

determined and the results were correlative with the

changes in overall O-GlcNAcylation (data not shown).

DEM treatment also increased OGT protein expression in

both muscles, this was significant 4 h after exercise

(P \ 0.05; Fig. 2C).

mRNA expression of the O-GlcNAc cycling enzymes

In the white gastrocnemius, DEM blunted the exercise-

induced increase in OGT mRNA; there was a trend

(P = 0.067) for reduced mRNA levels after DEM treat-

ment when comparing the two groups of rats sacrificed

immediately after exercise (Fig. 3). In contrast, the soleus

muscle showed a decrease in OGT mRNA expression

with exercise, which was significant 4 h post-exercise

(P \ 0.05). The mRNA levels were further reduced with

DEM treatment in the rats sacrificed immediately after

exercise (P \ 0.05), while 4 h after exercise DEM indi-

cated a trend for upregulating OGT mRNA expression

(P = 0.052). Similarly, exercise promoted OGA mRNA

Fig. 1 Total glutathione

(tGSH), oxidized glutathione

(GSSG), and GSSG/tGSH ratio

in white gastrocnemius and

soleus muscles. C control

(n = 8), Cd control ? DEM

(n = 8), E exercise (n = 8), Ed

exercise ? DEM (n = 8),

R exercise ? recovery (n = 8),

Rd exercise ? recovery ?

DEM (n = 5). Values are

presented as mean ± SEM.

*P \ 0.05 vs relevant control

group (C or Cd), #P \ 0.05 vs

relevant exercise group (E or

Ed)
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expression in the white gastrocnemius and had an inhib-

itory effect in the soleus, this was significant 4 h post-

exercise (P \ 0.05). The two muscles also showed an

opposite response of OGA gene expression to DEM

treatment. In the white gastrocnemius, DEM increased

OGA mRNA levels immediately after exercise

(P \ 0.05), but reduced it to baseline levels after the 4 h

recovery. This was reversed in the soleus, where the

mRNA levels were reduced in DEM-treated rats imme-

diately after the exercise bout (P \ 0.05) and restored to

baseline levels 4 h post-exercise. The isozymes GFAT1

and GFAT2 demonstrated a different pattern of changes

in their mRNA expression after DEM administration and

the exercise bout, which was particularly evident in the

soleus muscle. Immediately after exercise, DEM blunted

the exercise-induced increase in GFAT1 mRNA in the

white gastrocnemius (trend, P = 0.067) and had a sig-

nificant (P \ 0.05) inhibitory effect in the soleus. mRNA

expression of GFAT2 significantly increased immediately

after exercise in both muscles (P \ 0.05), but returned to

baseline after 4 h. DEM significantly reduced GFAT2

mRNA levels 4 h post-exercise in the white gastrocne-

mius and blunted the exercise-induced increase in the

soleus (P \ 0.05).

Fig. 2 Immunoblots of O-GlcNAc-modified proteins and OGT

enzyme (A) in white gastrocnemius and soleus muscles. Mean

densitometric data for general O-GlcNAc levels (B) and OGT protein

expression (C) normalized to tubulin. C control (n = 8), Cd

control ? DEM (n = 8), E exercise (n = 8), Ed exercise ? DEM

(n = 8), R exercise ? recovery (n = 8), Rd exercise ? recov-

ery ? DEM (n = 5). Values are presented as mean ± SEM.

*P \ 0.05 versus relevant control group (C or Cd), #P \ 0.05 versus

relevant exercise group (E or Ed), �P \ 0.05 versus R
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Discussion

This study investigated the effects of glutathione depletion

and acute exercise on O-GlcNAc modification of skeletal

muscle proteins. Protein O-GlcNAcylation increased sig-

nificantly after the treadmill run and DEM administration.

The protein and gene expression changes of the O-GlcNAc

cycling enzymes were different in the white gastrocnemius

and soleus muscles, likely caused by the differences in

oxidative and glucose metabolism between the two muscle

types. These findings demonstrate that stressors such as

glutathione depletion and acute exercise affect the process

of O-GlcNAcylation in skeletal muscle and promote this

post-translational modification.

DEM depletes intracellular glutathione [29] and this was

confirmed in our study where DEM administration signif-

icantly decreased total glutathione levels in rat skeletal

muscle. DEM-treated rats exhibited a trend for higher

Fig. 3 OGT, OGA, GFAT1,

and GFAT2 mRNA expression

in white gastrocnemius and

soleus muscles. Fold change

values (relative to control group

C) were normalized to GAPDH.

C control (n = 8), Cd

control ? DEM (n = 8),

E exercise (n = 8), Ed

exercise ? DEM (n = 8),

R exercise ? recovery (n = 8),

Rd exercise ? recovery ?

DEM (n = 5). Values are

presented as mean ± SEM.

*P \ 0.05 versus relevant

control group (C or

Cd), #P \ 0.05 vs relevant

exercise group (E or Ed), �

P \ 0.05 vs R
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GSSG/tGSH ratio post-exercise in the white gastrocne-

mius, whereas reduced GSSG levels were found in the

soleus, possibly due to less available glutathione in the

cells to be oxidized. The changes were most significant 6 h

after the animals were injected DEM (4 h post-exercise),

indicating a time effect of DEM to reduce glutathione

levels. Furthermore, plasma isoprostane levels increased

significantly in the DEM-treated rats. These measures were

considered indicative of oxidative stress. DEM adminis-

tration also significantly reduced time to fatigue in the rats

subjected to a treadmill run, which was consistent with the

findings of Sen et al. [30]. This demonstrates an important

role of endogenous glutathione in the alleviation of exer-

cise-induced oxidative stress and as a determinant of

exercise performance.

Non-treated exercised rats also exhibited elevated

plasma isoprostanes. In addition, exercise decreased total

glutathione levels in the white gastrocnemius, but had no

effect in the soleus. Increased ROS formation is charac-

teristic of exercise [1] and was likely responsible for the

lower tGSH and elevated GSSG content observed in the

muscle. Our findings are not unexpected as the two muscles

differ in fiber type composition: white gastrocnemius

consists mainly of type 2 glycolytic fibers, while type 1

oxidative fibers are predominant in the soleus [31]. A dif-

ferential response to oxidative stress between muscle fiber

types was reported in rats after exposure to hypobaric

hypoxia; significantly higher levels of oxidative stress and

lower glutathione content were found in the gastrocnemius

muscle in comparison to the soleus [32]. In treadmill-

trained dogs, regular exercise elevated total glutathione

levels and glutathione peroxidase activity most signifi-

cantly in the red gastrocnemius muscle, which is predom-

inantly oxidative by composition, while extensor radialis

and triceps muscles showed higher glutathione reductase

activity [33]. As tGSH (and GSSG) levels were generally

higher in the soleus compared to the white gastrocnemius

muscle (Fig. 1), we propose that the more intense oxidative

metabolism in the slow-twitch soleus could reflect an

upregulated antioxidant defense in this muscle and a glu-

tathione system less sensitive to oxidative stress. Indeed,

information about the ROS levels in skeletal muscle tissue

would deliver a clearer picture of the oxidative stress

occurring within the muscle.

The increase in O-GlcNAc levels with DEM treatment

and exercise was most significant 4 h post-exercise, indi-

cating an interaction and time effect of the two interven-

tions. Similarly, DEM-induced upregulation of OGT

protein expression was evident 4 h after the exercise and

could partly explain the increase in O-GlcNAcylation.

Although OGT has been shown to respond to stress [11,

34], in this study, the exercise-induced increase in oxidants

in skeletal muscle might have been insignificant or

counteracted by the cellular antioxidants and did not lead

to the changes in OGT protein expression. Furthermore,

O-GlcNAcylation is a dynamic modification; however,

time is required for the changes to occur, especially at the

protein level, as seen with the absence of detectable

changes in the skeletal muscle of animals sacrificed

immediately post-exercise. In a study by Zachara et al.

[11], O-GlcNAc levels were significantly elevated imme-

diately after the heat shock and continued to rise for 9 h,

returning to normal by 48 h. In neonatal cardiomyocytes,

glucose deprivation also increased O-GlcNAc levels in a

time-dependent manner; the increase in O-GlcNAc was

apparent within 3 h after the treatment, significant by 6 h

and reached maximal levels by 12 h [35]. OGT and OGA

mRNA expression increased, whereas OGA protein levels

decreased and there was no change in OGT protein

expression. Similar studies showed an increase in O-Glc-

NAc levels with glucose deprivation, while the changes in

expression and activity of O-GlcNAc enzymes varied

between different cell lines, suggesting the response is cell-

type dependent [36, 37]. A rapid augmentation of O-Glc-

NAcylation with heat stress was reported, but there were no

significant changes in the mRNA expression and activity of

OGT, OGA, and the levels of UDP-GlcNAc [38]. It was

proposed that elevated O-GlcNAc levels could be

explained by an increased accessibility of OGT to its tar-

gets, caused by conformational changes of heat-denatured

proteins. Taken together, various factors can influence

protein O-GlcNAc levels and without further analyses we

cannot ascertain the mechanisms underlying the changes or

lack there of observed in our study.

The absence of the exercise effect on OGT protein

levels in the white gastrocnemius was consistent with no

changes in the mRNA expression. In the soleus, exercise

reduced the gene expression of OGT, but there were no

changes at the protein level, possibly due to a time delay of

protein translation. DEM inhibited OGT mRNA expression

immediately after exercise in both muscles, but showed a

trend for a positive regulatory effect in the soleus 4 h post-

exercise. However, 4 h after exercise, OGT mRNA content

did not differ from baseline levels, yet OGT protein levels

were found to be increased. Plasma levels of isoprostanes

in DEM-treated rats were found to revert to baseline 4 h

after the treadmill run, which could mean a lack of stimulus

for the upregulation of gene expression. Furthermore, OGT

responds to the changes in HBP flux and substrate avail-

ability [36, 39], is a subject of post-translational modifi-

cations, including O-GlcNAcylation and phosphorylation

[40], and interacts with a number of other enzymes [12,

34]. DEM-induced stress could interfere with these pro-

cesses and lead to the changes in protein expression and its

distribution across cellular compartments, resulting in the

change of the measured OGT protein content. When
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assessing mRNA expression of OGA, a combination of

exercise and DEM was associated with significantly

increased levels in white gastrocnemius. Exercise was

found to upregulate OGA mRNA expression independently

of DEM, whereas DEM increased the mRNA levels

immediately after the run, but reduced it to baseline after

the 4 h recovery. The opposite was observed in the soleus,

where DEM-treated rats exhibited attenuated OGA mRNA

expression immediately post-exercise and exercise alone

reduced the mRNA levels. DEM increased OGA mRNA

back to baseline after 4 h of recovery. Contracting skeletal

muscle is a major site of glucose metabolism [41] and ROS

formation [42]. The differences in oxidative and glycolytic

capacity of the soleus slow-twitch oxidative fibers and fast-

twitch glycolytic fibers of the white gastrocnemius [31]

may explain the disparate responses of O-GlcNAc enzymes

in the two muscles. Our findings are significant and warrant

further research to elucidate O-GlcNAc protein modifica-

tion across different muscle types.

Synthesis of UDP-GlcNAc, the substrate for O-GlcNAc,

is controlled by GFAT, the rate-limiting enzyme of HBP.

GFAT1 mRNA expression increased immediately after

exercise in the white gastrocnemius, but the change was

transient and not significant. However, GFAT2 mRNA

levels increased with exercise in both muscles, but returned

to baseline after the 4 h recovery. This is an intriguing

finding and is consistent with the findings of Young and

colleagues [43], who reported increased GFAT2 but not

GFAT1 mRNA with increased workload in the cardiac

muscle. The GFAT gene expression and enzyme activity

have been demonstrated to be upregulated in the hyper-

glycemic environment, which correlated with increased

oxidative stress levels [44]. DEM blunted the exercise-

induced increase in GFAT1 mRNA in the white gastroc-

nemius and reduced the mRNA expression in the soleus

immediately after exercise, but these changes were only

transient. DEM treatment downregulated GFAT2 expres-

sion in the white gastrocnemius, while this was a transient

effect in the soleus, where a trend for elevated GFAT2

levels was found in DEM-treated rats 4 h post-exercise.

One possible explanation for the fluctuations in GFAT

expression is that oxidative stress induced by exercise and

DEM stimulated the HBP and promoted UDP-GlcNAc

synthesis, ultimately resulting in the feedback inhibition of

the pathway via suppression of GFAT. Evaluation of the

HBP flux and enzyme activity would need to be performed

in order to confirm these predictions. Furthermore, diverse

responses of the two GFAT isoforms to DEM and exercise

can be partly explained by the differences in their tissue

distribution, with GFAT1 being ubiquitous and GFAT2

predominating in the central nervous system [8]. The

inhibition of GFAT activity with UDP-GlcNAc has been

shown to vary between the two isoforms and

phosphorylation at a similar site in the two enzymes

attenuated GFAT1 activity, but increased the activity of

GFAT2 [9]. Isoform-specific inhibitors and gene deletion

would provide further insight into the roles of GFAT iso-

zymes in O-GlcNAc modification of skeletal muscle pro-

teins and its response to the conditions used in this study.

There has been a limited investigation into the role of

O-GlcNAc in the exercising skeletal muscle, with only

three published studies to date [45–47]. These studies

reported increased UDP-GlcNAc but no effect on GFAT

activity after acute swimming exercise in rat skeletal

muscle [45] and decreased O-GlcNAc protein modification

in human skeletal muscle following 60 days of bed rest that

was restored by exercise [46]. A recent study found no

effect of a yearlong power training on OGT and OGA

mRNA expression in skeletal muscle of postmenopausal

women [47]. In response to exercise training, however, O-

GlcNAc and OGT protein decreased in the heart of non-

diabetic mice [48] and attenuated O-GlcNAcylation was

accompanied by an upregulation of OGA expression and

activity in the heart of diabetic mice [49]. Another study

showed cytosolic O-GlcNAc levels in mouse hearts

decreased after a 15-min treadmill run, but there were no

changes after a 30 min run [50]. It should be noted that cell

type, different exercise protocols, and (patho)physiological

conditions in these studies contributed to the discrepant

findings and have to be considered when comparing the

results. Nonetheless, these reports, together with our find-

ings, demonstrate that O-GlcNAc protein modification

responds to muscle contractile activity and may reflect the

oxidative and metabolic changes induced by exercise,

warranting further investigation.

The primary focus of our study was to determine

O-GlcNAc levels on skeletal muscle proteins and the

response of this modification to glutathione depletion and

exercise. Indeed, the future studies will have to investigate

whether the observed augmentation in O-GlcNAc protein

modification influences the homeostasis of skeletal muscle

proteins, muscle contractile activity, and resistance to

oxidative damage. Unfortunately, we were not able to

perform additional experiments due to the limited muscle

tissue availability. Furthermore, it has to be noted the

treadmill run the rats were subjected to might have induced

a certain level of stress, despite the animals being famil-

iarized with the treadmill and the exercise groups chosen

due to the greater willingness to run than their sedentary

controls. This protocol appeared to be the most sensible to

investigate the effects of acute exercise, but its contribution

to the overall stress levels and O-GlcNAc modification

cannot be excluded. Evaluation of the protein expression of

O-GlcNAc enzymes other than OGT and measurement of

the enzyme activities would provide further insight into the

mechanisms of O-GlcNAc protein modification in skeletal

Mol Cell Biochem (2015) 400:265–275 273

123



muscle. In addition, ROS measures in skeletal muscle and

HBP metabolite profiling could deliver valuable informa-

tion about the oxidative stress and glucose metabolism in

this tissue during and after the interventions.

In summary, glutathione depletion and acute exercise

increased O-GlcNAc protein modification in skeletal mus-

cle. Skeletal muscles, the largest organ grouping in human

body, are critically involved in glucose and protein metab-

olism, have demonstrated an endocrine function and are the

major site of ROS production during exercise [51, 52].

Therefore, as increased skeletal muscle mass and improved

cellular function lead to beneficial systemic metabolism, the

link between O-GlcNAc and cellular redox state could be of

significant importance for skeletal muscle physiology, par-

ticularly in the context of beneficial effects of exercise.
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