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Abstract The aim of this study was to determine the

levels of regulatory peptides apelin, glucagon-like peptide

(GLP-1) and visfatin in hypercholesterolemic and hype-

rhomocysteinemic state and to examine their relation with

nitric oxide (NO) metabolism. 32 Male guinea pigs were

divided into four groups and each group was fed as fol-

lows: (a) commercial chow, (b) cholesterol (chol)-rich diet,

(c) methionine (meth)-rich diet, and (d) chol ? meth-rich

diet. Blood samples were drawn at the end of 10 weeks,

and abdominal aorta was dissected for histopathological

examination. Serum insulin, GLP-1, apelin, visfatin, and

nitrotyrosine concentrations were measured by the manu-

facturer’s kits based on ELISA; asymmetric dimethylargi-

nine (ADMA) and arginine levels were measured by the

high performance liquid chromatography. Homocysteine

level was measured by the chemiluminescence immuno-

assay; glucose, total chol and triglyceride levels were

measured by the autoanalyzer. The microscopic examina-

tion of aorta indicated varying degrees of vascular distur-

bance in chol- and chol ? meth-fed groups. High levels of

chol and homocysteine, accompanied with significantly

low levels of apelin and GLP-1 were detected in the

plasma. Visfatin, ADMA, and nitrotyrosine levels both in

chol- and chol ? meth-fed groups were significantly higher

than those in control animals, whereas arginine and argi-

nine/ADMA ratio were lower. This study indicated that

circulating levels of apelin, GLP-1, and visfatin are

markedly altered during the development of atherosclerotic

changes in close association with chol, homocysteine, NO,

and ADMA levels. The measurements of these peptides in

serum may help for the diagnosis and follow-up of vascular

dysfunction.
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Introduction

High plasma cholesterol (chol) and homocysteine, the

major risk factors for the development of atherosclerosis,

are known to cause impairments in endothelial-dependent

relaxation which is linked a decrease in the bioavailability

of nitric oxide (NO) [1]. NO is a major endothelium-

derived relaxing substance synthesized from L-arginine by

the activity of NO synthase (NOS). In order to elucidate the

mechanisms through which chol and homocysteine exac-

erbate the development of atherosclerosis, either genetic

modifications or dietary regimens enriched with chol and

methionine (meth), the precursor of homocysteine, have

commonly been used in animal experiments.

Atherosclerotic and inflammatory conditions are always

accompanied by irregular synthesis of adipocyte-derived

substances. The synthesis of pro-inflammatory mediators

by the increased bulk of adipose tissue may further induce

inflammatory changes in obesity, and cause a vicious circle

for the production of several hormones and adipokines.

Apelin is one of these regulatory peptides synthesized in

adipocytes as well as other organs, and mainly in endo-

thelial cells [2, 3]. It has been identified as an endogenous
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ligand of the G-protein-coupled receptor [4]. The effects of

apelin have been demonstrated in cardiovascular and

immune functions and energy homeostasis [5, 6]. Previous

observations indicated that apelin lowers the blood pres-

sure via a NO-dependent mechanism [7].

Visfatin, another novel peptide synthesized in visceral

adipocytes, is expressed mostly in macrophage-infiltrating

adipose tissue during inflammatory response [8]. Plasma

visfatin levels are known to increase progressively with the

degree of obesity, and associate with insulin resistance [9].

Significantly elevated visfatin levels were observed in

coronary artery disease, suggesting the involvement of

visfatin in the pathogenesis of atherosclerosis [10].

Glucagon-like peptide (GLP-1), a member of the prog-

lucagon incretin family, has been shown to play a role in

atherosclerotic process through inducing eNOS [11]. GLP-

1 receptors are abundantly expressed in endothelial cells,

monocyte/macrophages, and smooth muscle cells. Recent

studies suggested that the anti-inflammatory, antiprolifer-

ative, and vasodilatory properties of GLP-1 signaling may

protect the vascular wall against atherogenesis [12]. In

contrast, some researchers have reported positive associa-

tions of circulating GLP-1 levels and the development

atherosclerosis [13, 14].

Although several animal models have been used to

investigate mechanisms of homocysteine and/or chol-

induced vascular dysfunction, experimental studies related

to the role of regulatory peptides in this process are limited.

In this study, we used the combination of high dietary chol

and meth in order to develop atherosclerotic changes and

endothelial dysfunction in guinea pigs, and measured the

circulating levels of apelin, GLP-1, and visfatin together

with the biochemical parameters of NO metabolism in order

to evaluate their involvement with vascular dysfunction.

Materials and methods

Study groups

Male Dunkin–Hartley guinea pigs, 4–6 months old, and

weighing 695 ± 38.6 g, were used. The animals were

obtained from the Experimental and Medical Research

Institute, Istanbul University. They were kept in steel wire

cages at room temperature (25 �C) and maintained on a

12-h light/dark cycle. The study protocols were approved by

the Animal Care and Use Committee, Istanbul University.

Thirty-two animals were divided into four groups, eight

animals in each. Group 1 (control) was fed a commercial

laboratory chow. For the other three groups, a diet chow

was prepared by the addition of chol (Alfa Aesar A11470)

and/or L-methionine (Sigma). Group 2 (chol) received a

diet supplemented with 1.5 % (w/w) chol, while group 3

(meth) had a diet containing 2 % (w/w) meth only. Group 4

(chol ? meth) was fed with chol (1.5 %) ? meth (2 %)-

supplemented diet [15, 16]. Food and water were supplied

ad libitum.

Methods

At the end of 10 weeks, animals were anesthetized by

sodium thiopental following an overnight fasting and blood

samples were drawn by the cardiac venipuncture. Aliquots

of serum and plasma were stored at -80 �C until studied,

and used for the biochemical analyses. Serum insulin and

apelin levels were measured by the competitive binding

enzyme immunoassay kits (Wuhan EIAab Science, and

Novateinbio, Cambridge, USA, respectively), and serum

GLP-1 levels were determined by sandwich enzyme-linked

immunosorbent method (Wuhan EIAab Science, Wuhan,

China).

Glucose, total chol and triglyceride levels were carried

out on the same day by using Roche autoanalyzer.

Homeostasis model assessment (HOMA-IR) was calcu-

lated by the formula of insulin (mU/L) 9 glucose (mmol/

L)/22.5 [17].

Homocysteine concentrations were measured by the

chemiluminescence immunoassay using Immulite 2000

XPI (Siemens Medical Solutions Diagnostics, IL, USA).

Serum asymmetric dimethylarginine (ADMA) and L-

arginine concentrations were determined using high per-

formance liquid chromatography following pre-column

derivation with o-phthalaldehyde [18].

Nitrotyrosine levels were measured by the enzyme-

linked immunosorbent assay (Cell Biolabs, Inc.). NO levels

were estimated as total nitrite ? nitrate using spectropho-

tometric commercial kit (Oxford Biomedical Research,

Oxford, USA).

Histopathological studies

Pieces of abdominal aorta from the control and experi-

mental groups were removed immediately and fixed in

10 % buffered formaldehyde and processed for paraffin

sectioning. Sections 5 lm in thickness were stained with

haematoxylin and eosin (H&E) using a standard protocol

and analyzed by the pathologist on the light microscopy.

Statistical analysis

The data were analyzed using SPSS 15 (SPSS, Chicago, IL,

USA). The results were expressed as mean ± SD. One-

way analysis of variance followed by Tukey’s post-hoc test

was used for equal variances. Kruskal–Wallis variance

analysis and a post-hoc analysis using Mann–Whitney

U-test were performed for unequal variances. In all cases, a
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difference was considered significant when p \ 0.05.

Correlation analyses were carried out by the Pearson test.

Results

The biochemical data are presented in Table 1. Levels of

glucose and insulin in chol, meth, and chol ? meth groups

were not different than those from the control group, and

therefore similar HOMA-IR values were obtained in all

Table 1 Effects of high cholesterol and/or high methionine diet on the biochemical parameters in plasma of guinea pigs (mean ± SD; n = 8 in

each group)

Groups Control Chol Meth Chol ? meth

Insulin (mIU/L) 1.78 ± 0.39 1.40 ± 0.32 1.38 ± 0.42 1.41 ± 0.66

HOMA-IR 0.61 ± 0.19 0.45 ± 0.23 0.45 ± 0.17 0.45 ± 0.26

Cholesterol (mg/dL) 46.7 ± 11.4 246 ± 29.6a 80.0 ± 9.16a,b 288 ± 42.9a–c

Homocysteine (lmol/L) 4.48 ± 1.02 6.30 ± 1.56a 17.1 ± 5.31a,b 22.2 ± 5.74a,b

NO (lmol/L) 19.3 ± 2.99 15.8 ± 6.53 13.2 ± 6.37 14.3 ± 3.16

Nitrotyrosine (nmol/L) 23.0 ± 2.17 30.3 ± 3.18a 26.7 ± 4.92 46.9 ± 3.23a–c

p \ 0.05 in comparison with: a control, b cholesterol, c methionine groups

Fig. 1 Effects of high cholesterol and/or high methionine diet on

serum apelin (a), visfatin (b), and GLP-1 (c) levels in the study groups

(mean ± SD; n = 8 in each group). p \ 0.05 as compared with:

(a) control, (b) cholesterol groups
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Fig. 2 Effects of high cholesterol and/or high methionine diet on

plasma ADMA (a) and arginine/ADMA ratio (b) in the study groups

(mean ± SD; n = 8 in each group). p \ 0.05 as compared with:

(a) control, (b) cholesterol, and (c) methionine groups
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groups. Serum chol levels were higher in all diet-fed

groups than those in control animals. Homocysteine levels

were high in chol, meth, and chol ? meth groups.

Serum NO levels were slightly lower in chol-fed (18 %)

and chol ? meth-fed animals (26 %) than in controls.

However, the difference with regard to control group was

not significant. Nitrotyrosine levels were significantly high

in chol- and chol ? meth-fed animals (Table 1).

Significantly lower levels of apelin were found in chol,

meth, (p \ 0.02) and chol ? meth groups (p \ 0.01) in

comparison to controls; apelin levels being markedly lower

in the chol ? meth group than the other groups (p \ 0.05;

Fig. 1a).

Serum visfatin levels in chol and chol ? meth groups

were significantly high compared to the control group

(p \ 0.05 and \0.01, respectively; Fig. 1b). Serum GLP-1

concentrations were significantly lower in these groups as

well as in the meth group than in controls (p \ 0.01;

Fig. 1c). No difference was noticed between the diet-fed

groups.

ADMA levels in all diet-fed groups were significantly

high as compared to the control group (p \ 0.01). Addition

of meth to the high-chol diet caused more drastic increment

in ADMA concentrations (Fig. 2a), together with signifi-

cant decrements in the arginine/ADMA ratio (Fig. 2b).

Correlation analyses

Significant correlations were obtained as follows: apelin

positively with GLP-1 (r = 0.44), NO (r = 0.41, p\0.05);

and negatively with visfatin (r = -0.44, p = 0.05), ADMA

(r = -0.76), nitrotyrosine (r = -0.55), chol (r = -0.64,

p\0.001); and homocysteine (r = -0.50, p\ 0.01).

Visfatin levels were associated negatively with GLP-1

(r = -0.44) and NO (r = -0.41, p \ 0.05); and positively

with chol (r = 0.65), homocysteine (r = 0.59), and

ADMA (r = 0.52, p \ 0.01). GLP-1 levels were associ-

ated negatively with chol (r = -0.55) and ADMA (r =

-0.51, p \ 0.01).

ADMA and nitrotyrosine levels were correlated posi-

tively (r = 0.73, p \ 0.01).

Histopathological findings

Examination of aorta revealed some pathological changes

in the diet-fed groups (Fig. 3). Meth feeding caused slight

increases in intima-media thickness and muscle cell pro-

liferation. In the chol and chol ? meth groups, increased

intima-media thickness, smooth muscle cell proliferation,

lipid vacuoles, and in some areas fatty streaks resembling

chol crystals were seen.

Fig. 3 Histopathological examination of the aortic sections from the

animals in the study groups (H&E, magnification 200). a Control,

b chol increased intima-media thickness (1), smooth muscle cell

proliferation (2) and lipid vacuoles with fatty streaks resembling

cholesterol crystals (3), c meth only slight increase in intima-media

thickness and smooth muscle cell proliferation, and d chol ? meth

similar to chol group
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Discussion

In the present study, we fed the guinea pigs with high meth

and chol diet for a 10-week period in order to stimulate

hyperhomocysteinemia and hypercholesterolemia. The

microscopic examination of aortic sections indicated an

early phase of vascular disturbance which was accompa-

nied by significantly high chol and homocysteine levels in

the plasma. These alterations were more prominent in the

chol ? meth-fed group. Meth load is known to cause

hypercholesterolemia by stimulating several mechanisms.

Firstly, increased meth concentration in liver enhances the

bioavailability of methyl groups for the methylation of

phosphatidylethanolamine, thereby leading to increases in

phosphatidylcholine:phosphatidylethanolamine ratio which

has a regulatory function in chol metabolism [19]. More

importantly, homocysteine induces 3-hydroxy-3-methyl-

glutaryl coenzyme A reductase, the rate-limiting enzyme in

chol biosynthesis, by activating transcription factors [20,

21]. Therefore, chol ? meth load would be expected to

have a more profound effect on plasma chol. Our findings

in the animals fed chol ? meth diet is in good agreement

with the previous reports.

The decreased activity of NOS and impaired NO bio-

availability are prominent events leading to vascular dys-

function [22, 23]. ADMA, an endogenous inhibitor of

NOS, is a major determinant of NO production [24]. It has

been reported that plasma ADMA levels are increased in

the presence of hypercholesterolemia [25, 26]. In our study,

markedly elevated ADMA levels in hypercholesterolemic

and hyperhomocysteinemic animals confirm the relation of

ADMA to the development of endothelial dysfunction.

Additionally, plasma arginine/ADMA ratios were found

significantly decreased in all diet-fed groups, the degree of

decrease being more prominent in the chol ? meth group.

A positive correlation between plasma ADMA and

homocysteine levels has been well-documented [27].

Reduced dimethylarginine dimethylaminohydrolase (DDAH)

activity is considered as the major factor for the elevation of

ADMA [28, 29]. In patients with peripheral arterial disease,

meth load caused elevations in plasma homocysteine and

ADMA levels [30]. Homocysteinylation of lysine residues in

DDAH protein due to hyperhomocysteinemia may result in

inactivation of the enzyme, thereby leading to increases in

circulating ADMA [31, 32]. As summarized in Fig. 4,

homocysteine itself not only induces chol synthesis, but also

alters ADMA metabolism in the liver. A profound increment

in ADMA levels in the chol ? meth group is likely to be

resulted from dual effect of hyperhomocysteinemia.

Elevated ADMA levels are indicative of decreased NO

formation. We measured both NO and nitrotyrosine levels

in order to detect the bioavailability of NO. Decreased NO

levels accompanying to markedly elevated nitrotyrosine

seemed to be due to superoxide radical generation in chol

and chol ? meth groups. It is known that conditions of

oxidative stress promote S-glutathionylation of cysteine

residues in endothelial NOS, which causes decreased NO

synthesis and increased superoxide generation from the

reductase domain of the enzyme [33]. An excess generation

of superoxide radical can scavenge NO, thus decreasing

its bioavailability and increasing nitrotyrosine formation

[34, 35].

One of the main purposes in our study was to see the

possible relation of apelin with early vascular lesions. In a

previous study, exogenous apelin administration to rats

caused elevations in plasma NO concentrations. Also,

apelin exerted a hypotensive effect which was abolished by

the presence of NOS inhibitor [7]. In our study, plasma

apelin levels were significantly decreased in chol- and

chol ? meth-fed animals. Apelin levels were negatively

correlated with those of ADMA, suggesting a possible

involvement of this peptide in vascular changes. Several

clinical studies have focused on the relation of apelin with

hypercholesterolemia and cardiovascular disease [6, 36,

37]. The decrease in apelin levels was thought to be

associated with insulin resistance in these patients. There-

fore, in our study, we evaluated the HOMA-IR to see

whether any changes occurred in glucose homeostasis.

Neither glucose nor insulin levels seemed to be affected

during atherogenic regiments. Decreased apelin levels were

negatively correlated with both chol and homocysteine.

Furthermore, serum apelin levels were decreased more

drastically when meth was added to the atherogenic diet.

To our knowledge, there is no study with regard to the

effect of hyperhomocysteinemia on apelin synthesis or

secretion. The decrement in apelin levels seems to be

related to the ongoing atherogenic process with an additive

impact of hyperhomocysteinemia.

Many experimental studies revealed that GLP-1 and

related drugs exert protective effects on atherosclerosis,

hypertension and cardiac dysfunction [38, 39]. In a mouse

model of obesity, GLP-1-based therapy activated several

cardioprotective pathways, as well as it prevented obesity-

Fig. 4 The relationship between homocysteine, cholesterol, NO, and

ADMA with vascular dysfunction
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induced insulin resistance and inflammation [40]. In clin-

ical trials, treatment with GLP-1 analogs not only had the

ability to reduce blood glucose, but also exerted several

cardioprotective effects, by influencing positively some

risk factors, and improving endothelial function. GLP-1

analogs increased the eNOS expression [41] and decreased

the number of inflammatory cells and ROS production

[42]. In our study, GLP-1 levels were decreased in chol-

and chol ? meth-fed animals. A negative association

between GLP-1 and ADMA levels was observed, sug-

gesting a possible involvement of ADMA on GLP-1

secretion.

As a potential inflammatory mediator, visfatin plays a

role in chronic inflammation, thus contributes to the path-

ogenesis of atherosclerosis and cardiovascular disease. A

positive association between visfatin levels and coronary

atherosclerosis has been observed [43]. Moreover, visfatin

impairs microvascular endothelium-dependent relaxation

through a mechanism involving NADPH oxidase stimula-

tion [44]. Serum visfatin levels were found markedly ele-

vated in both in hypertensive and prehypertensive patients

[45]. Uslu et al. have observed high visfatin levels in type 2

diabetic patients which was associated with hyperhomo-

cysteinemia, suggesting a role of visfatin in endothelial

dysfunction [46]. In our study, visfatin levels were signif-

icantly elevated both in chol and chol ? meth groups, and

correlated negatively with GLP-1 levels. Moreover, sig-

nificant correlations between visfatin levels and the mark-

ers of endothelial dysfunction were observed.

The roles of apelin, visfatin, and GLP-1 in cardiovas-

cular dysfunction have been investigated previously in

clinical studies and their physiological effects have been

noted. In this study, their relation with ADMA metabolism

was searched in an experimental model of atherogenesis.

Our results indicated that levels of apelin, GLP-1, and

visfatin are markedly altered during the development of

atherosclerotic changes in close association with chol,

homocysteine, NO, and ADMA levels. According to the

results of the present study, measurement of these peptides

in circulation may help to assess the development of vas-

cular dysfunction in patients with metabolic abnormalities.
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