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Abstract In the recent decades, carotid angioplasty and

stenting (CAS) has been developed into a credible option

for the patients with carotid stenosis. However, restenosis

remains a severe and unsolved issue after CAS treatment.

Restenosis is characterized by neointimal hyperplasia,

which is partially caused by vascular smooth muscle cells

(VSMC) proliferation. However, the molecular mechanism

involved in the restenosis is still unclear. In this study, we

demonstrated a functional crosstalk between two TGF-b
superfamily signaling pathway members, Smad3 and

BMPR2, in VSMC proliferation. Smad3 plays an important

role in the TGF-b/Smad3 signaling pathway, and is sig-

nificantly upregulated in the carotid artery with restenosis

to promote VSMC proliferation. In contrast, BMP receptor

II (BMPR2), an inhibitor of VSMC proliferation is down-

regulated in carotid restenosis. We further found that

BMPR2 downregulation is mediated by miR-17–92 cluster,

which is transcriptionally regulated by Smad3. Thus,

Smad3 upregulation and Smad3/miR-17–92 cluster-

dependent BMPR2 downregulation are likely to promote

VSMC proliferation and restenosis. Taken together, our

results may provide novel clues for early diagnosis of

carotid restenosis and developing new therapeutic strategy.
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Introduction

Carotid stenosis is a narrowing or constriction of the inner

surface of the carotid artery [1, 2]. It is a major risk factor

for stroke that leads to brain damage [3, 4]. Carotid ste-

nosis is usually caused by atherosclerosis [5, 6], charac-

terized by the atherosclerostic plagues accumulating in

the artery wall, thus occluding the blood flow. In the last

decade, carotid angioplasty and stenting (CAS) has been

developed into a credible alternative treatment to carotid

endarterectomy (CEA) for the patients with symptomatic

moderate- and high-grade stenosis [7, 8]. However,

restenosis still remains an unsolved issue following CAS

treatment, and the restenosis rate is even higher than that

following CEA treatment [9, 10]. Restenosis is a healing

process of the arterial wall in response to mechanical

injury caused by CAS and comprises two major pro-

cesses—neointimal hyperplasia and vessel remodeling

[11, 12]. Thus, to develop more effective therapeutic

approaches for preventing restenosis, a better under-

standing of the molecular mechanism of restenosis is

important.

One of the important characters of restenosis is vascular

smooth muscle cells (VSMC) proliferation, which is

likely to be mediated by transforming growth factor-beta
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(TGF-b)/bone morphogenic protein (BMP) signaling

pathway. TGF-b is known to play an important role in the

development of restenosis [13, 14]. As a profibrotic cyto-

kine, TGF-b enhances neointimal formation by stimulating

extracellular matrix (ECM) synthesis [15, 16]. Among the

many downstream effectors of TGF-b, Smad3 might play a

critical role in the formation of intimal hyperplasia. It has

been shown that TGF-b1, through Smad3-dependent

pathway, stimulates VSMC fibronectin synthesis, thus

enhancing neointimal ECM accumulation [17]. Moreover,

it has been shown that Smad3 overexpression also

enhanced intimal hyperplasia via the stimulation of VSMC

proliferation [13, 15]. Smad3 acts as a transcription factor

that regulates the expression of a number of genes in the

cellular processes [18, 19]. However, how Smad3 regulates

in the carotid artery restenosis is largely unknown.

Besides TGF-b, bone morphogenetic protein (BMP) is

another important member of the TGF-b superfamily [20,

21]. To date, around 20 BMP family members have been

identified and characterized [22]. BMPs signal through

serine/threonine kinase receptors, composed of type I and

II subtypes [23]. Three type I receptors have been shown to

bind BMP ligands, type IA and IB BMP receptors

(BMPR1A and BMPR1B), and type IA activin receptor

(ActR1A) [23]. Three type II receptors for BMPs have also

been identified, including type II BMP receptor (BMPR2),

and type II and IIB activin receptors (ActR2 and ActR2B)

[23]. The function of BMP-dependent signaling pathway in

carotid artery restenosis is not clear. However, loss-of-

function mutations of BMP receptor II (BMPR2) are often

identified in the patients with familial pulmonary arterial

hypertension (PAH) [24, 25], a disease characterized by

excessive VSMC proliferation, particularly in response to

TGF-b [26]. Thus, BMPR2 is likely to act as a negative

regulator to suppress TGF-b-dependent VSMC prolifera-

tion. Since VSMC proliferation causes neointimal forma-

tion in carotid restenosis [11, 12], we hypothesize that

Smad3-dependent signaling pathway has functional cross-

talk with BMPR2 in VSMC proliferation during carotid

restenosis.

Using human tissue samples, we confirmed that Smad3

is significantly upregulated in carotid restenosis. Moreover,

we found that the expression level of BMPR2 was signif-

icantly reduced in human carotid artery restenosis. The

ChIP analyses showed that BMPR2 was targeted by miR-

17–92 cluster members, which is controlled by Smad3.

Thus, our results reveal a novel crosstalk between Smad3

and BMPR2 through miR-17–92 cluster in carotid artery

restenosis. This study may provide a novel therapeutic

strategy for carotid artery restenosis, namely, inhibition of

miR-17–92 cluster, which may not only block the Smad3

function but also rescue BMPR2 expression to relieve the

neointimal formation.

Materials and methods

Sample collection

The carotid artery tissues were surgically removed from the

patients with carotid restenosis following CAS treatment at

Beijing Xuanwu Hospital in China, and were harvested for

this study in accordance with informed consent principles.

Peripheral blood samples were collected from the

patients with carotid restenosis following CAS treatment at

Beijing Xuanwu Hospital in China after informed consent

from the subjects. Peripheral blood samples from healthy

volunteers were also collected as control. All the samples

used in this study were harvested after obtaining approval

from the ethics committees at Capital Medical University

of China and University of Michigan.

Cell culture

Human carotid artery smooth muscle cells (hHCtASMCs)

were obtained commercially (Cell Applications, Inc.) and

cultured in Medium 231 supplemented with Smooth

Muscle Growth Supplement (Life technologies) in 37 �C

with 5 % CO2.

Histopathology and immunofluorescent staining

The artery specimens were fixed in 4 % paraformaldehyde

for 24 h, dehydrated, and embedded into paraffin wax, then

sectioned to 4 lm slides and processed for H&E staining.

To perform immunofluorescent staining, sections were

deparaffinized and incubated with rabbit anti-Smad3

(1:500) (Upstate, Cat. # 04-1035) and mouse anti-BMPR2

(1:500) (Millipore, Cat. # MABD171). The slides were

then washed in PBS and incubated with FITC-coupled

secondary antibodies (1:1000, Jackson ImmunoResearch

Laboratories).

Transfection of siRNAs to hHCtASMCs

hHCtASMCs were transfected with 500 ng of Smad3

siRNA and Mock siRNAs using a Primary P1 Nucleofec-

tion Kit and 4D Nucleofector machine (Lonza). Smad3

siRNA sequence was ordered from Dharmacon. The siR-

NA sense sequence is 50-GAGAAACCAGUGACCACCA-30,
and the mock siRNA sense sequence is 50-CUACAACUCCC

ACAACGUA-30.

RNA isolation and quantitative reverse transcription

polymerase chain reaction (qRT-PCR)

Total RNA was isolated from the carotid artery tissue

using Trizol (Invitrogen) according to the manufacturer’s
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instruction. For circulating RNA isolation, the whole blood

was allowed to stand overnight at 4 �C, and total circu-

lating RNA was isolated from 200 ll serum using miRN-

easy mini kit according to the manufacturer’s protocol

(Qiagen).

Approximately, 500 ng of total RNA was reverse tran-

scribed using oligo-dT primers. The cDNA was utilized as a

template to amplify target genes with SYBR Premix Ex Tag

Kit (TaKaRa). Specific primers were listed in Supplementary

Table 1. Each RNA sample was evaluated in triplicate. Gene

expression results were analyzed by the DDCt method and

normalized to b-actin expression. The qRT-PCR assay was

performed on Bio-Rad iQ5 instrument. The data were ana-

lyzed using Optical System Software 2.0.

The expression levels of mature miRNAs were deter-

mined using miRNA-specific qRT-PCR. The specific RT

and PCR primers for miR-17, 18a, 19a, 20a, 92a, 130a, 21,

and U6 were purchased from Qiagen. Reverse transcription

of miRNAs was performed with a miScript Reverse

Transcription Kit (QiAGEN). The qPCR was performed on

Bio-Rad IQ 5 instrument by means of SYBR Premix Ex

Tag Kit (TaKaRa). The expression levels were normalized

to the U6 endogenous control and measured by the com-

parative Ct (DDCt) method.

Dual luciferase reporter gene construct and dual

luciferase reporter assay

The target site of microRNA with *60 flanking sequence

in BMPR2 30 UTR was synthesized with cleavage sites for

Xba I (50 end) and Not I (30 end), and a mutated sequence

of the binding site was also synthesized. The two constructs

were termed as WT and Mut. The DNA oligos were cloned

into the pRL-TK vector (Promega). The DNA sequences

containing the miR-17–92 cluster, miR-130a, and miR-21

target sites as well as the mutant are shown in Supple-

mentary Table 1. Each vector, along with 100 ng of PGL3

and 200 nmol/L miR-17–92 cluster, miR-130 and miR-21

or mimic control, was transfected into 293T cells. Cells

were assayed for renilla and firefly luciferase activity using

the Dual-Luciferase Reporter System (Promega).

Chromatin immunoprecipitation assay

Chromatin immunoprecipitation assays (ChIP) for artery tis-

sues were performed according to the protocol described by

Upstate. In brief, 30 mg of fresh artery tissues per antibody in

every ChIP were chopped into small pieces and transferred

into 10 mL PBS (plus protease inhibitor). The artery tissues

were fixed by 1 % formaldehyde at room temperature for

15 min, and then stopped by adding fresh glycine to a final

concentration of 0.125 M at temperature for 5 min. After

being washed by cold PBS twice, the artery tissues were

resuspended in 1 mL cold PBS (plus protease inhibitors). To

achieve a single cell suspension, the Medimachine from

Becton–Dickinson was used to grind tissue for 2 min. After

centrifugation, the cell pellet was suspended in 69 volume of

cell lysis buffer plus protease inhibitors for 15 min on ice, and

lysed using a B dounce several times to aid in nuclei release.

Cell nuclei were collected by centrifugation at 1,0009g at

4 �C. The cell nuclei were resuspended in 5 9 volume of

nuclei lysis buffer plus the protease inhibitors, incubated on

ice for 20 min and then subjected to sonication. The artery

tissue DNA was sonicated to an average size between 300 and

600 bp. Solubilized chromatin was immunoprecipitated with

antibody against Smad3 (Upstate), and IgG was used as

control. Antibody–chromatin complexes were pulled down

using protein A-Sepharose. After crosslink reversal and pro-

teinase K treatment, immunoprecipitated DNA was extracted

with phenol–chloroform, ethanol precipitated, and treated

with RNase. ChIP DNA was subjected to PCR amplification

using primers flanking the Smad3-binding site at the miRNA

gene promoter.

Protein extraction and western blotting

Protein samples were extracted from the artery tissues by

using total protein extraction kit (Millipore). The protein

concentration was determined using BCA standard curve.

Equal amounts of protein extracts were separated by SDS-

PAGE and transferred electrophoretically to PVDF mem-

branes (Millipore). The membranes were blocked in TBST

containing 5 % milk at room temperature for 1 h. After

washing with TBST, the blocked membranes were probed

with rabbit anti-Smad3 (1:500) (Upstate), mouse anti-BMPR2

(1:500) (Millipore), and mouse anti-b-actin (1:10,000)

(Sigma) primary antibodies overnight at 4 �C. After three

consecutive 10-min washes with TBST, the membranes were

incubated with HRP-conjugated goat-anti-rabbit or goat-anti-

mouse secondary antibody for 1 h. The membranes were

washed again three times with TBST and developed using the

ECL? detection system (GE Healthcare).

Statistical analysis

All the experiments were performed at least three times.

Two-tailed Student’s t test was used for comparing the two

groups. ANOVA was used for multiple-group ([2) com-

parison. Data were presented as mean ± SD p \ 0.05 were

considered statistically significant.

Result and discussion

In the last decade, CAS has been proposed as a safe and an

effective alternative to CEA for patients with carotid
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Fig. 1 Expression changes of Smad3 and BMPR2 in carotid

restenosis. a Carotid artery with restenosis was surgically removed

from the patients and harvested for H&E staining. Thickened

neointima was observed (dark arrows). Adjacent normal carotid

artery was shown as the control. Scale bars 400 lm. b Immunoflu-

orescence staining was performed to examine the expression level of

Smad3 and BMPR2 in the carotid artery tissues. Significant increase

of Smad3 was observed in the carotid artery with restenosis. In

contrast, BMPR2 is downregulated in carotid restenosis. The adjacent

normal artery was used as the control. * artery wall; # neointima.

Scale bars 200 lm. c The result of qRT-PCR shows the significant

increase of Smad3 in carotid artery restenosis. Number 1, 2, 3, 4, 5, 6,

and 7 represent the carotid tissue samples from different patients.

Error bars indicate SD (n = 6) ** p \ 0.01. d Western blotting was

used to detect the protein levels of Smad3 and BMPR2. Smad3

upregulation and BMPR2 downregulation were observed in carotid

restenosis. b-actin was used as protein-loading control. e Quantitative

analysis of the Western blotting results was performed using ImageJ.

Around 80 % decrease of BMPR2 was observed in carotid restenosis.

Error bars indicate SD (n = 6) ** p \ 0.01. f The result of qRT-PCR

shows a slight decrease of BMPR2 mRNA level in carotid restenosis.

Error bars indicate SD (n = 6) * p \ 0.05
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stenosis [7, 8]. However, restenosis remains a severe and

unsolved issue following CAS treatment [9, 10]. One

option for these patients is to surgically remove the blocked

part of the carotid artery together with stent, and use graft

to replace the removed vessels [27]. We harvested the

carotid artery samples following this type of surgery. H&E

staining was performed, and neointima hyperplasia was

observed in the carotid artery with stenosis, but not in the

adjacent normal artery tissue (Fig. 1a).

TGF-b1/Smad3 signaling pathway has been shown to play

a key role for promoting the neointimal formation during

carotid restenosis, including VSMC proliferation, through

experimental studies in the animal models [15, 16]. Thus, we

examined the Smad3 expression levels in human carotid

artery tissue with restenosis by immunofluorescence staining.

As shown in Fig. 1b, Smad3 was positively stained in the

neointima hyperplasia but not normal carotid artery. More-

over, we confirmed the upregulation of Smad3 using both RT-

PCR and Western blotting (Fig. 1c, d). Taken together, these

results suggest that the expression of Smad3 was significantly

increased in the carotid restenosis.

Besides Smad3, BMPR2 also regulates VSMC prolifera-

tion. Thus, we questioned whether BMPR2 participated in

developing carotid restenosis. Again, we examined the

Fig. 2 BMPR2 is regulated by

miR-17–92 cluster. a Targeting

sites of four miR-17–92 cluster

members in BMPR2 30 UTR

were predicted by TargetScan.

b Targeting sites of miR-130a

and miR-21 in BMPR2 30 UTR

were predicted by TargetScan.

c Luciferase assays were

performed to confirm that

BMPR2 was the target gene of

miR-17, miR-19a, miR-20a, and

miR-92a, but not that of miR-

130a and miR-21. Error bars

indicate SD (n = 6)

** p \ 0.01. d The result of

qRT-PCR shows that miR-

17–92 cluster members were

significantly upregulated in

carotid artery restenosis. Error

bars indicate SD (n = 7)

** p \ 0.01. e Circulating miR-

17–92 cluster members

increased in sera of the patients

with carotid restenosis.

Circulating RNAs were isolated

from eight patients’ sera, and

qRT-PCR was performed to

detect the microRNA

expression levels. The

circulating microRNAs in the

healthy volunteers’ sera were

detected as the control.

** p \ 0.01
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expression of BMPR2 in carotid restenosis. Both the immu-

nofluorescence staining and Western blotting results indicated

a significant decrease of the protein level of BMPR2 in carotid

tissues with restenosis (Fig. 1b, c). With the quantitative

analysis of Western blotting results, we found a *80 %

decrease of BMPR2 in carotid restenosis (Fig. 1e). However,

the result of qRT-PCR showed a slight decrease of BMPR2

mRNA level in artery tissues with restenosis compared with

that in normal adjacent artery tissues (Fig. 1f).

This inconsistent alteration of the expression of BMPR2 in

mRNA and protein levels indicated that the downregulation of

BMPR2 could be mediated by microRNAs, which post-

transcriptionally downregulated the target genes [28]. Thus,

we then used online software, TargetScan, to predict the

candidate microRNAs that potentially regulate the expression

of BMPR2 [29]. Several microRNAs were shown to poten-

tially target the 30 UTR of BMPR2 (Fig. 2a, b). Interestingly,

four of these candidate microRNAs, including miR-17, miR-

19ab, miR-20a, and miR-92a, belong to miR-17–92 cluster.

Conserved target sites of these four microRNAs were found in

human BMPR2 30 UTR (Fig. 2a). Of note, miR-17 and miR-

20a share the same potential target sites, because these two

microRNAs have the same seed sequence in the 50 ends

(Fig. 2a). In addition, miR-130a and miR-21 are also found to

potentially target BMPR2 among prediction results (Fig. 2b).

Luciferase assays were performed to examine whether

BMPR2 was directly regulated by these six microRNAs. The

target site of each of these six microRNAs in BMPR2 30 UTR

was cloned into the downstream of renilla luciferase coding

frame of pRL-TK vector (Promeg). Each microRNA targeting

site mutant was also generated. The result showed that lucif-

erase signal could be significantly downregulated by miR-17,

miR-19a, miR-20a, or miR-92a, but not by miR-130a or miR-

21 (Fig. 2c). This result indicated that it is miR-17–92 cluster

members, but not miR-130a and miR-21, directly targeting

BMPR2. Both miR-130a and miR-21 have been shown to be

involved in the carotid restenosis by targeting Gax and PTEN,

respectively [30–33]. Both Gax and PTEN can inhibit the

proliferation of VSMC [34, 35]. Thus, miR-130a and miR-21

are upregulated in the carotid restenosis and are likely to

promote VSMC proliferation by downregulating the expres-

sion levels of Gax and PTEN, respectively.

We next detected the expression level of miR-17, miR-

19a, miR-20a, miR-92a as well as another miR-17–92

family member, miR-18a in the carotid artery tissues with

restenosis. All these microRNAs were found to be signif-

icantly upregulated in carotid restenosis compared with

that in adjacent normal artery (Fig. 2d). These results fur-

ther support that miR-17–92 cluster members induce the

carotid restenosis formation by suppressing the expression

of BMPR2. Of note, as a member of miR-17–92 cluster,

miR-18a was also upregulated in carotid artery restenosis

although little evidence indicate that miR-18a is involved

in artery restenosis. It is possible that the upregulation of

miR-18a might be a byproduct of expressing miR-17–92

cluster in the carotid artery tissue with restenosis (Fig. 2d).

Fig. 3 miR-17–92 cluster is regulated by Smad3. a Smad-binding

sequence, GTCTG, was found in the promoter region of miR-17–92

gene cluster. b ChIP-qPCR results suggested that the promoter region of

miR-17–92 gene cluster was bound by Smad3. Carotid artery tissues

with restenosis from 7 patients were used for ChIP-qPCR assay. An

irrelevant IgG was used as control. Error bars indicate SD (n = 7)

** p \ 0.01 versus IgG. c hHCtASMCs were transfected with Smad3

and Mock siRNA respectively. And qRT-PCR was performed to detect

the Smad3 mRNA level in hHCtASMCs. Smad3 siRNA can effectively

decrease the Smad3 mRNA level. Error bars indicate SD (n = 6)

** p \ 0.01 versus Mock. d Knockdown Smad3 suppresses the

transcription of miR-17–92 gene cluster. hHCtASMCs were treated

with Smad3 siRNA. The qRT-PCR was performed to detect the

microRNA expression level. Error bars indicate SD (n = 6)

** p \ 0.01. e Western blotting was performed to examine the protein

level of BMPR2. Significant increase of BMPR2 was observed in

hHCtASMCs treated with Smad3 siRNA but not in the cells treated with

Mock siRNA. b-actin was used as protein loading control
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Recently, extracellular miRNAs have been found to

circulate in the bloodstream, and the circulating miRNAs

are remarkably stable [36–38]. Although the precise cel-

lular release mechanism of miRNAs remains elusive, some

studies revealed that these circulating miRNAs can be

delivered to recipient cells, where they can regulate the

translation of target genes [39, 40]. It raises the possibility

that miRNAs can be probed in the blood and can serve as

novel diagnostic markers [38, 41]. Thus, as a potential

clinical application for the early diagnosis of the restenosis,

we examined the serum levels of four circulating miR-

17–92 cluster members. We isolated the serum microRNAs

from eight patients with carotid restenosis following CAS

as well as eight healthy volunteers. The qRT-PCR was

performed to detect the circulating microRNA levels. The

upregulation of miR-17–92 cluster members, including

miR-17, miR-19a, miR-20a, and miR-92a, was clearly

observed in the sera from the patients (Fig. 2e).

Two TGF-b superfamily signaling pathways were

involved in the process of human carotid artery restenosis,

in which Smad3 is upregulated, and BMPR2 was down-

regulated. We next asked whether these two signaling

pathways have crosstalk in carotid restenosis. Smad3 is one

of the core transcription factors of TGF-b signaling path-

way, and has been shown to directly bind to the promoter

of miR-200b/a as a transcription activator in gastric cancer

cells [42]. The Smad-binding elements have also been

identified, and the consensus sequence is GTCTG [42].

Here, we hypothesize that Smad3 might regulates BMPR2

via the activation of miR-17–92 cluster during restenosis.

We found that the Smad-binding elements existed in the

promoter region of miR-17–92 cluster (Fig. 3a). ChIP–

qRT-PCR was then performed, and we found that Smad3

indeed stayed in the promoter region of miR-17–92 gene

cluster but not in the promoter region of miR-20b and miR-

92b (Fig. 3b). To demonstrate that Smad3 activates the

transcription of miR-17–92 gene cluster and suppresses the

expression of BMPR2, we knocked down Smad3 in human

carotid artery smooth muscle cells by siRNA (Fig. 3c).

Compared with control siRNA treatment, loss of Smad3

significantly suppressed the expression of miR-17–92 gene

cluster (Fig. 3d). Moreover, lacking Smad3 induced the

upregulation of the expression level of BMPR2 (Fig. 3e).

Taken together, our study demonstrates that miR-17–92

cluster mediates the crosstalk between the two important

TGF-b superfamily signaling pathways, TGF-b1/Smad3 and

BMP/BMPR2, to promote the VSMC proliferation and ne-

ointimal formation in the carotid artery restenosis (Fig. 4).
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