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Abstract Human manganese superoxide dismutase

(hMnSOD) is a new type of cancer suppressor. Nonamer of

arginine (R9) is an efficient protein transduction domain

(PTD). The aim of the study was to improve the trans-

duction efficiency of hMnSOD and investigate its activity

in vitro. In this study, we designed, constructed, expressed,

and purified a novel fusion protein containing the hMnSOD

domain and R9 PTD (hMnSOD–R9). The DNA damaged

by Fenton’s reagent was found to be significantly reduced

when treated with hMnSOD–R9. hMnSOD–R9 fusion

protein was successfully delivered into HeLa cells. The

MTT assay showed that proliferation of various cancer cell

lines were inhibited by hMnSOD–R9 in a dose-dependent

manner. In addition, the cell cycle of HeLa cells was

arrested at the sub-G0 phase by hMnSOD–R9. hMnSOD–

R9 induced apoptosis of HeLa cells in a dose-dependent

manner. With hMnSOD–R9 treatment, Bax, JNK, TBK1

gene expression was increased and STAT3 gene expression

was gradually down-regulated in HeLa cells. We also

found that apoptosis was induced by hMnSOD–R9 in HeLa

cells via up-regulation of cleaved caspase-3 and down-

regulation phospho-STAT3 pathway. These results indi-

cated that hMnSOD–R9 may provide benefits to cervical

cancer treatment.
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damage protection � Trans-membrane � Apoptosis

Introduction

In human tissues, there are three known isoforms of SOD:

the mitochondrial manganese SOD (MnSOD), the cyto-

solic copper–zinc SOD (Cu/ZnSOD), and the extracellular

SOD (EcSOD) [1]. Mainly located in mitochondrial matrix,

MnSOD is well known as one of the major antioxidant

enzymes against superoxide free radicals and catalyzes

dismutation of superoxide radical anion into hydrogen

peroxide [2]. Furthermore, MnSOD has been proposed to

be a new type of tumor suppressor gene [3]. Most types of

cancer cells have reduced the expression of MnSOD

compared with their normal cell counterparts. The region

of chromosome 6q25.3, where MnSOD is located, is

deleted in many cancers cells. Numerous studies have

demonstrated that transfection of MnSOD cDNA into

various cancer cells resulted in decreasing their tumorige-

nicity [4–6].

Although MnSOD offers great potential as a therapeutic

molecule in many cancers, therapeutic use of MnSOD is

limited by poor penetration in tissues and inability to cross

cellular membrane. Protein transduction domains (PTDs)
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are capable of transporting cargo across the plasma mem-

brane into cells [7]. Prior research has shown that peptides

containing a higher percentage of arginine will be more

effective for transduction. In related studies, it was found

that nonamer of arginine (R9: RRRRRRRRR) is an effi-

cient PTD [8].

To improve transduction efficiency of human manga-

nese superoxide dismutase (hMnSOD) while preserving its

biological activity, hMnSOD domain and R9 PTD were

fused through gene recombination technology, producing a

recombinant hMnSOD–R9.

Materials and methods

Materials

Mouse anti-His monoclonal antibody was from TIANGEN

(Beijing, China). Horseradish peroxidase (HRP) labeled

goat anti-mouse IgG was purchased from Proteintech

(Chicago, USA). Ni–NTA resin was from QIAGEN (Hil-

den, Germany). FITC-labeled rabbit-anti-mouse monoclo-

nal antibody was from BELLANCOM (New Jersey, USA).

SYBR Green PCR kit was obtained from TAKARA

(Osaka, Japan). Cell cycle and apoptosis analysis kit was

obtained from Beyotime Institute of Biotechnology (Hai-

men, China). An Annexin-V-FLUOS staining kit was from

Roche (Basel, Switzerland). Antibodies against phospho-

STAT3, cleaved caspase-3 and GAPDH were from Cell

Signaling Technology (Danvers, MA, USA).

All other reagents were analytical grade or better and

commercially available.

Construction of expression vector

The gene fragment coding for hMnSOD–R9 chimeric pep-

tide was constructed by PCR amplification [9]. Primers

(forward: 50-AAGCACAGCCTCCCCGACCT-30, reverse:

50-TTACTTTTTGCAAGCCATGTATCTT-30) were designed

based on the sequence of hMnSOD (Genbank accession

NM_000636.2). The hMnSOD–R9 gene was amplified using

forward primer 50-AAGCACAGCCTCCCCGACCT-30 and

reverse primer 50-TTAACGACGACGACGACGACGACG

ACGACGCTTTTTGCAAGCCATGTATCTTTC-30, using

template pET15b–hMnSOD. The amplified PCR product

was ligated into a modified pET15b (Sma I) expression

vector [10], resulting in the recombinant vector pET15b–

hMnSOD–R9, then transformed into Escherichia coli

DH5a cells [11]. The recombinant plasmid pET15b–hMn-

SOD–R9 was extracted and confirmed by direct sequencing

(Yinjun, Shanghai, China). The pET15b–hMnSOD–R9

plasmid was transformed into Rosetta-gami strain for

expression.

Protein expression and purification

The selected colony which contained the pET15b–hMn-

SOD–R9 recombinant plasmid was cultured in 200 mL LB

medium containing 100 lg/mL ampicillin at 37 �C. Protein

expression was induced by 0.5 mM IPTG at 30 �C for 8 h.

Cells were harvested by centrifugation and disrupted by

sonication on ice. The fusion protein was purified by a Ni–

NTA–His bind column according to the QIAGEN hand-

book. The fusion protein was eluted through increasing the

imidazole concentration from 10 to 250 mM [12]. The

purified fusion protein was dialyzed overnight against a

buffer containing 20 mM sodium phosphate, 500 mM

NaCl (pH 7.4) to remove imidazole [10]. The concentration

of fusion protein was assayed by bicinchoninic acid (BCA)

method. SDS-PAGE was used to analyze the expression,

purity and content of the fusion protein. The purified fusion

protein was confirmed by Western blot. The percentage of

fusion protein was analyzed by scanning a coomassie-

stained gel using Quantity One-4.4.1 Bio-Rad software.

SOD activity assay kit (Jiancheng, Nanjing, China) was

used to detect the SOD activity of hMnSOD–R9.

DNA oxidation damage protective assay

DNA damage protective activity of hMnSOD–R9 was

performed utilizing supercoiled pUC-19 DNA. The hMn-

SOD–R9 (5–60 lg/mL) was added to 6 lL DNA (0.5 lg)

in an ultimate volume of 10 lL. Experiment was conducted

at room temperature for 10 min. Then, 10 lL Fenton’s

reagent was added to the mixture of the hMnSOD–R9 and

pUC-19 DNA. The mixture was incubated for 30 min at

37 �C. The pUC-19 DNA was analyzed on 1 % agarose gel

using ethidium bromide staining [13].

Confocal laser scanning microscope assay

HeLa cells were grown in plates and treated with hMnSOD

or hMnSOD–R9 (40 lg/mL) for 90 min, then incubated

with primary antibody (mouse anti-His, 1:500) and conju-

gated secondary antibody (FITC-labeled rabbit-anti-mouse,

1:1,000). The control hMnSOD without R9 PTD was

expressed by our earlier research [10]. After nuclear

staining with DAPI (0.5 mg/mL), the HeLa cells were

observed by confocal laser scanning microscope (TCS SP2

AOBS LEICA, Germany) [14, 15].

MTT assay

The cancer cells (HeLa, HepG-2, SGC-7901, A549) were

incubated with the hMnSOD–R9 at the appropriate con-

centration (0, 5, 10, 20, and 40 lg/mL) for 48 h. Subse-

quently, the growth inhibitory effect of hMnSOD–R9
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toward the cancer cells was evaluated by means of MTT

assay [16].

Cell cycle analysis

Cell cycle and apoptosis analysis kit was applied to analyze

the cell cycle of HeLa cells. HeLa cells were treated with

(0, 10, 20, and 40 lg/mL) hMnSOD–R9 for 48 h. After

being fixed in 70 % ice-cold ethanol, the HeLa cells were

incubated with 0.5 ml propidium iodide (PI) staining buffer

(200 mg/mL RNaseA, 50 lg/mL PI) at 37 �C for 30 min

in the dark. The cell cycles were analyzed by a flow

cytometer (FACS Aria BD, USA) at 488 nm [17].

Annexin V/PI assay

HeLa cells were treated with (0, 10, 20, and 40 lg/mL)

hMnSOD–R9 for 48 h. Apoptosis analysis was performed

using an Annexin-V-FLUOS staining kit according to the

manufacturer’s instruction. Apoptotic cells were defined as

Annexin-V-position, PI-negative cells. Analysis was per-

formed under a flow cytometer (FACS Aria BD, USA)

[17].

Q-PCR assay

The HeLa cells were treated with various concentrations (0,

10, 20, and 40 lg/mL) of hMnSOD–R9 for 48 h. The

expression of some apoptosis-related genes (STAT3, Bak,

Bax, JNK, TBK1, p53) were detected by Real-time PCR.

Total RNA were extracted from HeLa cells. The mRNA

level of GAPDH was used as an internal control. The

expression of apoptosis-related genes were measured using

a SYBR Green PCR kit in Bio Rad CFX Manager Version

PCR machine [18].

Western blot analysis

Western blot was performed to evaluate the protein

expression of p-STAT3 and cleaved caspase-3. The HeLa

cells were treated with various concentrations (0, 10, 20,

and 40 lg/mL) of hMnSOD–R9 for 48 h. The total pro-

teins of HeLa cells were extracted. The total protein con-

centrations were determined by the BCA method. Total

proteins were separated by SDS-PAGE and blotted onto a

PVDF membrane. The PVDF membrane was blocked with

5 % non-fat dry milk and incubated with a diluted primary

antibody (rabbit anti-mouse cleaved caspase-3, rabbit anti-

mouse phospho-STAT3, 1:1,000) overnight at 4 �C. The

membrane was washed and incubated with a diluted sec-

ondary antibody (goat anti-rabbit IgG, 1:3,000). After

extensive washing, proteins were visualized by an ECL-

chemiluminescent kit (ECL-plus, Thermo Scientific). Blots

were visualized using autoradiography on X-ray film

(Kodak, Rochester, NY, USA) [19].

Statistical analysis

Data were processed using Statistical Package for Sciences

and Society (SPSS 18.0) (SPSS Inc, Chicago, IL, USA).

The data were subjected to one-way analysis of variance

(ANOVA). The results were expressed as mean ± SD

from at least three independent experiments. P \ 0.05 was

considered statistically significant, P \ 0.01 was consid-

ered statistically highly significant.

Results

Construction of expression vector

The size of hMnSOD–R9 gene fragment was 624 bp. The

hMnSOD–R9 gene fragment was inserted into pET15b

(Sma I) vector, achieving recombinant plasmid pET15b–

hMnSOD–R9. The size of recombinant expression plasmid

pET15b–hMnSOD–R9 was about 6,300 bp [20]. The

recombinant plasmid was confirmed by automated

sequencing. Sequence analysis indicated that it encoded

hMnSOD–R9 fusion protein with an estimated molecular

mass of 26 kDa.

Expression and purification of recombinant

hMnSOD–R9

Cells were grown under several conditions of temperature

and IPTG concentration to optimize protein expression.

The fusion protein reached its peak expression level after

induction with 0.5 mM IPTG at 30 �C for 8 h. As shown in

Fig. 1a, clear differences can be observed on the SDS-

PAGE gel between induced and uninduced cells. hMn-

SOD–R9 fusion protein (26 kDa) was the major product of

the expression while it could not be detected without the

addition of IPTG. Cells were lysed by sonication in the

presence of lysozyme.

The hMnSOD–R9 was virtually in the supernatant of the

lysis. Availability of the expressed hMnSOD–R9 in the

soluble fraction greatly facilitated its isolation and purifi-

cation. Most of the impurities were in the flow-through

while His–hMnSOD–R9 fusion protein was retained on the

column. His–hMnSOD–R9 fusion protein appeared as an

almost unique band after Ni–NTA purification from SDS-

PAGE gel.

Furthermore, the hMnSOD–R9 protein was identified by

Western blot with anti-His antibody (Fig. 1b). These

results indicated that soluble hMnSOD–R9 protein was

successfully expressed and purified.
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The expression quantity of hMnSOD–R9 was approxi-

mate 57.1 mg/L of cultures. Purity of eluted His-tagged

hMnSOD–R9 was [95 %. Table 1 summarized the yield

of hMnSOD–R9 during purification. SOD activity assay

showed that the activity of the hMnSOD–R9 was

1,800.2 ± 86.5 U/mg.

DNA damage protective activity of hMnSOD–R9

As shown in Fig 1c, the supercoiled plasmid pUC-19 DNA

without pre-incubation with hMnSOD–R9 was almost

completely damaged by Fenton’s reagent. While, the

nicked DNA bands damaged by Fenton’s reagent were

weakened and the supercoiled DNA bands were enhanced

with hMnSOD–R9 concentration increasing. The pUC-19

DNA was protected by hMnSOD–R9 from damage by

Fenton’s reagent in a dose-dependent manner. At concen-

tration 60 lg/mL hMnSOD–R9 protection was more

effective. The result suggested that hMnSOD–R9 has a

DNA damage protective activity.

Trans-membrane effect observed by confocal laser

scanning microscope assay

The intracellular delivery of hMnSOD–R9 into HeLa cells

was confirmed by direct fluorescence analysis. As shown in

Fig 2, all of the cells within the field contained green

fluorescence from the FITC-labeled hMnSOD–R9. In

contrast, cells treated with PBS and FITC-labeled hMn-

SOD exhibited no green fluorescence. These results sug-

gested that the hMnSOD–R9 accumulated in the nucleus

and cytoplasm, while, hMnSOD protein could not penetrate

into cells without R9 transduction at the same concentra-

tion [13, 21]. R9 tag is a useful tool which could deliver

hMnSOD into HeLa cells.

Growth inhibition of hMnSOD–R9 in different cancer

cell lines

5, 10, and 20 lg/mL hMnSOD–R9 showed little or no

cytotoxicity in four cell lines, while, at a dose of 40 lg/mL,

the cell viability decreased significantly (Fig. 3). Cell via-

bility of A549, HeLa, HepG-2, and SGC-7901 cells respec-

tively, treated with 40 lg/ml of hMnSOD–R9 for 48 h, was

approximately 77.9 ± 2.0, 55.9 ± 2.7, 70.1 ± 1.1, and

Fig. 1 Expression, purification, characterization, and antioxidant

ability of hMnSOD–R9. a Expression and purification: lane 1 extract

from the uninduced cells, lane 2 extract from cells after IPTG

induction, lanes 3, 4 supernatant and cell debris, respectively,

obtained after centrifugation of the sonicated cells, M Protein marker,

lane 5 flow-through, lane 6 elution fractions. b Western blot detected

fusion protein with anti-His mAb: lane 1 cell lysate prior to induction,

lane 2 the sample after Ni–NTA affinity chromatography. c DNA

damage protective activity: lane 1 native pUC-19 DNA, lane 2

DNA ? Fenton’s reagent, lane 3–6 DNA ? Fenton’s

reagent ? hMnSOD–R9 (60, 40, 20, and 5 lg/mL, respectively)

Table 1 Purification summary of hMnSOD–R9

Purification step Total

proteina

(mg)

Purity

(%)

hMnSOD–R9

(mg)

Yieldb

(%)

Soluble lysate 36.54 42.3 15.46 100

Ni–NTA affinity

chromatography

12.02 95 11.42 73.87

a Wet weight cells (1.05 g) from 200 mL culture were lysed using

sonication
b Protein yield was calculated using the amount of hMnSOD–R9

after concentration and hMnSOD–R9 amount in soluble lysate

Fig. 2 Transduction of hMnSOD–R9 fusion proteins into HeLa cells.

Observed by confocal laser scanning microscopy: a Blank control

cells alone. b Cells treated with 40 lg/mL hMnSOD. c Cells treated

with 40 lg/mL hMnSOD–R9
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74.7 ± 1.1 %. In general, among the tested human cancer

cell lines, HeLa cell line was more sharply inhibited by

40 lg/mL hMnSOD–R9 than A549, HepG-2 and SGC-7901

cell lines. These data suggested hMnSOD–R9 inhibited the

proliferation of the four human cancer cell lines in a dose-

dependent manner.

Cell cycle and apoptosis

HeLa cells were analyzed by flow cytometry after treat-

ment with 40 lg/mL hMnSOD–R9 for 48 h. Figure 4a

showed that the percentage of HeLa cells in sub-G0 phase

increased from 4.6 ± 0.9 to 13.1 ± 0.4 % with concen-

tration increasing of hMnSOD–R9. The hMnSOD–R9

treatment arrested the cell cycle of HeLa cells at the sub-G0

phase in a dose-dependent manner. The appearance of a

sub-G0 peak which is also called apoptosis peak indicated

apoptosis occurrence [22].

The percentage of total apoptotic cells (Annexin V?)

increased from 6.5 ± 0.8 to 19.0 ± 0.6 % with concen-

tration of hMnSOD–R9 increasing (0–40 lg/mL) (Fig. 4b).

The result suggested that hMnSOD–R9 induced apoptosis

of HeLa cells in a dose-dependent manner.

Q-PCR assay apoptosis-related genes

To investigate the mechanism by which hMnSOD–R9

induced apoptosis, we analyzed the expressions of apop-

totic genes in HeLa cells, using Q-PCR. As shown in

Fig 4c, with various concentrations of hMnSOD–R9

treatment for 48 h, expression of Bax, JNK, TBK1 gene

were increased while STAT3 gene was decreased in HeLa

cells. Expression of Bak, p53 gene were virtually unchan-

ged in HeLa cells.

Western blot analysis apoptosis-related proteins

The HeLa cells were treated with various concentrations

(0–40 lg/mL) of hMnSOD–R9 for 48 h. As shown in

Fig. 4d, the expression of phospho-STAT3 (p-STAT3) was

significantly decreased while the expression of cleaved

caspase-3 was markedly increased in a concentration-

dependent fashion. The result suggested that the apoptosis

caused by hMnSOD–R9 was mediated by p-STAT3 sup-

pression and cleaved caspase-3 activation pathway.

Discussion

Molecular cloning and expression of MnSOD have been

reported in various prokaryotic and eukaryotic species, for

example, Lactobacillus casei [23], Clonorchis sinensis

[24], and pistachio nut [25]. However, human immune

rejection has restricted the therapeutic use of MnSOD from

other species. In previous studies, we expressed and puri-

fied human MnSOD [10]. Application of MnSOD was

limited by the unfortunate ability to cross cellular mem-

brane. We solved the issues of human immune rejection

and poor ability to cross cellular membrane through con-

structed hMnSOD–R9 fuse protein. We also found that

hMnSOD–R9 protected DNA from oxidation damage

in vitro, compare to previous studies played in vivo.

In this study, we found that hMnSOD–R9 fusion protein

was efficiently transduced into HeLa cells. Fluorescence

signals of hMnSOD–R9 were found to be distributed uni-

formly in HeLa cells, suggesting that hMnSOD–R9 were

translocated into both the cytoplasm and the nucleus.

Growth suppression was observed in human breast

carcinoma cells [26], human glioma cells [27], human oral

squamous carcinoma cells [28], and human prostatic car-

cinoma cells [29], via overexpression of MnSOD by cDNA

transfection. We proved that MnSOD suppressed the pro-

liferation of various cancer cell lines using hMnSOD–R9

trans-membrane protein, dissimilar from most studies using

MnSOD cDNA transfection [30, 31]. Many anticancer

agents regulate the cell cycle. We tested whether hMn-

SOD–R9 could also inhibit cell cycle progression in HeLa

cells. The result suggested that hMnSOD–R9 arrested the

cell cycle at sub-G0 phase in a dose-dependent manner.

The appearance of sub-G0 peak (apoptosis peak) usually

indicated apoptosis occurrence.

We used Annexin V/PI analysis to confirm apoptosis

occurrence. Our result showed that hMnSOD–R9 induced

Fig. 3 Effect of hMnSOD–R9 on cancer cells proliferation: several

human cancer cell lines were treated with various concentrations of

hMnSOD–R9 for 48 h and the inhibition of cell growth was measured

by MTT assay. Results are expressed as mean ± SD of three

independent experiments. Statistically significant and highly signif-

icant differences from the control in each group are indicated as

*P \ 0.05 and **P \ 0.01 respectively
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HeLa cells apoptosis in a dose-dependent manner. To gain

insight into the molecular mechanism involved in HeLa

cells apoptosis caused by hMnSOD–R9, expression of the

apoptosis-related genes and proteins were examined.

STAT3, Bak, Bax, JNK, TBK1, p53 are some genes which

are closely associated with apoptosis. With hMnSOD–R9

treatment, Bax, JNK, TBK1 gene expression were increased

and STAT3 gene expression was gradually down-regulated

in HeLa cells. c-Jun N-terminal kinases (JNKs) is a stress-

activated member of the mitogen-activated protein kinase

(MAPK) family [32]. It is now known that JNK is one of

the molecules activated by oxidative stress and JNK sig-

naling pathway contributes to the regulation of cell pro-

liferation and apoptosis [33]. JNK activates the Bax which

is a critical effector of apoptosis. During apoptosis, Bax

translocates from the cytosol to insert into the mitochon-

drial outer membrane (OM) and releases cytochrome

c. Cytosolic cytochrome c leads to caspase-9 activation,

subsequent caspase-3 activation and final apoptosis [34].

TANK-binding kinase 1 (TBK1) which is one of IjB

kinases negatively regulates noncanonical NF-jB signaling.

TBK1 indirectly facilitates the activation of apoptosis pro-

tein caspase-3 [35]. Caspase-3 is a final apoptosis effector of

Bax, JNK, and TBK1. Numerous studies with cancer cell

lines and patient samples provided that signal transducer and

activator of transcription 3 (STAT3) is one of the decisive

players in human cancer formation [36]. Direct inhibition of

STAT3 induces cell growth inhibition and apoptosis of

breast and prostate cancer cells [37, 38]. Previous studies

demonstrated that the expression of STAT3 was elevated in

human cervical cancer cells [39]. Cleaved caspase-3 is the

activated form of caspase-3. p-STAT3 is the activated form

of STAT3. We found that the expression of p-STAT3 was

significantly decreased, while the expression of cleaved

Fig. 4 Effect of hMnSOD–R9 on apoptosis in HeLa cells. HeLa cells

were treated with various concentrations (0, 10, 20, and 40 lg/mL) of

hMnSOD–R9 for 48 h. HeLa cells treated with 0 lg/mL hMnSOD–

R9 served as a control group. Results are expressed as mean ± SD of

three independent experiments. Statistically significant differences

from the control in each group are indicated as *P \ 0.05,

**P \ 0.01 is considered highly significant. a The relative numbers

of cells within each cell cycle were determined by flow cytometry.

b The percentage of apoptosis cells were analyzed by flow cytometry.

c The expression of apoptosis-related genes were analyzed by Real-

time PCR. d The expression of apoptosis-related proteins were

analyzed by Western blot
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caspase-3 was markedly increased in hMnSOD–R9 treat-

ment HeLa cells. We conjecture that the hMnSOD–R9

crossed the cellular membrane into HeLa cells and activated

JNK and subsequently Bax. The activated Bax and TBK1

caused caspase-3 activation. The caspase-3 activation and

STAT3 suppression finally resulted in apoptosis.
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