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Abstract Some of the effects of tumor necrosis factor

alpha (TNF-a) are suggested to be mediated by oxidative

stress. It has also been reported that dietary supplements of

olive oil result in a reduction in LDL, oxidative stress, and

blood pressure and these effects are attributed to oleic acid

(OA)—a major component of olive oil. The objective of

this study was to examine the beneficial effects of OA

against TNF-a-induced oxidative stress and cardiomyo-

cytes injury. Isolated cardiomyocytes from adult rat hearts

were treated as follows: (A) control; (B) OA (50 lM);

(C) TNF-a (10 ng/ml); and (D) TNF-a ? OA. After 4 h of

the treatment, cells were assessed for oxidative stress,

cellular damage, viability, and apoptosis. Cardiomyocytes

treated with TNF-a showed a significant increase

(P \ 0.05) in reactive oxygen species, decrease in the

viability of cells, and increase in creatine kinase release.

All these TNF-a-induced changes were prevented by OA.

TNF-a also caused a significant increase in the expression

of apoptotic proteins Bax, Caspase 3 and PARP cleavage,

Bnip3, and TGF-b , whereas OA modulated these changes.

It is suggested that TNF-a induced oxidative stress medi-

ates cardiomyocyte cell damage which is prevented by OA.
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Introduction

Since heart disease is the leading cause of death globally

and costing billions of dollars [1], a better understanding of

its basis as well as management is very important. In

patients with myocardial infarction (MI), the heart under-

goes remodeling characterized by hypertrophy which is a

compensatory response to preserve cardiac function [2].

Despite this compensatory response, in some patients there

is the occurrence of heart failure [2]. MI induces inflam-

matory cascade which is associated with the infiltration of

mononuclear cells and neutrophils in the infarcted area as

well as release of pro-inflammatory cytokines and che-

mokines [3]. One of the pro-inflammatory cytokines that is

elaborated after MI, is tumor necrosis factor alpha (TNF-

a), which may play a critical role in cardiac remodeling and

heart failure [4, 5].

Protection against cardiovascular diseases in Mediter-

ranean region is suggested to be due to the consumption of

unsaturated fatty acid diet which contains high percentage

of oleic acid (OA) [6]. OA, a monounsaturated fatty acid, is

a potent antioxidant and a major component of olive oil,

especially the extra virgin oil [7]. However, OA is also

present in many other products including nuts, seeds, and

olives [8–10]. Rationale for the beneficial effects of OA is

multipronged but strictly anecdotal. A large clinical trial

with more than 74,000 women, and a follow up of

20 years, revealed that consumption of Mediterranean food

containing OA, significantly reduced the risk for develop-

ing heart diseases [11]. The prevention of coronary heart

disease by OA is suggested to be due to the suppression of
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oxidative stress [7]. OA is also protective against heart

lipotoxicity by boosting the accumulation of triglycerides

[12]. Other benefits of OA include a reduction in blood

pressure, lowering of LDL cholesterol, and antimicrobial

activity [13]. It is also reported to stimulate peroxisome

proliferator-activated receptor (PPARc) [14] which may

inhibit the expression of TNF-a [15].

In order to better characterize the beneficial effects of

OA, we investigated in detail the protective role of OA

against TNF-a induced oxidative stress, apoptosis, and cell

damage using isolated rat cardiomyocytes.

Materials and methods

Isolation of adult rat cardiomyocytes and treatments

All protocols in this study were ethically approved by the

University of Manitoba Animal Care Committee and are

according to Canadian Council on Animal Care. Adult rat

cardiomyocytes were isolated from male Sprague–Dawley

rats (250–300 g) and cultured according to methods well

established in our laboratory [16, 17].

The viable cardiomyocytes were incubated overnight in

M199 medium supplemented with 10 lg/ml gentamicin

and 0.25 lg/ml amphotericin B (Invitrogen Canada) and

were divided into four groups: (A) control; (B) OA

(50 lM) treated; (C) TNF-a (10 ng/ml) treated; and

(D) TNF-a (10 ng/ml) ? OA (50 lM) treated. In some

experiments, 25 lM H2O2 (Sigma) was used as positive

control for oxidative stress. OA used in this study was from

Sigma and the purity was C99 % (GC). For groups A, B,

and C, cardiomyocytes were incubated for 4 h and for

group D there was a 30 min pretreatment with 50 lM OA

followed by 4 h incubation with TNF-a added. These

concentrations were based on our pilot studies using TNF-a
(0.5–50 ng/ml), OA (50–200 lM), H2O2 (25–100 lM),

and using different exposure times (1, 2, 4, 6, 8, 12, 18, and

24 h).

Measurement of ROS production

Assessment of reactive oxygen species (ROS) levels in

cardiomyocytes as an indicator of oxidative stress was

done using the method described previously [18]. Control

and treated cardiomyocytes were washed with warm PBS

(37 �C) and then incubated with 10 lM solution of the

fluorescent dye 5-(and-6)-chloromethyl-20,70-dichlorodihy-

drofluorescein diacetate (DCFDA; Invitrogen) dissolved in

warm PBS. Cardiomyocytes were incubated for 30 min at

37 �C and were protected from light. After capturing the

fluorescent images of the cardiomyocytes with Olympus

BX 51 fluorescent microscope, on average 10 fields per

plate, the fluorescent intensity was analyzed using the

software (Image Pro Plus).

Assessment of cardiomyocytes viability and damage

Trypan blue: M199 (1:1) were added to control and treated

cells for 5 min, and the cells were observed for viability

under Olympus microscope equipped with colored Infinity

X camera (Lumenera Corporation) and were analyzed

using Infinity software. Viable cells excluded the dye and

remained colorless, whereas the dead cells retained the

blue dye.

Cardiomyocytes damage was assessed indirectly by

measuring the creatine kinase (CK) release in the medium

after treatment. A commercially available kit for measuring

the creatine kinase activity through spectrophotometric

assay was used according to the manufacturer specifica-

tions (Stanbio Laboratory, Boerne, TX). In brief, after 4 h

of treatment, 25 ll of culture medium from control and

treated groups were added to 1 ml of prewarmed recon-

stituted CK reagent and the change in absorbance was

recorded at 1 min intervals for 3 min at 340 nm.

Apoptosis and related proteins

For examining DNA fragmentation, one of the hallmarks of

apoptosis, control and treated cardiomyocytes were washed

with warm PBS and fixed with 4 % paraformaldehyde for

30 min. After fixation, paraformaldehyde was discarded

and cardiomyocytes were washed with PBS and incubated

with Hoechst 33258 (1 lg/ml) for 10 min protected from

light exposure. After staining of cardiomyocytes nuclei,

plates were examined using fluorescent microscope

(Olympus, BX 51).

Pro-apoptotic proteins Bax, cleaved Caspase 3, cleaved

PARP, Bnip3, and TGF-b and anti-apoptotic protein Bcl-

xL expression levels were determined by western blotting

using specific antibodies (Cell Signaling Technology). For

protein analysis, control and treated cardiomyocytes were

washed with warm PBS, then scrapped gently from the

plates, and homogenized with radioimmunoprecipitation

assay buffer (RIPA buffer) containing protease (Roche

Diagnostics) and phosphatase inhibitor cocktail (Santa

Cruz). Protein concentration in each sample was deter-

mined using albumin standards and dye from Bio-RAD

Laboratories [19]. Protein samples (35 lg) were subjected

to SDS-PAGE at 120 V for 90 min and were transferred on

polyvinylidene fluoride (PVDF) (Roche Diagnostics) at

300 mV for 90 min or 30 mV overnight. The protein

bound to PVDF membrane was detected using Pierce ECL

western blotting substrate and bands were visualized using

X-ray films (Thermo Scientific). Proteins bands were

76 Mol Cell Biochem (2013) 372:75–82

123



quantified using image analysis software (Quantity One,

Bio-Rad Laboratories).

Statistical analysis

All experiments were done in duplicates for each treatment

group and repeated five times (N = 5). Data are expressed

as the mean ± SEM. Groups were compared by one-way

analysis of variance (ANOVA), and Bonferroni’s test was

performed to identify differences between groups. P value

of B0.05 was considered significant.

Results

Oxidative stress assessment

Levels of oxidative stress in isolated cardiomyocytes were

assessed by the measurement of ROS subsequent to the

exposure of TNF-a and these data are shown in Fig. 1. The

production of endogenous ROS in TNF-a treated cardio-

myocytes was increased significantly to 163 % (P \ 0.05).

There was no significant difference in ROS production

between control and OA-treated cardiomyocytes. However,

treatment of cardiomyocytes with OA significantly pre-

vented the TNF-a-induced increase in ROS production.

H2O2 (25 lM) was used as a positive control for inducing

oxidative stress, and was able to increase ROS significantly

to 166 % (P \ 0.05), which was also blunted by OA (data

not shown).

Assessment of cell viability and damage

Exposure of cardiomyocytes to TNF-a decreased cell via-

bility significantly (P \ 0.05) to 43 % as compared to

control (Fig. 2a1, a2). Treatment with OA alone had no

effect on cell viability compared to control. However,

treatment with OA prevented TNF-a-induced cell death

significantly (P \ 0.05) (Fig. 2a1, a2). TNF-a increased

creatine kinase (CK) to 148 % in the medium from dam-

aged cardiomyocytes compared to control group (Fig. 2b).

There was no significant difference between cell leakage

from cardiomyocytes treated with OA and the control

group. Whereas, OA treatment ameliorated the effect of

TNF-a-induced cardiomyocytes damage significantly

(P \ 0.05) (Fig. 2b).

Apoptosis

Nuclear fragmentation

TNF-a caused a significant increase (P \ 0.05) in the

number of apoptotic cardiomyocytes to 22.4 % as com-

pared to control value of 7.5 %. There was no significant

difference between control and OA-treated group in the

number of apoptotic cells. However, treatment with OA

prevented the TNF-a induced apoptosis (Fig. 3a, b). H2O2
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Fig. 1 Effects of the exposure to TNF-a (10 ng/ml), OA (50 lM),

and TNF-a ? OA for 4 h on ROS generation in adult rat cardiac

myocytes using DCFDA dye: Upper panel fluorescence microscope

images; lower panel is a fluorescent intensity analysis. H2O2 (25 lM)

was used as a positive control. N = 5, *P \ 0.05, significantly

different from control
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(25 lM) was used as a positive control and it caused

25.6 % increase in apoptosis.

Expression of pro-apoptotic proteins

TNF-a significantly increased (P \ 0.05) the expression of

pro-apoptotic proteins and these data are shown in (Fig. 4).

As compared to control, TNF-a significantly increased the

Bax/Bcl-xL ratio (1.53); cleaved Caspase 3 (140 %);

cleaved PARP (148 %); Bnip3 (152 %); and TGF-b
(150 %). Expression of these pro-apoptotic proteins in

control and OA-treated group was comparable without any

significant change. However, treatment with OA amelio-

rated these TNF-a-induced pro-apoptotic proteins expres-

sion significantly (P \ 0.05).

Discussion

Mediterranean diet rich in olive oil and thus OA, is known

to result in a better cardiovascular health [7]. For example,

it has been shown to reduce oxidative stress, enhance the

antioxidant capacities in the body [20], reduce damage and

dysfunction of endothelium, and enhance its regenerative

capacity [21–23]. The diet has also been reported to pre-

serve the left ventricular systolic function [24], reduce

carotid artery stiffness [25], and reduce inflammation and

risk of cardiovascular diseases [26]. Data in the present

study provides evidence that OA-reduced oxidative stress,

caused by TNF-a, may provide the cellular basis of some of

the beneficial effects of OA.

It has been shown that plasma levels of TNF-a are high

in patients with large MI [27]. Ischemia induces production

of TNF-a which is associated with myocardial dysfunction

and necrosis [28]. It is also reported that TNF-a and oxi-

dative stress increased in patients with heart failure [29,

30]. Although, treatment of patients with TNF-a blockers

like infliximab, etanercept, and adalimumab failed to offer

protection [31], left ventricular assist devices (LVADs) and

cardiac resynchronization therapy (CRT) resulted in a

decrease in TNF-a levels in patients with CHF [32].

In heart failure in rats, subsequent to MI, we have

reported a significant increase in TNF-a in the early stages

of heart failure [5]. Moreover, transgenic mice, over-

expressing TNF-a, developed congestive heart failure [33].

We also showed that TNF-a-induced increase in oxidative
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Fig. 2 Effects of the exposure to TNF-a (10 ng/ml), OA (50 lM), and TNF-a ? OA for 4 h on: a cell viability as shown by trypan blue

exclusion test; and b cell damage assessed by CK release from adult rat cardiac myocytes. N = 5, *P \ 0.05, significantly different from control
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stress is due to the suppressed expression of antioxidant

enzymes in isolated cardiomyocytes [34, 35]. In addition,

an increase in ROS through the activation of a cytosolic

pathway [36] as well as through a mitochondrial pathway

[37] has also been reported. All these studies suggest a

causative role of TNF-a in the production of oxidative

stress. An increase in cardiomyocyte oxidative stress due to

TNF-a exposure was also detected in the present study.

TNF-a caused an upregulation of NFjB and p38 MAPK

phosphorylation, and downregulation of ERK � phos-

phorylation which led to activation of apoptotic pathway

[17, 35]. In the present study, TNF-a not only increased

oxidative stress, but also increased apoptosis as shown by

increased expression of pro-apoptotic proteins: Bax/Bcl-xL

ratio, cleaved Caspase 3, cleaved PARP, Bnip3, and TGF-

b. TNF-a-induced upregulation of Bax has also been

shown in previous studies [37, 38]. A balance between pro-

apoptotic protein Bax and the anti-apoptotic protein Bcl-xL

appears to be critical to determine the cell fate either

undergoing apoptosis or survival [39, 40]. In this study,

similar cellular changes was seen, when we used H2O2 as a

major source of oxidative stress.

In this study, OA was able to mitigate the TNF-a-induced

increase in the expression of pro-apoptotic proteins; Bax/

Bcl-xL ratio, cleaved Caspase 3, cleaved PARP, Bnip3, and

TGF-b. This effect is most likely due to the quenching

ability of OA and a reduction in TNF-a-induced oxidative

stress. It is known that addition of oleate suppresses pal-

mitate-induced JNK phosphorylation (associated with

increased mitochondrial ROS production and apoptosis),

mitochondrial DNA damage, decreased cellular ATP, and

Caspase 3 cleavage in skeletal muscle cells [41]. OA has
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Fig. 3 Apoptosis in isolated

cardiac myocytes by Hoechst

33258 staining after cells had

been treated with TNF-a (10 ng/

ml), OA (50 lM), and TNF-a ?

OA for 4 h. H2O2 (25 lM) was

used as a positive control.
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also been shown to increase the gene expression of adipo-

nectin in cardiomyocytes which had a protective role

against cardiac hypertrophy by a PPARc-dependent auto-

crine mechanism [42]. Treatment of human umbilical vein

endothelial cells with OA reduced TNF-a-induced ROS

significantly, and this effect was not due to increased

activity of enzymes governing ROS, but it was suggested to

be due to the scavenging of free radicals through its double

bond [43]. It is pointed out that at very high concentration of

200 lM, OA also had detrimental effects [44]. However, at

lower concentration of 50 lM, OA modulated mitochondria

oxidative stress in human umbilical vein endothelial cells

(Human ECV-304 cells) via epidermal growth factor

receptor-dependent activation of glutathione peroxidase

and enhanced ROS degradation [45]. At this low concen-

tration of 50 lM, we also noted a reduction in oxidative

stress. That this may be the basis of its beneficial effects, is

also supported by the fact that H2O2-induced cardiomyo-

cyte injury was reduced by OA. Among different possibil-

ities discussed here with respect to the potential mechanism

of OA protection, its quenching ability and scavenging of

the free radicals appear to be supported by our data.
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OA prevented the cleavage of both Caspase 3 and

PARP, induced by stearic acid on human aortic endothelial

cells [46] as well as palmitic acid-induced apoptosis in rat

cardiomyocytes [47, 48]. Yamasaki et al. [49] reported that

OA prevented apoptosis induced by trans10, cis12 isomer

of conjugated linoleic acid through p38 MAP kinase-

dependent pathway. ERK inhibition prevented the anti-

apoptotic properties of free fatty acids in murine ente-

roendocrine cell line STC-1, suggesting the importance of

ERK activation in the protection from apoptotic cell death

[50]. Hoechst test was used in our study to confirm apop-

tosis induced by TNF-a treatment which was prevented

significantly by OA. In this study, cardiomyocytes treated

with TNF-a showed leakage of CK, which was prevented

significantly by OA. Earlier, we have reported that oxida-

tive stress due to H2O2 increased CK activity [34]. Use of

H2O2 as a positive control in this study provided further

evidence for the role of oxidative stress in cardiac myo-

cytes injury. Use of Trolox—a water-soluble antioxidant,

has also been reported to decrease TNF-a-induced oxida-

tive stress as well as cardiomyocyte injury [17, 35, 51].

Thus, TNF-a-induced oxidative stress appears to be the

cause of apoptosis as well as cardiomyocytes membrane

injury, which was prevented by OA. Furthermore, such a

protection by OA is due to a reduction in oxidative stress.
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