
Thrombin and vascular inflammation
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Abstract Vascular endothelium is a key regulator of

homeostasis. In physiological conditions it mediates vas-

cular dilatation, prevents platelet adhesion, and inhibits

thrombin generation. However, endothelial dysfunction

caused by physical injury of the vascular wall, for example

during balloon angioplasty, acute or chronic inflammation,

such as in atherothrombosis, creates a proinflammatory

environment which supports leukocyte transmigration

toward inflammatory sites. At the same time, the dys-

function promotes thrombin generation, fibrin deposition,

and coagulation. The serine protease thrombin plays a

pivotal role in the coagulation cascade. However, thrombin

is not only the key effector of coagulation cascade; it also

plays a significant role in inflammatory diseases. It shows

an array of effects on endothelial cells, vascular smooth

muscle cells, monocytes, and platelets, all of which par-

ticipate in the vascular pathophysiology such as athero-

thrombosis. Therefore, thrombin can be considered as an

important modulatory molecule of vascular homeostasis.

This review summarizes the existing evidence on the role

of thrombin in vascular inflammation.
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Abbreviations

AT Antithrombin

APC Activating protein C

CCL Chemokine (C–C motif) ligand

cPLA2 Cytosolic phospholipase A2

CXCL Chemokine (C-X-C motif) ligand

cysLT Cysteinyl leukotrienes

DCs Dendritic cells

ECs Endothelial cells

EDHF Endothelium-derived hyperpolarizing

factor

ERK Extracellular signal regulated kinase

EGFR Epidermal growth factor receptor

GPIb/IIb/IIIa Glycoprotein Ib/IIb/IIIa

HLA Human leukocyte antigen

ICAM-1 Intercellular adhesion molecule-1

IFN-c Interferon-c
IL-1a/b Interleukin-1a/b
IP-10 Inducible protein-10

LT Leukotriene

LPS Lipopolysacharide

MAPK Mitogen activated protein kinase

M-CSF Macrophage colony-stimulating factor

NO Nitric oxide

PAI-1 Plasminogen activator inhibitor-1

PAR Protease-activated receptors

PDGF Platelet-derived growth factor receptor

PF4 Platelet factor 4

PGE2 Prostaglandin E2

PGI2 Prostacyclin I2

PMN Polymorphonuclear leukocytes

PSGL-1 P-selectin glycoprotein ligand-1

RANTES Regulated on activation, normal T expressed

and secreted

TF Tissue factor
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TGF-b Transforming growth factor-b
TFPI Tissue factor pathway inhibitor

TNF-a Tumor necrosis factor-a
TXA2 Thromboxane A2

VCAM-1 Vascular cell adhesion molecule-1

VEGF Vascular endothelial growth factor

VSMCs Vascular smooth muscle cells

vWF von Willebrand factor

Introduction

Endothelium, rather than being an intravascular lining merely

preventing coagulation, is absolutely crucial for the mainte-

nance and adaptation of the vascular homeostasis both under

physiological and pathophysiological conditions. Two prin-

cipal and contrasting modes of endothelium behavior have

been defined: (i) anti-inflammatory and (ii) proinflammatory

[1]. Under physiological conditions, endothelium tends to

maintain an anti-inflammatory state [2, 3] by mediating

vascular dilatation [4, 5], preventing platelet adhesion and

activation [6], and by its inhibition of thrombin generation

[7]. In addition, endothelium acts to attenuate adhesion and

reduces the consequent transmigration of inflammatory leu-

kocytes [8, 9]. Oxygen radicals generated during normal cell

metabolism are efficiently scavenged to prevent cell damage

[10–12]. Conversely, when the endothelial monolayer is

disrupted or its normal function is perturbed, as for example,

by acute or chronic inflammation during atherosclerosis,

diabetes, or chronic arterial hypertension, the endothelium

becomes proinflammatory [2, 13, 14]. This state is charac-

terized by enhanced expression of growth factors, adhesion

and signaling molecules, lipid mediators [15], cytokines, and

chemokines controlling recruitment of circulating leukocytes

from the blood and lymph to inflammatory sites [16, 17].

Lipid mediators synthesized from essential fatty acids play

pivotal roles in distinct phases of the inflammatory response

[15]. Thus, prostaglandin (PG)E2 and cysteinyl leukotrienes

(cysLT) promote early vascular permeability and leukotriene

(LT)B4 stimulates leukocyte chemotaxis [18]. PGs play

additional roles during the acute inflammatory response, as

they regulate local changes in blood flow and pain sensiti-

zation [19]. In the case of endothelial disruption, the denuded

vessel wall induces thrombin generation leading to a pro-

thrombotic state [13, 14]. Although in each case a distinct set

of events is triggered [5, 20, 21], they ultimately culminate in

the initiation of coagulation, thrombin formation, and fibrin

deposition at the site of injured vascular wall contributing to

wound healing and restoration of the hemostatic balance.

Besides being a final protease in the coagulation cas-

cade, thrombin is a very important mitogenic agent.

Extensive studies were conducted to elucidate the mecha-

nisms by which thrombin receptors, in particular protease-

activated receptor (PAR) 1, couple to the mitogen activated

protein kinase (MAPK) signaling cascade. Studies have

shown a role of the MAPK-dependent extracellular signal

regulated kinase (ERK1/2) pathway in cellular prolifera-

tion and migration. Signaling via ERK1/2 pathway depends

on activation of epidermal growth factor receptor (EGFR),

a well-studied tyrosine kinase receptor [22–24] signaling in

a G-protein-coupled receptor independent or dependent

fashion [23, 24]. Thrombin is also a potent chemoattractant

for monocytes and vascular smooth muscle cells (VSMCs)

[25, 26].

Several reports suggested that thrombin predominantly

regulates endothelium-dependent vasorelaxation in differ-

ent species in vitro [27–29]. In addition, Gudmundsdóttir

et al. recently showed that thrombin induces PAR1-medi-

ated arterial vasodilatation in humans in vivo [30], effects

that were attributed to vasoprotective molecules such as

PGE2 [31, 32], prostacyclin (PGI2) [31, 33], endothelium-

derived hyperpolarizing factor (EDHF) [34], and mainly

nitric oxide (NO) [35, 36].

Role of thrombin in vascular physiology

Thrombin was originally identified as a trypsin-like serine

protease, that converts soluble fibrinogen into insoluble

fibrin [37]. Thrombin is generated through proteolytic

cleavage of its inactive precursor, prothrombin, which is

synthesized in the liver [38, 39]. In addition to its role in a

clot formation, thrombin is also a strong activator of a

number of cell types such as endothelial cells (ECs),

VSMCs, platelets, and dendritic cells (DCs) [38, 40, 41].

The cellular responses to thrombin are mediated via pro-

tease-activated receptors (PAR) 1, 3, and 4 [25], a family

of seven transmembrane G-protein-coupled receptors acti-

vated by proteolytic cleavage of the amino-terminal

extracellular domain [7, 38]. Cleavage of this domain

unmasks a new amino terminus that acts as a tethered

ligand to autoactivate the receptor [38].

PAR1, the major receptor to which most of the cellular

and platelet actions of thrombin are attributed [38, 42, 43],

possesses a well-defined role in vascular remodeling and

atherosclerosis [30, 44]. However, relatively little is known

about the functions of the other thrombin receptors, PAR3

and PAR4, in humans. Vascular PAR3 has been reported to

act as a cofactor for PAR1, regulating signaling by receptor

dimerization that leads to increased endothelial perme-

ability [45]. Furthermore, in human embryonic kidney

cells, PAR3 is able to trigger signals independent from

other thrombin receptors [46]. The same authors demon-

strated that the thrombin-mediated PAR3 activation results

in ERK1/2 phosphorylation and increased production of

interleukin (IL)-8 [46]. Vidwan et al. showed that
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activation of PAR3 and PAR4 accelerates tissue factor

(TF)-induced generation of thrombin on the surface of

VSMCs [47]. PAR4 is also reportedly involved in myo-

cardial reperfusion injury [48] and in the endothelial

response to inflammatory challenge [49]. Dangwal and

colleagues demonstrated that exposure of VSMCs to high

glucose enhances thrombin responses via PAR4 inducing

tumor necrosis factor (TNF)-a expression and VSMCs

migration [50]. Furthermore, PAR1 acts as the major

thrombin receptor on human platelets, whereas PAR4

requires higher concentrations of thrombin for activation

[24, 51, 52]. It has been suggested that PAR1 accounts for

the initial platelet aggregation in response to thrombin,

while PAR4 maybe responsible for the stability of platelet

aggregation [53]. Indeed, Wu et al. demonstrated that

PAR4 is responsible for maintaining the thrombin-induced

platelet aggregation [54].

Effects of thrombin on platelets and in wound healing

Platelets are anucleate cells derived from bone marrow

megakaryocytes [55], involved in homeostasis, wound

healing and inflammation [56, 57]. Under physiological

conditions, platelets circulate in quiescent state. Platelets

are protected from untimely activation by antithrombotic

mediators released from intact ECs, including NO [58, 59]

and PGI2 [60]. However, vascular injury promotes changes

in release of antithrombotic mediators that may lead to

increased platelet activation followed by their interaction

with neutrophils and monocytes [58, 61, 62]. Activation of

platelets is associated with changes in cell shape, secretion

of granule contents (adenosine diphosphate and serotonin,

for example), and engagement of fibrinogen receptor

resulting in platelet adhesion and aggregation [61–63].

These events trigger catalytic activity within the vascula-

ture resulting in thrombin generation and formation of a

platelet–fibrin clot at the site of injury [24]. Typically,

thrombin generation requires series of catalytic reactions

regulated by enzymatic complexes assembled on the sur-

face of activated platelets [63]. It is generally accepted that

the thrombotic response is initiated during vascular injury

(e.g., due to disruption of endothelial cell layer or plaque

rupture) [64] when TF expressed either by activated

endothelial cells [65], monocytes, VSMCs [66] or suben-

dothelial matrix, but also adventitial fibroblasts [66]

interacts with the serine protease factor VIIa (FVIIa) [67–

69].

TF is a type-1 integral membrane protein that functions

as a cofactor together with FVIIa [70] to activate FX [71].

Activated FXa in concert with cofactor Va converts pro-

thrombin into its active form, thrombin. Thrombin formed

on the surface of activated platelets dramatically amplifies

the coagulation response via conversion of procofactors

V and VIII into active forms Va [72, 73] and VIIIa [74, 75].

Furthermore, an additional coagulation stimulus is pro-

vided by additional FIXa generated through the proteolytic

activation of FIX by FXIa bound to platelets [76, 77] after

the TF–FVIIa reaction has been inhibited by plasma

inhibitors [78, 79]. In addition, it has been proposed that

vessel wall-derived TF is effectively shielded from con-

tributing to subsequent luminal growth of the thrombus by

the diffusion barrier of the thrombus material itself [80,

81]. On the other hand, life-threatening vascular diseases

such as acute myocardial infarction and stroke develop due

to complete occlusion of blood flow within medium- and

large-sized blood vessels [82–84]. Such occlusion is caused

by overgrown thrombi despite the fact that classical

coagulation pathway maybe inhibited [80, 85]. These

observations suggest the existence of an additional mech-

anism able to propagate thrombus growth. Indeed, several

studies have demonstrated that in vivo at injury sites blood-

borne TF could be responsible for the thrombus propaga-

tion [85–87]. These studies suggested that microparticles

might bear TF and P-selectin glycoprotein ligand-1 (PSGL-

1, a leukocyte protein). Thus, even when further interac-

tions between vessel wall-derived TF and circulating blood

maybe prevented by a mural thrombus itself, a circulating

pool of TF could contribute to further thrombus growth

[88]. Inflammatory mediators might increase both, the

number of microparticles through leukocyte activation and

the concentration of TF on the particle surface. As the

particles flow over the developing thrombus, they adhere to

the thrombus through interaction between the particle

membrane surface, rich in TF and PSGL-1-P-selectin [89].

Therefore, the leukocyte adhesion molecule that was

originally believed to be mainly involved in leukocyte

trafficking appears to play a dominant role also in thrombus

development [90].

Once thrombin is generated, it activates platelets to

produce a potent lipid mediator, thromboxane A2 (TXA2)

which recruits even more platelets to the site of injury

thereby amplifying thrombus formation [91]. TXA2 is

produced endogenously from phospholipids of the platelet

membrane via activated cytosolic phospholipase A2

(cPLA2) [91]. Aspirin, which prevents generation of TXA2

thereby impairing platelet activation, has gained wide-

spread recognition as an effective antithrombotic agent

[92]. These findings suggest that generated TXA2 is very

important for the maximal platelet activation and mainte-

nance of vascular homeostasis [93]. Thrombin-induced

production of TXA2 is mediated by both thrombin recep-

tors PAR1 and PAR4 [94, 95] and is associated with

phosphorylation and activation of cPLA2 [96]. Although,

there has been a considerable debate regarding the role of

MAPKs, such as ERK1/2 and p38 MAPK in platelet

functional responses, several studies reported essential
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roles of these kinases in platelet aggregation [97–99],

granule secretion [98, 99], thrombus formation [100], and

cPLA2 activation [101]. In contrast, other studies seemed to

indicate that MAPKs do not contribute to any of these

platelet responses [102–104]. However, recent data from

the Kunapuli group revealed that ERK1/2 activation is

essential for glycoprotein (GP)Ib-mediated TXA2 genera-

tion and P2Y12-receptor mediated platelet aggregation

[105, 106]. Furthermore, thrombin may also mediate

platelet adhesion and activation by binding to GPIba in

addition to PAR1 and PAR4 [107]. GPIba is a major

subunit of the GPIb-IX–V complex, which represents a

receptor for von Willebrand factor (vWF) and mediates

platelet adhesion and activation [108]. It has been proposed

that interaction of thrombin with GPIba may favor the

subsequent proteolytic activation of PAR1 [109], although

other studies indicated that stimulation of platelets with

thrombin upon desensitization of both PAR-1 and PAR-4

still promotes phosphorylation of MAPKs and activation of

the Rho-dependent kinase p160ROCK suggesting an active

and direct role of GPIb-IX–V in thrombin-induced trans-

membrane signaling [110]. Soslau et al. [111], for instance,

proposed that binding of thrombin to GPIba may initiate a

new pathway for platelet aggregation that does not involve

PARs and is supported by polymerized fibrin. In a line with

this observation, Torti’s group showed that thrombin

induces platelet activation in the absence of functional

PAR1 and PAR4 and GPIb-IX–V [112]. These authors

demonstrated that thrombin binding to GPIba induces

activation of PLC. The same authors suggested existence of

one or more receptors on platelets that transduce signals

initiating cell activation followed by induction of tyrosine

kinases, cytoskeleton reorganization, integrin aIIbb3 acti-

vation, and aggregation [112].

Wound healing is a biologically complex process com-

prising three sequential, yet overlapping phases:

(i) inflammatory, (ii) proliferative, and (iii) remodeling

[113]. The inflammatory phase starts with the coagulation

cascade and through series of enzymatic processes leading

to thrombin generation and fibrin clot formation [32, 114]

aimed to restore the homeostatic balance. Thrombin

formed on the surface of activated platelets could amplify

the coagulation cascade [72–75] and promote additional

recruitment of platelets to the growing thrombus [91]. In

turn, activated platelets secrete a wide spectrum of proin-

flammatory and immune-modulatory molecules, including

adhesion molecules (e.g., fibrinogen, vWF, and P-selectin)

[115–121], chemokines such are platelet factor 4 (PF4),

IL-8, and monocyte chemoattractant protein (MCP)-1

[122–124], coagulation factors such are FV, FXI, and FXIII

[63], plasminogen activator inhibitor (PAI)-1, and plas-

minogen [125–128]. In addition, there are numerous stud-

ies demonstrating the role of platelets in proliferative phase

of wound healing [129–131]. The spectrum of growth

factors secreted by platelets, including VEGF [132, 133],

PDGF [134], FGF [135], and TGF-b [136] promotes vessel

wall permeability and recruitment, growth, and prolifera-

tion of endothelial cells and fibroblasts. Although these

growth factors are secreted by a variety of inflammatory

cells, the rapidity with which platelets accumulate at sites

of vascular injury makes them a relevant source of mito-

genic mediators. For example, VEGF concentrations are

markedly elevated during the first minutes after plug for-

mation following forearm incision [42]. VEGF also accu-

mulates inside platelet thrombi formed in vivo [137].

Platelet-derived CXCL12 has been reported to induce

recruitment of CD34 ? progenitor cells to arterial thrombi

in vivo and promote differentiation of cultured

CD34 ? cells to endothelial progenitor cells [138, 139].

Klark et al. demonstrated that preparations that include

platelets and platelet supernatant enriched with a granule

proteins increase proliferation and migration of osteogenic

cells [140]. The same platelet preparation also stimulates

proliferation of human tendon cells in culture and promotes

significant synthesis of VEGF and HGF [141]. Studies in

dogs demonstrated that platelet preparation in a collagen

sponge promotes periodontal tissue regeneration [142].

These data indicate that thrombin-mediated platelet accu-

mulation and activation is essential for various vascular

processes and maintenance of homeostasis.

Furthermore, thrombin stimulation of VSMC also

induces expression of cytokines and cytokine-inducible

molecules, including IL-6, IL-8, MCP-1, and IL-1 [143,

144]. Wilcox et al. described increased expression of

thrombin receptor mRNA and protein after vascular injury

[145]. Besides described proinflammatory effect of

thrombin on VSMCs [143, 144], several studies suggested

the role of thrombin in inducing VSMCs proliferation, thus

linking these cells to complex process of wound healing

[121, 146, 147].

Effects of thrombin on dendritic cells and leukocytes

DCs are essential for the induction of the adaptive immune

response [148, 149]. On the basis of their phenotype and

their ability to prime naive T cells, they are commonly

subdivided into immature and mature DCs [150]. Antigens,

pathogens, lipopolysaccharide (LPS), and tumor necrosis

factor (TNF)-a induce functional changes culminating in

the transition from antigen-capturing immature to antigen-

presenting mature DCs [149, 150]. Yanagita et al. [151]

showed that thrombin stimulation of blood DCs induces

cytokine secretion via PAR1. Secreted cytokines in turn

could modulate coagulation events or inflammatory

responses [152, 153]. Furthermore, thrombin increased the

expression of human leukocyte antigen (HLA)-DR and
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CD86 on blood DCs and their capacity to stimulate allo-

geneic T cells to proliferate more efficiently than non-

stimulated DCs [151]. Results reported by Yanagita et al.

[151] suggest that thrombin plays a very important role in

polarizing T cell development. Thus, the interaction

between thrombin and PAR-1-expresing blood DCs could

play pivotal roles in regulating local inflammatory and

immune responses [151]. Furthermore, different maturation

stimuli trigger expression of functional thrombin receptors

in DCs [41]. It was also shown that in LPS-matured DCs,

thrombin induces chemotactic responses and increased

release of CCL18 chemokine ligand via PAR1 and PAR3

[41].

Polymorphonuclear neutrophils (PMNs) play an impor-

tant role in host defense and in the pathogenesis of various

diseases [154]. Apart from the classical recruitment of

PMNs to inflamed tissues [154], platelets bound to acti-

vated endothelium could promote interaction of neutrophils

first with platelets, followed by neutrophil-endothelial

interaction [155]. PMNs may also modulate activation

of blood coagulation through the production and release of

reactive oxygen species [156]. Depending on the number of

PMN and the amount of reactive oxygen species produced

by them, the expression of TF by coincubated mononuclear

cells was either positively or negatively regulated. More-

over, it has been suggested that PMNs themselves can be

induced to express TF [157, 158]. In contrast to PMNs that

do not support the assembly and function of intrinsic tenase

[159], mononuclear cells can recruit FVa and FXa assem-

bling a functional prothrombinase complex that is analo-

gous to that expressed by activated platelets and monocytes

[160, 161], and that displays a catalytic efficiency identical

to that expressed by activated platelets and monocytes

[161].

Prolonged stimulation of monocytes with cytokines

released at the site of injury [162] combined with P-selectin

expression by activated platelets [163] will induce syn-

thesis and expression of functional prothrombinase and TF

[160] on the monocyte surface. These two important fac-

tors of the coagulation cascade were shown to possess

equally potent catalytic efficacy than that expressed on

activated platelets. Because the TF activity can be inhibited

by coexpression of TF pathway inhibitor, the ability of

monocytes to generate factor Xa via intrinsic tenase could

be critical for sustained thrombin generation at the mono-

cyte surface [164].

Thrombin and vascular inflammation

There is an extensive cross-talk between inflammation and

coagulation, whereby inflammation leads to activation of

coagulation, which, in turn, considerably affects the

inflammatory process [90, 165]. Indeed, activation of the

coagulation cascade with the formation of thrombin as a

key effector protease, creates a proinflammatory environ-

ment affecting the endothelium and the innate immune

cells in particular [165]. Thrombin activates platelet

aggregation and has direct effects on monocytes [166–

168], VSMCs [143, 169–171], ECs [172–178], lympho-

cytes [38, 179, 180], and DCs [41, 181]. In addition,

thrombin is mitogenic for VSMCs [146, 182] and fibro-

blasts [183, 184], and chemotactic for monocytic cells

[185]. Furthermore, thrombin triggers a wide spectrum of

endothelial responses, such as the production of prostacy-

clin [186], platelet-activating factor [187, 188], endothelin

[189, 190], von Willebrand factor [191–193], and plas-

minogen activator [20, 194, 195] and its inhibitor [196]. In

response to thrombin, cultured endothelial cells also secrete

enhanced levels of PDGF [197, 198], which is a potent

mitogen and chemoattractant for VSMCs [199]. Expression

of very important proatherogenic adhesion molecules,

which facilitate emigration of leukocytes from the vessels,

such as vascular cell adhesion molecule-1 (VCAM-1),

intracellular cell adhesion molecule-1 (ICAM-1), E-selec-

tin, and P-selectin are also increased by thrombin [173,

175, 186, 200–203]. In addition, thrombin-stimulated ECs

show increased permeability [200] as well as recruitment

and migration of leukocytes across the endothelium [175]

in response to diverse chemoattractants, which requires

various integrins and cell adhesion glycoproteins (Fig. 1).

Impaired homeostasis and increased cellular adhesion

lead to endothelial dysfunction that is thought to be a

prerequisite for the initiation of an atherosclerotic plaque.

Indeed, increased thrombin generation was observed in

patients with advanced cardiovascular disease and acute

coronary syndrome [204]. Furthermore, we have previ-

ously demonstrated the possible interaction between

thrombin-stimulated ECs and monocytes [175], by show-

ing that MCP-1 synthesis in monocytes co-cultured with

ECs is mediated by thrombin-induced expression of frac-

talkine, a chemokine that potently attracts T cells and

monocytes and has a definite role in the progression of

cardiovascular disease [175].

Some of the pro-inflammatory features of thrombin have

been inferred from models of inflammation such as a

murine model of peritonitis. In this model, administration

of the potent inhibitor of thrombin, hirudin, inhibited

antigen- or lipopolysaccharide (LPS)-stimulated activation

of macrophage adhesion [188]. Further in the same model,

administration of purified thrombin- stimulated adhesion of

macrophages and overexpression of IL-6 and MCP-1 in a

fibrinogen-dependent and PAR1-independent fashion

[205]. Yet another important role of thrombin has been

demonstrated in murine heart-to-rat xenotransplantation

model. In this model, the recruitment of monocytes and
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natural killer cells to the graft in vivo has been attributed to

a thrombin-mediated activation of PAR1 leading to local

generation of MCP-1 [206].

As mentioned earlier, thrombin is known to potentiate the

production of IL-6 in both, ECs [207] and VMSCs in vitro

[208]. IL-6 is an important molecule with a well-established

role in inflammation and is reported to exacerbate athero-

sclerosis [209]. Expression of IL-8 in endothelium is also

induced by thrombin via the p38 MAPK signaling pathway

in vitro [185], and IL-8 may trigger monocyte adhesion to

endothelium under flow conditions in vitro [210]. In addi-

tion, thrombin induces secretion of macrophage migration

inhibiting factor in ECs and VSMCs [211].

Despite the abundance of available data on thrombin’s

proatherogenic actions in vivo, many of these results,

however, have been inferred from cell cultures using

purified thrombin, in the absence of natural inhibitors.

Hence, the relevance of those studies with respect to sys-

tems biology is questionable. However, in vivo studies

clearly supported the critical role of thrombin in athero-

genesis [212–214]. Studies employing transgenic double

knock-out mice deficient for the natural inhibitor of

thrombin, heparin-cofactor II, a on a ApoE-/- background

showed significantly increased plaque areas and increased

neointimal formation when compared with wild-type mice

[215]. Furthermore, a recent murine study with CX3CL1/

CCR2/apoE triple-knockout mice provided evidence for

independent roles of CCL2 and CX3CL1 in terms of

macrophage accumulation and atherosclerotic lesion for-

mation [214].

Thus, the diverse cellular responses triggered by

thrombin may contribute to the pathology of atheroscle-

rosis, thrombosis, and vasculitis through inflammatory and

proliferative responses at sites of vascular injury [25, 35,

216].

Conclusion

The concept of an extensive cross-talk between inflam-

mation and coagulation has been established in the past

several years [90, 165]. Vascular inflammation leads to

activation of coagulation and, in turn, coagulation consid-

erably affects the inflammatory process [56, 217]. Indeed,

activation of the coagulation cascade with the formation of

thrombin as a key protease, creates a proinflammatory

environment affecting the endothelium and innate immune

cells in particular [165]. Thrombin accomplishes the

majority of its actions including multiple vascular proin-

flammatory responses, via PARs [25, 31, 33]. When injury

of the blood vessel wall causes disruption of its endothelial

layer, activation of the coagulation cascade is required as a
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part of natural healing process [90, 218]. Thrombin formed

on the surface of activated platelets would amplify the

coagulation cascade [72–75] and promotes additional

recruitment of platelets to the growing thrombus [91]. In

turn, activated platelets produce and secrete a wide spec-

trum of proinflammatory and immunomodulatory mole-

cules contributing to inflammatory as well as healing

processes [63, 115–131].

Teleologically, the coagulation process is intended to

prevent blood loss and to initiate wound healing. However,

platelets activated during this process may well contribute

to the inflammatory response [56, 217]. Thrombin, gener-

ated on the surface of activated platelets, obviously

amplifies the process of coagulation, but also stimulates

platelets as well as other cell types such as ECs, VSMCs or

leukocytes to secrete a broad spectrum of bioactive mole-

cules with distinct roles in coagulation and inflammation.

Thus, thrombin and its subsequent signaling takes center

stage as an important pharmacotherapeutic target in vas-

cular homeostasis. More recent approaches encompass

antiplatelet therapies involving antibodies directed against

thrombin receptors [219–222]. Further studies on potential

novel therapies might focus on the regulation of thrombin

actions through mechanisms different from PARs. Better

knowledge of thrombin-induced signaling still holds great

promise for improved and novel therapeutic applications.

Acknowledgments This study was supported by grants: Deutsche

Forschungsgemeinschaft, Si 285/7-1 (to Tatiana Syrovets and Thomas

Simmet), and Serbian Government Research Grants, No. 173033 (to
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