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Abstract Protein kinase CK2 (CK2) is a highly con-

served and ubiquitous serine/threonine kinase. It is a

multifunctional and pleiotropic protein kinase implicated in

the regulation of cell proliferation, survival, and differen-

tiation. Deregulation of CK2 is observed in a wide variety

of tumors. It has been the focus of intensive research efforts

to establish the cause–effect relationship between CK2 and

neoplastic growth. Here, we further validate the role of

CK2 in cancer cell growth using siRNA approach. We also

screened a library of more than 200,000 compounds and

identified several molecules, which inhibit CK2 with

IC50 \ 1 lM. The binding mode of a representative com-

pound with maize CK2 was determined. In addition, the

cellular activity of the compounds was demonstrated by

their inhibition of phosphorylation of PTEN Ser370 in

HCT116 cells. Treatment of a variety of cancer cell lines

with the newly identified CK2 inhibitor significantly

blocked cell growth with IC50s as low as 300 nM.
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Abbreviations

CK2 Protein kinase CK2

siRNA Small interfering RNA

TBB 4,5,6,7-Tetrabromobenzotriazole

DRB 5,6-Dichloro-b-ribofuranosylbenzimidazole

HTS High throughput screening

HTRF Homogenous time resolved fluorescence

FRET Fluorescence resonance energy transfer

HDAC Histone deacetylase

ATP Adenosine-50-triphosphate

EDTA Ethylenediaminetetraacetic acid

Eu Europium

lCi Micro Curie

Ki Dissociation constant

Km Substrate concentration that results in half-

maximal velocity for the enzymatic reaction

zmCK2a Maize protein kinase CK2a

Introduction

CK2 was first discovered in 1954 [1] but it was not until

1977 when its physiological function as a cAMP-inde-

pendent kinase that phosphorylated b-casein was described

[2]. In the intervening 40 years, over 2,000 publications

describing its activity and biological functions have

appeared. Despite these, definition of its physiological role
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has been elusive. CK2 is one of the most highly conserved

proteins in nature [2–4]. It is essential for survival in yeast

and embryonic development in mice [5–7]. CK2 is ubiq-

uitously expressed and detected in both the nucleus and

cytoplasm [3]. It is constitutively active in vitro, however,

there is increasing evidence that the activity and localiza-

tion of CK2 are regulated by multiple mechanisms and

pathways [3, 8]. For example, inositol-1,3,4,5-phosphate

activates regulative CK2 phosphorylation of phosphati-

dylcholine transfer protein-like protein [8]. In another

study, the association of CK2 with the nuclear matrix was

shown to be dependent on the cell cycle [9] or apoptosis

[10]. TGFb1 treatment of normal mouse hepatocytes

decreased the activity and expression of CK2. The inhibi-

tion of CK2 activity then led to the stabilization of IjB

protein and shut-off of NFjB activity, contributing to the

TGFb-induced apoptosis in these cells [11]. CK2 activity

has been implicated in cell cycle, cell growth, survival

[12, 13], chromatin remodeling [14], protein transcription

[15, 16], translation, folding, and degradation [17]. To date,

there are more than 300 CK2 substrates identified in nearly

all signaling, regulatory, and metabolic pathways [18, 19].

Protein kinase CK2 is a hetero-tetramer composed of

two catalytic (a and a0) and two regulatory (b) subunits. In

vitro, equal molar amounts of catalytic subunits, at 1 nmol

quantity, were able to reconstitute with the regulatory

subunits to form the hetero-tetramer [20]. The activity of

the catalytic subunits is stimulated by the regulatory sub-

units [21], however, the extent of the stimulation is sub-

strate dependent [22]. It has been proposed that in addition

to many functions of the hetero-tetramer, individual a, a0,
and b subunits have independent activities in vivo [23–26].

There is a growing body of evidence suggesting a role

for CK2 in cancer [27–29]. The expression levels and

activities of CK2 subunits are increased 3–5 fold in many

tumors and tumor cell lines [17, 30–33]. Overexpression of

CK2a led to increased c-myc expression in lymphoma cells

[33], NFjB activation in NIH3T3 cells [17], and protected

PC3 cells from etoposide induced apoptosis [34]. Overex-

pression of CK2b in 3t3-L1 fibroblasts led to an increased

growth rate [35]. In transgenic mice, CK2a overexpression

co-operated with c-myc or loss (or mutation) of p53 at the

lpr locus to promote tumorigenesis [36]. Transgenic

expression of CK2a under the MMTV promoter resulted in

late onset of adenocarcinomas with increased c-myc and

b-catenin expression [36].

Recent work from several groups has sought to abrogate

CK2 activity to further delineate its role in cell growth and

survival. Methods used included overexpression of domi-

nant negative forms [17], siRNA or antisense oligonucleo-

tides, and the small molecule inhibitors 4,5,6,7-

tetrabromobenzimidazole (TBB) and DNB. Direct injection

of CK2a antisense DNA into PC3-LN4 xenograft tumors

induced cell death in a dose and time dependent manner

[34]. The antisense also reduced viability of PC3-LN4 and

ALVA-41 in vitro while having a marginal effect on the

benign BPH-1 or normal PrEC prostate cells [37]. Antisense

to CK2a inhibited growth of squamous carcinoma cells

Ca9-22 [38] while antisense to both CK2a and a0 enhanced

apoptosis in HeLa cells [39]. siRNA knockdown of CK2a
plus a0 has demonstrated a role for CK2 in protection

against apoptosis caused by 6-thioguanine [40], TRAIL

[41], and ionizing radiation [42]. Several inhibitors have

also been used extensively to probe the biological role of

CK2 [43–47]. These inhibitors disrupt growth and promote

cell death in several cancer cell lines. In some instances,

effects have been reversed by re-expression of CK2a [48].

In this study, we further validated the role of CK2 in

cancer using siRNA approach. To confirm the knockdown

of CK2, the levels of CK2a, a0, and b protein were assessed.

The phosphorylation of tumor suppressor PTEN at Ser370

(p-PTEN Ser370) was followed as a cellular marker of CK2

activity in HCT116 cells. The tumor suppressor PTEN is

phosphorylated at two residues by CK2, Ser370, and

Ser385. This primes PTEN for further phosphorylation by

GSK3, leading to its stabilization but also inhibiting the

lipid phosphatase activity. The Ser385 site is also phos-

phorylated by CK1, however, to date only CK2 has been

identified as a Ser370 kinase [49]. Therefore, we sought to

validate PTEN Ser370 as a suitable biomarker for following

the endogenous CK2 kinase activity in cell lines used in this

study. siRNA knockdown of CK2a and a0 led to reduced

cell growth of HCT116 and HeLa cells, accompanied by a

reduction in the level of CK2 subunits and decreased

phosphorylation of PTEN Ser370. Several novel and spe-

cific inhibitors of CK2 were also identified in a high-

throughput screen using a fluorescence resonance transfer

assay. These molecules were also capable of reducing cell

viability and PTEN Ser370 phosphorylation in multiple

cancer cell lines. In addition, the crystal structure of maize

CK2 with one of these hit molecules, compound 1, is

presented.

Materials and methods

Cancer cell lines and antibodies

Cell lines (HCT116, HeLa, A375, A549, Mia PaCa-2, LOX-

IMVI, Malme-3, Malme-3M, and SK-MEL-28) were

obtained from American Type Culture Collection (ATCC)

and maintained by following ATCC recommendations.

Mouse Anti-CK2a mAb, Rabbit anti-CK2a0 polyclonal

antibody, and mouse anti-CK2b mAb were purchased from

BD Bioscience, Abcam, and Calbiochem, respectively.

Rabbit anti-p-PTEN Ser370 polyclonal antibody was
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obtained from Biosource International. IRDye800 goat-anti-

rabbit and IRDye700 goat-anti-mouse antibodies (LiCor)

were used as secondary antibodies for western blot analyses.

Small interfering RNA knockdown studies

All small interfering RNAs (siRNA) used in this study

were ON-TARGETPlusTM Smartpool siRNAs from

Dharmacon. Cells were grown to subconfluency in 24-well

plates and transfected with DharmaFECT1 by following

the manufacturer’s protocol. Equal molar amounts of non-

targeting negative control siRNA or CK2a and CK2a0-
specific siRNAs were used for each transfection reaction.

After transfection, cells were harvested for western blot

analyses and assayed for viability using Alamar Blue.

Western blot analysis

Upon siRNA treatment as indicated in figure legends, cells

were harvested and lysed immediately with 19 Cellular

Extraction Buffer (Biosource) supplemented with 1 mM

sodium orthovanadate, 4 mM PNPP, and 1 mM DTT.

Protein concentrations in lysates were determined and

30 lg were resolved on 4–20% or 10% Tris–Glycine gels

(Invitrogen) under denaturing conditions and transferred to

nitrocellulose membranes. The membranes were blocked

with Odyssey Blocking Buffer and developed with anti-

bodies as indicated. The membrane was scanned with the

Odyssey system (LiCor) and protein expression levels were

determined by quantitation of specific band intensities

using the Odyssey software.

Cell viability assays

Seventy-two hours post-transfection with siRNA, cells

were trypsinized and harvested in 1 ml growth medium.

One hundred microliters of cell suspension from each

sample was transferred to 96-well plates and incubated

with 20 ll Alamar Blue and 80 ll of growth media for 4 h.

Cell viability was assessed by the reduction of Alamar Blue

(Biosource), which was measured spectrophotometrically.

To test the impact of CK2 inhibitors on cell viability,

cells were seeded in 96-well flat-bottom microtiter plates.

After 24 h, the cells were exposed to various concentrations

of compound and cultured for 3 days. After the addition of

20 ll/well of Alamar Blue, the cells were incubated for an

additional 4 h at 37�C. Thereafter, the plate was read on a

Victor plate reader to determine the IC50 value.

Reagents for hCK2a and hCK2a0 biochemical assays

The peptide substrate Arg-Arg-Arg-Ala-Asp-Asp-Ser-Asp-

Asp-Asp-Asp-Asp (P-147) was purchased from Biomol

Research Laboratories Inc. 6-His tagged active recombi-

nant human full length CK2a (14-445) and CK2a0 (14-689)

(hCK2a and hCK2a0) were from Upstate. A custom bio-

tinylated peptide substrate biotinyl-Arg-Arg-Arg-Ala-Asp-

Asp-Ser-Asp-Asp-Asp-Asp-Asp was from Biomol

Research Laboratories Inc. Streptavidin-dylight was from

Pierce Biotechnology and Eu-labeled-anti-rabbit IgG was

from Perkin Elmer.

33P radioactive assay

33.2 ng of hCK2a or hCK2a0 enzyme was pre-incubated

with 20 lM of peptide substrate for 15 min at room tem-

perature in assay buffer (20 mM Hepes pH 7.0, 60 mM

NaCl, 0.1 mM EDTA, 0.01% Triton X-100, 5 mM MgCl2,

0.1 mM DTT). The phosphorylation reaction was started

by adding ATP (0.075 lCi of 33P/uM ATP). The reaction

was incubated at room temperature for 90 min, and stopped

by the addition of 1.5% phosphoric acid. A multiscreen

HTS vacuum manifold apparatus from Millipore was used

to capture protein on PVDF membrane Multiscreen HV

plates. Microscint 20 from Perkin Elmer was added for

scintillation read on a Topcount instrument. The reaction

was determined to be linear with respect to time and

enzyme concentration. To determine Ki and Ki0 for com-

pounds, ATP and inhibitors concentrations were varied. Ki,

Ki0, and Kmapp values were determined from global fitting

of the data using Grafit software (Eritreus). For inhibition

studies, IC50s were measured at 20 lM ATP. Time

dependence was determined by a shift in IC50 when the

enzyme was pre-incubated with compound for 15 min and

when the reaction was initiated with enzyme.

HTRF (homogeneous time resolved florescence) assay

The homogenous time resolved fluorescence (HTRF) CK2

kinase assay was carried out in 384-well black plate

(Corning) at a final volume of 35 ll. hCK2a/hCK2a0 from

Upstate was diluted in assay buffer to give a final assay

concentration of 0.016 ng/ll. Test compound was diluted

in 100% DMSO and 0.5 ll was added to 14.5 ll of

enzyme. Enzyme and compound were allowed to equili-

brate at room temperature for 15 min. The reaction was

started with the addition of 10 ll of detection mixture,

which gives final assay concentrations of 15 lM ATP,

3.125 nM primary antibody, 15 nM biotinylated peptide

substrate, 15 nM streptavidin-dylight (Pierce Technology),

and 0.4 nM Eu-labeled-anti-rabbit IgG antibody (Perkin

Elmer). Reactions were allowed to proceed for 60 min at

room temperature before the addition of 10 ll of stop

solution (EDTA 20 mM final). Fluorescence resonance

energy transfer (FRET) was measured between streptavi-

din-dylight that bound to the biotinylated peptide and the
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Eu-labeled-anti-Rabbit IgG that bound to phosphorylated

peptide. An analyst GT (Multiscreen reader) from Molec-

ular Devices was used for ratiometric reading at emission

wavelengths of 615 and 655 nm, following excitation at

340 nm. The reaction was determined to be linear with

respect to time and enzyme concentration.

Protein purification, crystallization, and structure

determination

The maize CK2a (zmCK2a) gene was amplified from a

cDNA library (Biochain, Inc.) and cloned into the pET11a

vector (EMD Biosciences). Expression was induced in

Escherichia coli with IPTG and cells grown for 6 h. Cell

pellets were lysed in 50 mM Tris–HCl pH 8.5, 10 mM

DTT, 200 mM NaCl with a microfluidizer, clarified by

centrifugation at 40,000g for 1 h and applied to an SP

Sepharose column (GE Healthcare). The column was

developed with a gradient of 100–1,000 mM NaCl in

25 mM Tris pH 8.5, 5 mM DTT. Protein eluted at

*300 mM NaCl. The sample was diluted to 100 mM

NaCl and applied to Q sepharose chromatography in the

same buffer. The Q column was developed with a gradient

of 100–1,000 mM NaCl. Protein was eluted at *500 mM

NaCl, and was mixed with 1/3 volume of 4 M ammonium

sulfate and applied to a Butyl Sepharose column. The

column was developed with a linear gradient from 1 to 0 M

ammonium sulfate in 25 mM Tris pH 8.5, 5 mM DTT.

Protein was pooled, concentrated, and subjected to size

exclusion chromatography on a Superdex 200 column

equilibrated in 25 mM Tris pH 8.4, 400 mM NaCl, 1 mM

DTT. Fractions were pooled and concentrated to 10 mg/ml.

Protein identity was verified by SDS-PAGE and LC/MS.

Biochemical assays showed that the protein is active.

Crystals of zmCK2a were obtained in 100 mM Hepes pH

7.5, 10% ethylene glycol, 6% PEG 8,000. Co-crystals with

compound 1 were obtained by overnight soaking with

3 mM ligand. Diffraction data were collected at the

Advanced Light Source in Berkeley, CA, and structure

determination was done using the CCP4 suite of programs

[50].

Results

CK2 expression in cancer cell lines

We investigated the protein levels of both CK2a and CK2a0

isoforms in a variety of cancer cell lines. Malme-3 human

skin fibroblast cells were used as a normal cell control. The

cancer cell lines expressed higher levels of CK2a and

CK2a0 relative to the normal fibroblast cells, with the

exception of Mia PaCa-2 (Fig. 1, top panel). We also

investigated the p-PTEN Ser370 levels in those cell lysates,

since CK2 is reported to be the major kinase involved in

the phosphorylation of PTEN at this site. More intense

signals of p-PTEN Ser370 were detected in cancer cells

expressing high levels of CK2 isoforms (Fig. 1, middle

panel). Malme-3 human skin fibroblast cells also showed

comparable p-PTEN Ser370 level despite the low level of

CK2 expression in this cell line, possibly due to the

involvement of additional kinase(s) in PTEN phosphory-

lation or a decreased phosphatase activity in this type of

cells. Altogether, these data suggest that HeLa, HCT116,

and A549 are suitable cellular models to study the role of

CK2 in cancer cells.

Knockdown of CK2 proteins affects cancer cell

viability

To evaluate the involvement of CK2 in cancer cell pro-

liferation, siRNA was used to deplete CK2 in several

cancer cell lines. HCT116 cells were transiently transfected

with non-targeting negative control siRNA or siRNA

directed against CK2a and CK2a0 twice, on day 1 and day

4. Seventy-two hours after the second transfection, lysates

were prepared and analyzed by standard western blotting

with anti-CK2 antibodies. As shown in Fig. 2a, the levels

of CK2a and CK2a0 were drastically reduced by the siRNA

([95%), whereas the level of a-actinin was unchanged.

Western blotting experiments were also performed to

determine whether targeted knockdown of CK2 proteins

affected phosphorylation of PTEN at Ser370. p-PTEN

Ser370 signal is significantly lower in CK2 siRNA-trans-

fected HCT116 cells (Fig. 2a), validating CK2 as the major

kinase to phosphorylate PTEN Ser370 in this cell line. We

next evaluated the impact of CK2 depletion on the prolif-

eration of HCT116 cells with Alamar Blue assay. While

transfection with individual CK2 subunit (CK2a or CK2a0)

CK2α,
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Fig. 1 CK2a and CK2a0 protein expression in various cancer cell

lines. Top panel: western blot for CK2a and CK2a0. Middle panel:
corresponding western blot for p-PTEN Ser370. Bottom panel:
corresponding western blot for a-actinin as a loading control. 30 lg

protein was loaded for each sample
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siRNA had minor effects on cell growth, transfection with

both siRNA inhibited cell proliferation of HCT116 by

[50% (Fig. 2b).

We also optimized transfection conditions in both A549

and HeLa cells. Transfection with 100 nM of siRNAs

(50 nM CK2a siRNA plus 50 nM CK2a0 siRNA) down-

regulated CK2a by 90% and CK2a0 by[95% (Fig. 2c, top

panel) in both cell lines. Remarkably, reduction of CK2b
protein expression was also observed in both cell lines

transfected with siRNAs targeting CK2a/a0 (Fig. 2c, middle

panel). Depletion of CK2 proteins did not exert significant

effect on A549 cell growth but reduced HeLa cell growth

by 40% (Table 1). Surprisingly, the CK2a subunit pro-

tein expression is slightly lower in mock and control

siRNA-treated HeLa cells (Fig. 2c, middle panel), compared

to untreated HeLa cells (Fig. 1). It suggests DharmaFECT1

transfection reagent might affect CK2a protein expression or

stability in a cellular context dependent manner.

Compound library screening

An HTRF assay was developed to carry out single point

screening. The high-throughput screening was performed

on an Evolution P3 robot from Perkin Elmer. Data from 1

of 16 independent test sets performed to screen the entire

library of 222,800 compounds are shown in Fig. 3. One

thousand four hundred and two compounds with [75%

inhibition (at concentration of 40 lg/ml) were defined as

primary hits. Dose–response curves identified 696 com-

pounds with IC50 \ 10 lM. Of those, 455 were ATP

competitive and 438 were time independent. Fifty-eight

discreet chemical classes were selected for more in-depth

studies to confirm potency and purity.

Enzyme characterization

The apparent Km’s for ATP for human and maize CK2a
and a0 subunits were determined using a radioactive format

assay and standard Michaelis–Menten kinetic plots. The

Kmapp
ATP was essentially the same for both isoforms at 12

and 10 lM for human CK2a and a0, respectively. hCK2a
was used to determine the Ki, Ki0, and reversibility of

compounds. The Ki for TBB was determined to be 2 lM,

consistent with previous reports [51–53].

To ascertain the molecular basis for the activity and

specificity of hit molecules, we determined the co-crystal

structure of compound 1 with zmCK2a (Fig. 4). Maize

CK2a is now established to be a good surrogate for human

CK2a [54]. A very recent study showed that these two

Fig. 2 Knockdown of CK2a and CK2a0 protein by siRNA in cancer

cells. a Western blot analyses of CK2a, CK2a0, and p-PTEN Ser370

levels in non-targeting negative control siRNA and CK2a/CK2a0

specific siRNAs transfected HCT116 cells. b Knockdown of CK2a
and CK2a0 protein inhibits HCT116 growth. c Western blot analyses

of CK2a, CK2a0, and CK2b protein levels in lysates from HeLa and

A549 cells treated with non-targeting negative control siRNA (Ctrl

siRNA), siRNA directed against CK2 catalytic subunits (CK2a/a0

siRNA) or transfection reagent only (Mock). Total siRNA concen-

tration in all of transfection reactions described above was 100 nM

Table 1 Percent of cell viability at 7-day post siRNA transfection,

compared to control siRNA treated cells

CK2a
knockdown

(%)

CK2a0

knockdown

(%)

CK2b
knockdown

(%)

Cell

viability

(%)

HeLa 88.4 97.9 86.9 60.4

A549 89.4 92.9 77.5 99.9

Percent control
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Fig. 3 High-throughput screen. Scatter plot representative of data

from a screen of 222,800 compounds at concentration of 40 lg/ml.

100% kinase activity is represented by the activity in the absence of

inhibitors. Hits were defined as compounds that reduce the kinase

activity by [50%
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enzymes bind emodin in two different orientations [55] but

it remains to be seen whether this is a general phenomenon

or is restricted to highly symmetric ligands such as emodin

[55]. It is worth noting that compound 1 is an asymmetric

molecule. We independently verified that the Kmapp
ATP for

zmCK2a, 15 lM, is similar to that for hCK2a, 12 lM, in

our biochemical assays and shows the same inhibition

profiles for TBB and compound 1 (data not shown).

The structure was determined to 1.8 Å resolution, with a

crystallographic R factor of 20.6% (Rfree = 25.2%). The

electron density was unambiguous for the entire complex,

and particularly for the bound ligand, surrounding residues,

and bound water molecules at the active site. As shown in

Fig. 4b, compound 1 binds CK2a at the ATP binding site,

supporting the conclusion that this inhibitor is ATP com-

petitive. Binding is mediated by both hydrophobic contacts

and hydrophilic interactions, as observed for many ATP-

competitive kinase inhibitors [56, 57]. The isoquinoline

ring occupies approximately the same position bound by

the adenosine ring of ATP, and makes a single hydrogen

bond to the hinge. As observed for many CK2a inhibitors,

and in contrast with the majority of characterized inhibitors

of many other kinases, the bulk of the hydrogen bonding

interactions are with the phosphate binding region of the

ATP binding site. In compound 1, these hydrogen bonds

are mediated primarily by the triazole ring, in the form of

water-bridged bonds to Glu81 (which forms the conserved

kinase salt-bridge to Lys68) and to the backbone amide of

Asp175 of the DFG loop. The primary amine attached to

the chiral carbon (indicated by the red asterisk in Fig. 4b)

picks up additional hydrogen bonding interactions with the

side chains of Asn161 and Asp168 in the ribose binding

pocket. The phenyl ring does not appear to make critical

interactions, but probably contributes some weak hydro-

phobic contacts to the glycine rich-loop.

Cellular activities of CK2 inhibitors

Once identified, CK2 inhibitor compound 1 was fully

characterized in cellular assays. Since p-PTEN Ser370 as

CK2 substrate is validated in HCT116 cells by siRNA

approach, p-PTEN Ser370 western blot using compound 1

treated HCT116 lysates was performed and p-PTEN

Ser370 signal was quantified using the Odyssey software.

As shown in Fig. 5a, b, CK2 kinase activity to phosphor-

ylate PTEN at Ser370 was inhibited by compound 1 in a

dose-dependent manner, with IC50 at 100 nM. Moreover,

HCT116 cells cultured for 72 h in the presence of

increasing concentrations of the compound displayed a

dose-dependent growth inhibition (Fig. 5c). Overall, com-

pound 1 significantly inhibited growth of all CK2

expressing cancer cell lines used in our study, including

HCT116, A375, HeLa, LOX-IMVI, A549, SK-MEL-28,

and Malme-3M, with IC50 of 0.14, 0.28, 0.3, 0.4, 0.7, 0.7,

and 2.01 lM, respectively.

Discussion

CK2 is receiving increasing interest from the pharmaceuti-

cal industry as a target for therapeutic intervention [46, 47,

58–60]. We have generated a drug discovery platform for

identification and optimization of small molecule inhibitors

of CK2. This platform includes a high-throughput enzyme

assay, cellular assays including a phospho-specific

C 
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Fig. 4 Co-crystal structures of compound 1 and maize CK2a. a
Chemical structure of compounds 1 and 2. The chiral carbon is

indicated by the red asterisk. b Co-crystal structure of compound 1 in

complex with maize CK2a. The compound binds at the ATP-binding

site. Nitrogen and oxygen atoms are colored in blue and red,

respectively. Carbon atoms are colored in cyan (compound) and green
(protein). Ordered water molecules are shown as magenta spheres,

and hydrogen bonds are indicated by the dashed yellow lines. The

protein surface is rendered in white. c Structural statistics
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biomarker in HCT116 cells and a tool CK2 inhibitor of a

novel compound class with utility for target and assay

validation.

Many factors may have contributed to the recent interest

in CK2 as a cancer target. The level of understanding of the

cellular regulation and role of CK2 in cell growth and

survival has expanded [40, 61]. Convincing evidence for

CK2 as an oncogene is supplied by transgenic studies

where it co-operates in tumorigenesis with abrogation of

important tumor suppressors [62]. Recently, a cyclic pep-

tide that inhibits CK2 phosphorylation of HPV-16 E7 has

entered clinical trials for treatment of cervical cancers,

which could produce interesting proof of concept data [63].

Attempts to validate CK2 kinase as a target at the

molecular level have met with some difficulties. Each

experimental approach has limitations. However, when the

body of evidence is taken together a role of CK2 in

tumorigenesis is convincing. Studies with siRNA and

antisense are made difficult by the long half life of the

protein. Knocking down CK2a and a0 subunits to unde-

tectable levels slows cell growth [37–39, 64]. However, the

level and distribution of CK2b subunit change significantly

following removal of CK2a subunit [39]. This clouds the

interpretation that CK2 kinase activity is primarily

responsible for the biological effects observed. Overex-

pression of kinase inactive mutants has also shown to

abrogate the kinase activity and lead to inhibition of cell

growth [64]. However, overexpression of kinase inactive

mutants not only competes with wild-type kinase for sub-

strate but also alters the balance of CK2 subunits and the

cellular localization of the kinase. Therefore, it is difficult

to attribute the biological effects of these mutants solely to

its inhibitory activity on endogenous CK2 kinase. There

have been many experiments using the small molecule

inhibitors of CK2, TBB, and its analogs [44, 65]. Typically

these molecules inhibit cell growth and lead to cell death.

Recent work from Pagano and Pinna has shown that, when

tested against a panel of 30 kinases, TBB and DMAT are

fairly specific [47]. In addition to CK2, these two com-

pounds inhibit Pim1 and Pim3 [47]. The CK2 inhibitors

have a potent effect in cells, causing apoptosis in many cell

lines at micromolar concentrations. The difference in

cancer cell sensitivity to the small molecule CK2 inhibitor

or the CK2 siRNA has led to the proposal that the potency

of inhibitor in those cells may be largely due to off-target

effects. Experiments where the effects of the compound are

reversed by ectopic expression of the CK2a subunit sup-

port, but do not prove definitively, the hypothesis that the

growth inhibition and cell death observed in these studies

are due to inhibition of CK2 [48]. Alternative explanations

for differences between abrogation of CK2 activity by

molecular or chemical means include (i) the presence of

residual CK2 activity in the experiments using siRNA,

antisense, or dominant negatives, which allow cells to

survive, (ii) the long duration required for complete

knockdown of CK2 allows the cells to adapt to the loss of

this critical activity, or (iii) inhibition of the CK2aa0b
holoenzyme is far more effective than manipulation of the

individual subunit.

In this study, we found that significant knockdown of

CK2a and a0 protein levels in HeLa, A549, and HCT116

cells required the continued presence of the CK2 siRNA

for a minimum of 72 h. The strongest effect was observed

in HCT116, where [95% reduction in CK2a and a0 led to

50% reduction in growth over the 72 h period, consistent

with other studies [37, 38]. The observation that knock-

down of CK2a/a0 by siRNA negatively affects the protein

level of CK2b subunit confirms the stability of CK2b is

related to its ability to assemble with CK2a/a0 to form

stable tetrameric complexes [39].

We have also identified a potent (IC50 = 40 nM) small

molecule inhibitor of CK2 of a completely novel chemical

class, compound 1. Compound 1 has a different specificity

profile compared to TBB. At 10 lM, it inhibits 13 out of 80

kinases tested at[80% inhibition, including CDK2, FLT3,

GSK3-alpha, GSK3-beta, HIPK1, IKK1, IRAK4, KDR,

LOK, MAPK2, p70S6K, PKA, PKC-theta, and Rse.

Fig. 5 Cellular activities of compound 1 in HCT116. a Compound 1

reduces phosphorylation of PTEN at Ser370 in HCT116. b Quanti-

tation of the data shown in a. c Compound 1 inhibits HCT116 cell

growth. Alamar Blue viability assay was performed as described in

‘‘Material and methods’’ section
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Compound 1 does not inhibit the Pim kinases. Compound 1

has very favorable physico-chemical properties when

compared with other commercially available CK2 inhibi-

tors. It represents an excellent starting point for the gen-

eration of bio-available, specific CK2 inhibitors for testing

in models of human disease. The crystal structure of this

compound bound to the catalytic site of maize CK2a will

facilitate structure directed modifications to improve

potency and selectivity.

Compound 1 can also be used as a tool for biological

studies. It inhibits cell growth with IC50s in the single digit

micromolar range. This inhibition of cell growth correlates

with the inhibition of phosphorylation of the CK2 specific

substrate PTEN Ser370 in HCT116 cells. Ser370 in PTEN

may act as useful biomarker to monitor CK2 activity in

certain cell types, as demonstrated by the response of this

phosphorylation to CK2a and a0 knockdown by siRNA in

HCT116 cells. This is the first cellular biomarker of CK2 to

be validated with the siRNA approach. Miyata and Nishida

[66] recently described the use of an antibody to CDC37

Ser13 to follow CK2 activity. The validation of this

phospho site of CDC37 as a cellular biomarker for CK2

was its decrease upon TBB treatment and increase in

response to overexpression of CK2a or b [66].

The utility of CK2 inhibitors for clinical indications still

remains unknown, and will await proof of concept studies

first in animal models and subsequently in man. The tools

required to facilitate generation of small molecule com-

pounds that target this mechanism are now available.
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