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Abstract Perilipin A is the most abundant protein asso-

ciated with the lipid droplets of adipocytes and functions to

control both basal and stimulated lipolysis. Under basal or

fed conditions, perilipin A shields stored triacylglycerols

from cytosolic lipases, thus promoting triacylglycerol

storage. When catecholamines bind to cell surface recep-

tors to initiate signals that activate cAMP-dependent

protein kinase (PKA), phosphorylated perilipin A facili-

tates maximal lipolysis. Mutagenesis studies have revealed

that central sequences of moderately hydrophobic amino

acids are required to target nascent perilipin A to lipid

droplets and provide an anchor into the hydrophobic

environment of lipid droplets. Sequences of amino acids in

the unique carboxyl terminus of perilipin A and those in

amino terminal sequences flanking the first hydrophobic

stretch are required for the barrier function of perilipin A in

promoting triacylglycerol storage. Site-directed mutagen-

esis studies of serine residues within six PKA consensus

sites of perilipin A reveal functions for phosphorylation of

at least three of the sites. Phosphorylation of one or more of

the serines within three amino terminal PKA sites is

required to facilitate hormone-sensitive lipase access to

lipid substrates. Phosphorylation of serines within two

carboxyl terminal sites is also required for maximal lipol-

ysis. Phosphorylation of serine 492 (site 5) triggers a

massive remodeling of lipid droplets, whereby large peri-

nuclear lipid droplets fragment into myriad lipid micro-

droplets that scatter throughout the cytoplasm. We

hypothesize that perilipin A binds accessory proteins to

provide assistance in carrying out these functions.
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Abbreviations

ATGL Adipose triglyceride lipase

HSL Hormone-sensitive lipase

IBMX Isobutylmethylxanthine

PKA Protein kinase A (cAMP-dependent protein

kinase)

Introduction

Adipocytes in white adipose tissue of mammals serve as a

primary energy storage depot. Excess calories are metab-

olized to synthesize triacylglycerols, which are packaged

into large cytosolic lipid droplets. These lipid droplets are

coated with perilipins, the most abundant lipid droplet-

associated proteins in adipocytes [1]. Perilipins localize

exclusively to lipid droplets and are found in no other

subcellular compartment [2]. The primary isoform of per-

ilipin in adipocytes is perilipin A, which is the longest

isoform with a unique carboxyl terminus of more than 100

amino acids that is absent in perilipins B and C [3, 4].

Studies conducted in cell culture models and perilipin

null mice reveal that perilipins play a dual role in the

regulation of lipolysis in adipocytes. Under fed conditions,

when circulating insulin promotes triacylglycerol storage

in adipocytes, perilipin A forms a barrier at the surfaces of

lipid droplets to restrict the access of cytosolic lipases to

the lipid droplet [5–7]; thus, triacylglycerol storage prevails
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over a very low rate of basal lipolysis. In contrast, during

fasting or extended exercise, phosphorylated perilipin

facilitates hormonally stimulated lipolysis through multiple

mechanisms [8–13]. Consistent with these observations,

perilipin null mice are lean and have *30% of the fat mass

of wild-type mice [6, 7]; adipocyte triacylglycerol stores

turn over more rapidly under basal (or fed) conditions in

the absence of the barrier function provided by perilipins.

Interestingly, studies with perilipin null mice also revealed

that perilipin plays an essential role in attaining maximally

stimulated lipolysis; the release of glycerol and fatty acids

is extremely attenuated from hormonally stimulated adi-

pocytes isolated from perilipin null mice [6, 7].

Perilipin is a member of a gene family that includes five

members in vertebrates and two members in insects; all of

the proteins encoded by these genes associate with lipid

droplets. The majority of cells in vertebrates have the

capacity to store neutral lipids, triacylglycerols, or cho-

lesterol esters, in cytoplasmic lipid droplets. In most cells,

the ubiquitously expressed proteins adipophilin (also called

ADFP, adipose differentiation-related protein or ADRP)

and TIP47 coat the surfaces of lipid droplets [14–17].

Adipophilin and TIP47 have the greatest sequence simi-

larity to each other (Fig. 1) and are likely the oldest

members of the family [16]. The most recently described

member of the family, OXPAT (also called MLDP

and LSDP5), shows significant sequence similarity to

adipophilin and TIP47; however, OXPAT expression is

restricted to highly oxidative tissues that rely on b-oxida-

tion of fatty acids for energy production, including the

heart, muscle, brown adipose tissue, and, to a lesser extent,

liver [18–20].

Perilipin is structurally divergent from adipophilin and

TIP47. Perilipin is also the only vertebrate family member

that has consensus sequences for phosphorylation of the

protein by cAMP-dependent protein kinase (also called

protein kinase A, PKA) [3, 4]. Significant expression of

perilipin is limited to adipocytes of white and brown adipose

tissue, and steroidogenic cells of the adrenal cortex, testes,

and ovaries [1, 3, 6, 7, 21]. The least conserved member of

the gene family is S3-12; the only conserved sequence in

S3-12 is a long stretch of tandem repeats of 11-amino acid

(11-mer) sequences [22] that are proposed to form amphi-

pathic a-helices [23]. All of the other members of the family

contain shorter sequences of 11-mer repeats. These

sequences may assist in embedding the proteins into the

surface phospholipid monolayer of lipid droplets. Signifi-

cant expression of S3-12 is limited to white adipose tissue

[24]. Insects express two related proteins, LSD1 and LSD2,

in fat body [25–28], a tissue which resembles both adipose

tissue and liver. Phosphorylation controls the functions of

LSD1 and LSD2 in facilitating lipolysis and lipid droplet

motility [27, 29]; hence, both LSD1 and LSD2 share func-

tional similarities with perilipin A.

Fig. 1 Structural features of the perilipin family of proteins.

Conserved sequences of amino acids are depicted in color (in the

online version of the figure); higher intensity of color represents

greater conservation. Sequences of mouse proteins are depicted. An

amino terminal sequence of 100 amino acids (green) is the most

highly conserved peptide amongst members of the protein family,

excluding S3-12. Proximal to this conserved peptide, the sequences of

11-mer repeats (maize) are predicted to form amphipathic helices; this

sequence is expanded in S3-12 to include 29 tandem repeats of a

33-amino acid sequence. The carboxyl terminus of TIP47 folds into a

4-helix bundle of amphipathic helices shown in blue; adipophilin and

OXPAT/MLDP have conserved sequences in their carboxyl termini

that are not shared by perilipin A. Within the central region, three

hydrophobic sequences (lilac) assist targeting and anchoring of

nascent perilipin A into lipid droplets; a highly acidic sequence (cyan)

of unknown function is found between the hydrophobic stretches of

amino acids. Perilipin A has 6 consensus sites for phosphorylation of

serine residues by PKA (charcoal); these sites are not conserved in

other members of the protein family. (Illustration reproduced from

Journal of Lipid Research [63] with permission of American Society

for Biochemistry and Molecular Biology via Copyright Clearance

Center.)
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Structure/function studies of perilipin A

We have used mutagenesis strategies to study how the

structure of perilipin A impacts its own function. We have

shown that the central portion of the primary amino acid

sequence comprises sequences required to target nascent

perilipin A to lipid droplets [30, 31]. Within that region, no

single short stretch of amino acids serves as a molecular zip

code to send perilipin A to a lipid droplet address. Instead,

three sequences of *20 moderately hydrophobic amino

acids cooperate in targeting and anchoring of perilipin A

onto lipid droplets; deletion of any one of the three

sequences fails to eliminate targeting of the mutated per-

ilipin [31]. Removal of the entire central sequence of

perilipin A is required to disrupt targeting to lipid droplets;

conversely, when this central sequence is ligated to green

fluorescent protein, the usually soluble green fluorescent

protein relocates to the surfaces of lipid droplets [30].

Removal of the hydrophobic sequences also reduces the

tight anchoring of perilipin A to lipid droplets.

The crystal structure of perilipin A has never been

solved, and consequently, we understand little of how

perilipin A assembles onto lipid droplets. The conforma-

tion of the hydrophobic stretches is unknown. Hence, it is

unclear whether these sequences embed deeply or shal-

lowly into the lipid droplet. The only structural information

that is currently available for members of the gene family

is the crystal structure of the carboxyl terminal region of

TIP47 [32]. The carboxyl terminus of TIP47 folds into a

4-helix bundle of amphipathic helices that closely resem-

bles the 4-helix bundle of the amino terminus of

apolipoprotein E, an exchangeable apolipoprotein. Apoli-

poprotein E circulates in the blood both as a soluble protein

and in association with lipoproteins. Although the 4-helix

bundle assumes a closed conformation when apolipopro-

tein E is soluble, it opens up to embed the hydrophobic

faces of the 4 helices into the acyl chains of phospholipid

monolayers covering lipoproteins [33, 34]. Similarly, open

and closed conformations of the corresponding 4-helix

bundle may contribute to the exchangeable nature of

TIP47. TIP47 not only remains stable as a soluble protein

in the cytoplasm but also readily associates with lipid

droplets, particularly following the incubation of cells with

fatty acids to drive triacylglycerol synthesis and packaging

[17, 35]. The amino acid sequence of adipophilin is similar

to that of TIP47 in the region of the 4-helix bundle [32];

however, adipophilin is unstable in the cytoplasm, rapidly

degraded in the absence of lipid droplets and stabilized

upon binding lipids [36–38]. Thus, differences between the

amino acid sequences of TIP47 and adipophilin are likely

to contribute to the inability of adipophilin to collapse the

bundle and dissociate from lipid droplets into the cyto-

plasm. Finally, the amino acid sequence of the carboxyl

terminus of perilipin A diverges from that of TIP47; a

highly acidic sequence in perilipin A is surrounded by

hydrophobic sequences (Fig. 1). Like adipophilin, perilipin

A is unstable as a soluble protein [39, 40], and is stabilized

by its association with lipid droplets [39].

Using deletion mutagenesis strategies, we have identi-

fied portions of perilipin A that contribute to the barrier

function in reducing lipase access to stored triacylglyce-

rols. Expression of perilipin A in cultured fibroblasts

increases triacylglycerol storage by reducing the rate of

triacylglycerol hydrolysis [5]; ectopic perilipin A replaces

endogenous adipophilin on lipid droplet surfaces to pro-

duce a more effective barrier to lipolysis [10, 12]. Thus,

adipophilin is relatively permissive to lipolysis. Moreover,

deletion of carboxyl terminal sequences unique to perilipin

A eliminates the barrier function of perilipin and renders

stored triacylglycerols susceptible to lipolysis [41]. This

observation suggests that the perilipin B and C isoforms,

which lack this peptide, are unlikely to facilitate triacyl-

glycerol storage. Perilipin B is expressed at very low levels

in adipocytes, while perilipin C is expressed only in ste-

roidogenic cells [21]. The amino acid sequence of the

unique carboxyl terminus of perilipin A contains polar and

charged residues throughout; thus, this peptide is not likely

to embed into the hydrophobic environment of the lipid

droplet. Deletion of amino terminal sequences adjacent to

the central hydrophobic sequences also eliminates the

barrier function of perilipin A [41]. These sequences

include 11-mer repeats (Fig. 1) that are predicted to form

amphipathic helices, and, thus, may position perilipin A at

the surfaces of lipid droplets. Through these mutagenesis

studies, we have learned that the structure of perilipin is

remarkably plastic, since the removal of relatively large

portions of the sequence has little effect on the targeting of

mutated perilipin to lipid droplets, or the function of per-

ilipin A in reducing basal lipolysis. Surprisingly, the amino

terminal sequence of *100 amino acids that is highly

conserved in four out of five mammalian (and both inver-

tebrate) proteins within the gene family is not required for

targeting to lipid droplets or facilitating triacylglycerol

storage. Therefore, additional experimentation is required

to reveal the function of this conserved sequence.

Phosphorylation of perilipin A by PKA

Adipocytes not only store excess calories as triacylgly-

cerols but also mobilize fatty acids following lipolysis of

stored triacylglycerols at times of caloric deficit and

during extended exercise. One of the signaling pathways

that initiate lipolysis begins when catecholamines bind to

b-adrenergic receptors on the plasma membranes of adi-

pocytes. Stimulatory G-proteins activate adenylyl cyclase,
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leading to an increased concentration of cAMP in the

cytoplasm. PKA is then activated and phosphorylates

multiple proteins. The phosphorylation of hormone-

sensitive lipase (HSL) by PKA triggers rapid translocation

of the lipase from the cytoplasm to the surfaces of

lipid droplets, where it gains access to its lipid substrates

[42–44]. HSL is an abundant lipase in adipocytes that dis-

plays significant hydrolytic activity against diacylglycerols,

cholesterol esters, and triacylglycerols [45–48].

Perilipin A is the most highly phosphorylated protein in

stimulated adipocytes [1]; the phosphorylation of perilipin

A by PKA is necessary for maximal lipolysis [6–13]. The

sequence of mouse perilipin A contains six consensus sites

for the phosphorylation of serine residues by PKA (Fig. 1),

although no one has yet demonstrated that all six sites are

actually phosphorylated. Evidence from mutagenesis

studies suggests that at least three of these serine residues

are phosphorylated by PKA, including one serine in the

amino terminus and two serines in the carboxyl terminus.

Mutation of the first three PKA site serines to alanines in

combination reduces lipolysis in cells expressing the

mutated perilipin [8, 10–13], particularly when HSL is

present. Sztalryd et al. [11] have shown that perilipin is

required for HSL docking on lipid droplets, and phosphor-

ylation of one or more of the three amino terminal PKA

sites of perilipin A facilitates HSL docking and maximal

lipolysis. Workers in the Greenberg laboratory have also

demonstrated reduction of HSL-catalyzed lipolysis when all

three amino terminal PKA site serines of perilipin A were

mutated [10, 13]; however, HSL translocated from the

cytoplasm and docked on lipid droplets in stimulated adi-

pocytes expressing a mutated form of perilipin lacking all

six phosphorylation sites [8]. Furthermore, fluorescence

resonance energy transfer experiments have suggested that

HSL docks on lipid droplets via a protein–protein interac-

tion with perilipin that does not require phosphorylation of

any of these six sites [49]. Thus, there are currently two

hypotheses for the mechanism by which phosphorylation of

one or more of three amino terminal PKA sites of perilipin

A facilitates HSL-catalyzed lipolysis: (1) phosphorylation

is required to promote a binding interaction between HSL

and perilipin A that brings HSL to its lipid substrates, or (2)

HSL binds to perilipin A in a phosphorylation-independent

mechanism, and phosphorylated perilipin A then assists

HSL in gaining access to lipid substrates. Additional

experimentation is required to solve this puzzle.

Phosphorylation of serine residues in the carboxyl ter-

minal PKA sites of perilipin A also contributes to

mechanisms regulating lipolysis. Mutation of all three of the

carboxyl terminal PKA site serines to alanines reduces

maximal lipolysis in both cultured fibroblasts that express

mutated perilipin A, but lack HSL [13], and adipocytes

differentiated from perilipin null mouse embryonic

fibroblasts that express mutated perilipin A and endogenous

lipases, including HSL [9]. Experiments with perilipin A

lacking individual PKA sites show reduction of maximal

lipolysis when either site 5 or 6 is mutated, providing evi-

dence that these sites are physiological substrates for PKA

[9]. These studies implicate perilipin A in the control of

lipolysis catalyzed by lipases other than HSL. The cytosolic

lipases of cultured fibroblasts have not been well charac-

terized, but likely include members of the recently described

patatin-like phospholipase A domain containing (PNPLA)

family of proteins; this family includes adipose triglyceride

lipase (ATGL, also called desnutrin), adiponutrin, GS2, and

GS2-like [50–53]. ATGL, the best characterized member of

the family, is highly expressed in adipocytes, hydrolyzes

triacylglycerol, and plays an important role in both basal and

stimulated lipolysis [50–59]. The phosphorylation of per-

ilipin A facilitates lipolysis catalyzed by a variety of

cytosolic lipases by several mechanisms that are not yet fully

understood.

Chronic stimulation of lipolysis by addition of b-adren-

ergic agonists to cultured adipocytes induces release of

glycerol and fatty acids, but also triggers massive remod-

eling of lipid droplets. Large centrally located lipid droplets

fragment into myriad tiny lipid micro-droplets that scatter

throughout the cytoplasm [60–62]. Our laboratory has been

interested in gaining understanding of this remodeling

process. To simplify the cell model, we expressed perilipin

A in cultured fibroblasts and observed that perilipin A

coated lipid droplets aggregate into clusters of uniformly

sized lipid droplets in one or two areas of the cytoplasm [5].

When forskolin and isobutylmethylxanthine (IBMX) are

added to the cells to increase cAMP and activate PKA,

perilipin A coated lipid droplets disperse throughout the

cytoplasm [62]. In contrast, adipophilin coated lipid drop-

lets of control cells are dispersed throughout the cytoplasm

in both the presence and absence of forskolin and IBMX.

Thus, perilipin A organizes lipid droplets into aggregates

that break apart when PKA is activated; other adipocyte

factors are not required. Lipolysis is not required for the

observed dispersion of lipid droplets, since addition of the

lipase inhibitor diethylumbelliferyl phosphate fails to inhi-

bit remodeling. Finally, by studying cells expressing

perilipin A with PKA site mutations, we discovered that

phosphorylation of serine 492 (site 5) is required for lipid

droplet remodeling. Interestingly, substitution of a glutamic

acid residue (for serine) to add negative charge to the site

fails to trigger lipid droplet scattering under basal condi-

tions and prevents remodeling, when forskolin and IBMX

are added to the cells. Thus, the addition of a phosphate

moiety to serine 492 is uniquely required for the remodeling

of perilipin A coated lipid droplets.

We hypothesize that lipid droplet remodeling facilitates

lipolysis by massively increasing the surface area of lipid

18 Mol Cell Biochem (2009) 326:15–21

123



droplets available for lipase binding. The observed reduc-

tion in stimulated lipolysis in adipocytes expressing

perilipin A with a serine 492 to alanine mutation [9] sup-

ports the importance of this site in control of lipolysis.

Additionally, the dispersion of lipid droplets implies

increased motility of lipid micro-droplets as they move

away from the large peri-nuclear lipid droplets to locations

throughout the cytoplasm.

The role of perilipin A in the control of lipolysis

Data from our laboratory and others have contributed to a

new model for how lipolysis in adipocytes is controlled by

perilipin A at the surfaces of lipid droplets in response to

nutritional status. This model replaces the long-standing

view that PKA-mediated phosphorylation of HSL controls

adipocyte lipolysis through activation of lipase activity; the

current model is considerably more complex. When ani-

mals are in the fed state, perilipin A is minimally

phosphorylated and forms a barrier at the surfaces of lipid

droplets that restricts the access of cytosolic lipases to

stored triacylglycerols. Lipolysis occurs at a very low rate

and is likely catalyzed by ATGL, a lipase that constitu-

tively associates with lipid droplets. When catecholamines

activate the b-adrenergic signaling cascade, PKA-phos-

phorylated HSL translocates from the cytoplasm to the

surfaces of lipid droplets where it docks by binding to

PKA-phosphorylated perilipin A. This potent lipase gains

access to triacylglycerol and diacylglycerol substrates to

catalyze extensive lipolysis, working in collaboration with

ATGL. PKA-mediated phosphorylation of one or more of

three serines in the amino terminus of perilipin A con-

tributes to the mechanism by which HSL gains access to

lipid substrates. The phosphorylation of additional serine

residues of perilipin A by PKA is required for maximal

lipolysis. Phosphorylation of serine 492 (site 5) triggers a

massive remodeling of lipid droplets that increases surface

area available to lipases; the mechanisms controlling

fragmentation and dispersion of lipid droplets are not yet

understood. Finally, the mechanisms by which phosphor-

ylation of serine 517 (site 6) promotes lipolysis are also

currently unknown.

We hypothesize that perilipin A fulfills its various

functions by forming a dynamic scaffold at the surfaces of

adipocyte lipid droplets [60, 63]. This scaffold serves as an

organizing center to recruit enzymes required for metabo-

lism of lipids stored in lipid droplets, and proteins involved

in the maintenance, motility, and remodeling of lipid

droplets. Under fed conditions, the perilipin scaffold may

bind proteins that support triacylglycerol packaging and

stabilization of lipid droplets, while permitting a low

level of lipolysis. When hormones stimulate lipolysis,

PKA-phosphorylated perilipin A then disperses these pro-

teins to recruit HSL and other proteins that facilitate

elevated rates of lipolysis, lipid droplet remodeling, and

increased motility of lipid micro-droplets.

HSL is an example of a protein that binds to the perilipin

A scaffold under lipolytically stimulated, but not basal

conditions; PKA-mediated phosphorylation of both HSL

and perilipin A is required to facilitate optimal access of

HSL to substrate. In contrast, CGI-58 (also called ABHD5

for a/b hydrolase domain 5) binds to perilipin A under

basal conditions, and disperses into the cytoplasm follow-

ing activation of PKA [49, 64, 65]. CGI-58 plays an

important but poorly understood role in triacylglycerol

catabolism. Mutations in CGI-58 cause a neutral lipid

storage disorder called Chanarin-Dorfman Syndrome,

characterized by ichthyosis and excessive storage of tria-

cylglycerols in many cells and tissues [66]. Although CGI-

58 is required to maintain triacylglycerol homeostasis in

many cells, it lacks lipase activity [67]. Zechner and col-

leagues have proposed that CGI-58 functions as an

activating co-factor for ATGL [67, 68]. Additional exper-

imentation is required to elucidate why CGI-58 localizes to

lipid droplets under basal conditions, but disperses into the

cytoplasm, away from lipid droplet-bound ATGL, when

lipolysis is stimulated. One hypothesis is that CGI-58 may

promote triacylglycerol hydrolysis under basal, but not

stimulated conditions [63]. Many other questions regarding

the mechanisms by which phosphorylation of perilipin A

facilitates lipolysis remain to be answered; phosphorylation

of each of the six serines within PKA sites may contribute

to separate mechanisms. Finally, identification of addi-

tional proteins that bind to perilipin A will undoubtedly

reveal new aspects of the complex mechanisms by which

adipocytes maintain lipid homeostasis.
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