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Abstract We have recently reported that PPARa defi-

ciency leads to hypoglycaemia and hypoinsulinemia in

mice (Yessoufou et al. Endocrinology 147:4410–4418,

2006). Besides, these mice exhibited high adiposity with an

inflammatory state. We, therefore, assessed, in this study,

the effects of PPARa deficiency on the expression of

mRNA encoding for the insulin gene transcription factors

in pancreatic b-cells along with those implicated in

inflammation in adipose tissues. On fasting, the adult

PPARa-null mice were hypoglycemic. Serum insulin con-

centrations and its pancreatic mRNA transcripts were

downregulated in PPARa-null mice, suggesting that

PPARa gene deletion contributes to low insulin gene

transcription. The PPARa gene deletion downregulates the

mRNA expression of insulin gene transcription factors, i.e.,

Pdx-1, Nkx6.1, and MafA. Besides, the pancreatic function

was diminished by PPARa deficiency as PPARa-null mice

expressed low pancreatic Glut2 and glucokinase mRNA.

PPARa-null mice also expressed high adiponectin and

leptin mRNA levels compared to wild type animals. Adi-

pose tissues of PPARa-null mice exhibited upregulation of

CD14 and CD68 mRNA, generally expressed by macro-

phages. PPARa gene deletion downregulates the adipocyte

mRNA of certain pro-inflammatory agents, like MCP-1,

TNF-a, IL-1b, IL-6, and RANTES, though pro-inflamma-

tory TLR-2 and TLR-4 mRNAs were upregulated in the

adipose tissues. Our results suggest that PPARa deficiency,

in mice, is implicated in the modulation of insulin gene

transcription and inflammatory status in adipose tissues.
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Abbreviations

GK Glucokinase

Nkx6.1 NK6 transcription factor related-locus-1

Pdx-1 Pancreatic and duodenal homeobox-1

PPARa Peroxisome proliferator-activated receptor-a
MCP-1 Monocyte-chemoattractant protein-1

RANTES Regulated on activation of normal T cell

expressed and secreted

SREBP1c Sterol response element-binding protein 1c

TG Triglyceride

TLR Toll-like receptor

FFA Free fatty acids

WAT White adipose tissue

PBS Phosphate buffered saline

WT Wild type

Introduction

Peroxisome proliferator-activated receptors (PPARs) play

key roles as lipid/nutritional state sensors and transcriptional
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regulators of lipid metabolism [1, 2]. So far, three isotypes of

PPARs have been well-identified in lower vertebrates and

mammals [2]. PPARa, PPARb (d), and PPARc exhibit dif-

ferent tissue distribution as well as different ligand

specificities and functions [3]. PPARa is principally

expressed in organs with a high capacity for fatty acid oxi-

dation, e.g., heart, skeletal muscle, liver, and kidney [2, 4]. In

a recent study [5], we have reported that, after overnight

fasting, PPARa-null mice were hypoglycemic and their

serum insulin concentration was lower than that of their

counterpart wild type (WT) animals. Besides, PPARa-null

mice exhibited a high adiposity and high lipidemia. The

offspring of PPARa-null mice were larger than their

homologous age-matched WT animals, both at birth and

during their growth [5]. Moreover, the adult offspring of WT

diabetic dams developed hyperglycemia, hyperinsulinemia,

and hyperlipidemia as compared to their corresponding

controls. Although the adult offspring of PPARa-null dia-

betic mice were hyperglycemic and hyperlipidemic, they

were, in contrast, hypoinsulinemic as compared to their

corresponding controls [5]. All these observations prompted

us to conduct the present study, since PPARa has been

reported to play a key role in the regulation of insulin

resistance and inflammation [6].

It has been generally accepted that glucose stimulates

both insulin release, and the transcription of insulin gene

and translation of the nascent mRNA in pancreatic b-cells

[7–9]. Glucose also enhances the stability of insulin mRNA

in rodent b-cells through a mechanism involving the

binding of polypyrimidine tract-binding protein to the 30

untranslated region of the insulin mRNA [10]. Therefore,

we examined the expression of mRNA encoding for insulin

gene in the pancreas and assessed, in the b-cells, the levels

of Glut2 and glucokinase mRNA. For insulin gene tran-

scription, some factors like pancreatic and duodenal

homeobox (Pdx)-1, NK6 transcription factor related-locus-

1 (Nkx6.1) and MafA are required. Pdx-1 transcriptionally

regulates insulin, glucokinase, and islet amyloid polypep-

tide [11, 12]. Nkx6.1 is important for the terminal

differentiation of b-cells [11] and is known to affect glu-

cose-induced insulin secretion [13]. It is noteworthy that

Pdx-1 and MafA can exert their positive actions separately

on the promoter and their effects are additive [14].

Since adipose tissue, which secrets adipokines, plays

crucial role in obesity [15], we determined the mRNA

encoding for leptin and adiponectin in adipose tissues.

Macrophages have been shown to infiltrate adipose tissues

in obesity [16]. We, therefore, detected the expression of

mRNA of CD14, CD68, and F4/80 in the adipose tissues of

these animals. CD14 has been shown to bind to lipopoly-

saccharide (LPS) and to interact with Toll-like receptor

(TLR)-4 [17], and this spurred us to examine the expres-

sion of TLR-2 and TLR-4 mRNA in adipocytes. The

inflammatory agents like MCP-1, IL-6, and TNF-a are also

known to be secreted by adipocytes [18].

PPARa-null mice are known to develop overweight

compared to corresponding WT animals [19]. The status of

the formers seems to be a permanent inflammatory state.

Since PPARa ligands are known to have immunosuppres-

sive and anti-inflammatory effect, it was thought

worthwhile to assess the implication of this receptor in the

regulation of the mRNA expression of these inflammatory

markers (MCP-1, TNF-a, IL-6, CD14, CD68, TLR-2, and

TLR-4) along with that of IL-1b and TCRa, and regulated

on activation of normal T cell expressed and secreted

(RANTES) and its receptor CCR5 in adipose tissues.

Moreover, PPARa is needed to ensure appropriate insulin

secretion by pancreatic b-cells [20]. Hence, we determined

the pancreatic mRNA of the transcription factors in order

to respond the question whether these factors are involved

in the b-cell adaptation in response to deletion of PPARa
gene.

Materials and methods

Animals, blood, liver, pancreas, and adipose tissue

samples

The study was performed on male adult WT and homo-

zygous PPARa-null (PPARa-knockout) mice of C57BL/6J

genetic background ([19], the Jackson Laboratory, Bar

Harbour, ME, USA). Mice were housed in wood chip-

bedded plastic cages at constant temperature (25�C) and

humidity (60 ± 5%) with a 12-h light–dark cycle.

After overnight fasting, 15 male mice at age of

3 months, in each group, were anesthetized with pento-

barbital (60 mg/kg body weight). The abdominal cavity

was opened, and whole blood was drawn from the

abdominal aorta. Serum was obtained by low-speed cen-

trifugation (1,000g9 20 min) and immediately used for

glucose and lipid determinations. Some aliquots were

stored at -80�C for insulin determination. The pancreas,

liver, and epididymal white adipose tissues were removed,

washed with cold saline and immediately frozen in liquid

nitrogen and used for total RNA extraction. The general

guidelines for the care and use of laboratory animals,

recommended by the council of European Economic

Communities, were followed. The experimental protocol

was approved by the Regional Ethical Committee.

Glucose and insulin determination

The determination of insulin was performed in samples that

were stored at -80�C. Serum insulin was determined using
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an ELISA kit (LINCO Research Inc, St. Charles, MO,

USA), according to the manufacturer’s instructions. Serum

glucose was determined by the glucose oxidase method

using a glucose analyser (Beckman Instruments, USA).

Determination of serum and liver lipids

Serum triglyceride (TG) content was measured using

enzymatic methods. After liver lipid extraction according

to the method of Folch et al. [21], liver TG content was

measured by using a commercially available kit (Boeh-

ringer, France). Free fatty acids (FFA) were separated on

silica gel by thin layer chromatography (TLC) using the

following solvent: hexane/diethyl ether/acetic acid/metha-

nol at 90:20:2:3 (v/v/v/v). The purified fractions of FFA

and TG were quantified by gas liquid chromatography [22]

using an internal standard, C17:0 for FFA and TriC15:0 for

TG, with a Becker gas chromatograph (Becker instruments,

Downers Grove, IL).

Real-time RT-PCR quantification assay

Total RNA was prepared from the liver, pancreas, and

adipose tissue using Trizol reagent (Invitrogen Life Tech-

nologies, Groningen, The Netherlands) according to the

manufacturer’s instructions. The integrity of RNA was

electrophoretically checked by ethidium bromide staining

and by the OD absorption ratio OD260 nm/OD280 nm more

than 1.9. One microgram of total RNA was reverse tran-

scribed with Superscript II RNAse H-reverse transcriptase

using oligo (dT) according to the manufacturer’s instruc-

tions (Invitrogen Life Technologies, France).

Real-time PCR was performed on an iCycler iQ real-

time detection system (Bio-Rad, Hercules, CA, USA), and

amplification was done by using SYBR Green I detection

(SYBR Green JumpStart, Taq ReadyMix for Quantitative

PCR, Sigma-Aldrich, St. Louis, MO, USA). Oligonucleo-

tide primers, used for mRNA analysis, were based on the

sequences of mice gene in the GeneBank database. All

mice RT-PCR primer sets used to amplify the genes in

these studies are presented in Table 1. Forward and reverse

primers used to amplify b-actin message in mouse were

50-AGAGGGAAATCGTGCGTGAC-30 and 50-CAATAGT

GATGACCTGGCCGT-30.
Results were evaluated by iCycler iQ software including

standard curves, amplification efficiency (E) and threshold

cycle (Ct). Relative quantitation of mRNA expression of a

large number of signaling factors in different groups was

determined using the DDCt method, in which DDCt = DCt

of gene of interest - DCt of b actin. DCt = Ct of interest

group - Ct of control group. Relative quantity (RQ) was

calculated as follows: RQ = (1 ? E)(-DDCt).

Table 1 Gene regions amplified and their corresponding primer

sequences used for RT-PCR

Genes amplified Primer sequences

Mouse RANTES F: 50-GCAGTCGTGTTTGTCACTCG-30

R: 50-TAGGACTAGAGCAAGCGATGAC-30

Mouse CCR5 F: 50-GCCTAAACCCTGTCATCTATGC-30

R: 50-ATATTTCCCGGCCCTGATAAAAG-30

Mouse MCP-1 F: 50-GAGAGCCAGACGGGAGGAAG-30

R: 50-TGAATGAGTAGCAGCAGGTGAG-30

Mouse CD68 F: 50-TTCAGGGTGGAAGAAAGGTAAAGC-

30

R: 50-CAATGATGAGAGGCAGCAAGAGG-30

Mouse IL-6 F: 50-CCGCTATGAAGTTCCTCTCTGC-30

R: 50-ATCCTCTGTGAAGTCTCCTCTCC-30

Mouse TCRa F: 50-CCTCTACAGCAGCGTTCTCATCC-30

R: 50-GGGTAGGTGGCGTTGGTCTCTTTG-30

Mouse CD14 F: 50-GCGTGTGCTTGGCTTGTTG-30

R: 50-CAGGGCTCCGAATAGAATCCG-30

Mouse F4/80 F: 50-TCCAGCACATCCAGCCAAAGC-30

R: 50-CCTCCACTAGCATCCAGAAGAAGC-

30

Mouse IL-1b F: 50-TGTTCTTTGAAGTTGACGGACCC-30

R: 50-TCATCTCGGAGCCTGTAGTGC-30

Mouse TLR2 F: 50-CTACAGTGAGCAGGATTCC-30

R: 50-CAGCAAAACAAGGATGGC-30

Mouse TLR4 F: 50-GCAGCAGGTGGAATTGTATCG-30

R: 50-GCTTAGCAGCCATGTGTTCC-30

Mouse TNF-a F: 50-CTCTTCTCATTCCTGCTTGTGG-30

R: 50-AATCGGCTGACGGTGTGG-30

Mouse SREBP-1c F: 50-CATCAACAACCAAGACAGTC-3

R: 50-CCAGAGAAGCAGAAGAGAAG-30

Mouse FAT/CD36 F: 50-TGCTCTCCCTTGATTCTGCTGC-30

R: 50-TTTGCTGCTGTTCTTTGCCACG-30

Mouse adiponectin F: 50-GCCGCTTATGTGTATCGCTCAG-30

R: 50-GCCAGTGCTGCCGTCATAATG-30

Mouse leptin F: 50-ACACACGCAGTCGGTATCC-30

R: 50-GAGTAGAGTGAGGCTTCCAGG-30

Mouse PDX-1 F: 50-CTACTGCCTTCGGGCCTTAG-30

R: 50-TTGGAACGCTCAAGTTTGTACC-30

Mouse

glucokinase

F: 50-AGAAGGCTCAGAAGTTGGAGAC-30

R: 50-GGATGGAATACATCTGGTGTTTCG-30

Mouse insulin F: 5-GTGGCTTCTTCTACACACCCAT-30

R: 50-CTCCAGTGCCAAGGTCTGAA-30

Mouse Glut 2 F: 50-TGTGGTGTCGCTGTTTGTTG-30

R: 50-AATGAAGTTTGAGGTCCAGTTGG-30

Mouse C/EPB-b F: 50-AGCTGAGCGACGAGTACAAG-30

R: 50-AGCTGCTCCACCTTCTTCTG-30

Mouse MafA F: 50-ATCACTCTGCCCACCATCAC-30

R: 50-CGCCAACTTCTCGTATTTCTCC-30

Mouse Nkx6-1 F: 50-GGGTCTTCCTCCTCCTCCTC-30

R: 50-GGTCTGGTGTGTTTTCTCTTCC-30
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Statistical analysis

Results are shown as means ± SEM. The significance of

the differences between mean values was determined by

two-way ANOVA (STATISTICA, Version 4.1, Statsoft,

Paris, France), followed by the least significant difference

(LSD) test. Differences were considered significant at

P \ 0.05.

Results

Serum glucose concentration and body weight, and

serum insulin concentrations and pancreatic insulin

mRNA expression

PPARa-null mice were hypoglycemic compared to WT

animals (Fig. 1). PPARa-null mice also gained higher

weight than the WT animals. Insulin concentrations were

decreased in PPARa-null mice as compared to WT

animals. In order to link protein secretion and gene tran-

scription, we determined the expression of insulin mRNA

in these animals. We noticed that PPARa-null mice had

lower expression of insulin mRNA than WT animals

(Fig. 1).

Expression of mRNA of the genes implicated

in the transcriptional regulation in the pancreas

In order to gain insight into functional aspects of b-cells, we

performed quantitative analysis of b-cell transcription fac-

tors. We noticed that the pancreas of PPARa-null mice

expressed lower levels of mRNA of Pdx-1, MafA, and

Nkx6-1 than WT animals (Fig. 2a). However, C/EBP-b
mRNA was slightly expressed in pancreas of WT and

PPARa-null animals without any differences in both the

strains of mice. We have also investigated the expression of

glucokinase (GK) and Glut2 mRNA as they are implicated

in the transcriptional regulation in b-cells by Pdx-1.

The expression of Glut2 and GK mRNA was downregulated
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Fig. 1 Serum glycemia and body weight, and serum insulin concen-

tration and insulin mRNA expression in the pancreas of wild type and

PPARa-null mice. The parameters were determined as described in

Research Methods and procedures section. Values are means ± SEM,

n = 15 per group of animals. Data were analyzed by two-way

ANOVA
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Fig. 2 C/EBP-b, PDX-1, MafA, Nkx6-1, Glut2, and glucokinase

(GK) mRNA expression in the pancreas of wild type and PPARa-null

mice. The expression of mRNA was quantitatively analyzed by

employing real-time RT-PCR as described in Research Methods and

procedures section. Values are means ± SEM, n = 15 per group of

animals. Data were analyzed by two-way ANOVA

104 Mol Cell Biochem (2009) 323:101–111

123



in PPARa-null mice in comparison with WT animals

(Fig. 2b).

Serum and hepatic triglyceride (TG) and free fatty acids

(FFA)

It is commonly known that obesity is associated with high

fat contents in adipose tissue, serum, and liver [5, 19, 23].

Since it has been suggested that free fatty acids may

regulate b-cell functions via PPARa [24], we determined

the levels of triglyceride and free fatty acids in serum and

liver of these animals. Hepatic TG and FFA were higher

in PPARa-null mice as compared to WT animals (Fig. 3).

However, serum FFA levels were not significantly dif-

ferent in WT and PPARa-null mice, though serum TG

levels were lower in the latters as compared to the

formers (Fig. 3).

FAT/CD36 and SREBP-1c mRNA expression

in the liver

Since FAT/CD36 is actively implicated in the uptake of

lipids and hence may contribute to high lipid contents in the

liver, we assessed the mRNA expression of the FAT/CD36.

The hepatic expression of FAT/CD36 was upregulated in

PPARa-null mice as compared to their corresponding

controls (Fig. 4). However, SREBP-1c mRNA expression

was downregulated in PPARa-null mice in comparison with

their corresponding WT animals (Fig. 4).

Adipose tissue weight, adiponectin, and leptin mRNA

expression

PPARa knockout mice are known to rapidly gain weight

and adiposity compared to their age-matched WT ani-

mals [19]. Since obesity has been linked to high

adiposity and hyperlipidemia [5, 19, 23], we assessed in

these mice the adipose tissue quantity and the obesity-

related parameters such as adiponectin and leptin. We

observed that PPARa-null mice had significantly more

adipose tissues than WT mice (Fig. 5). The expression of

adiponectin and leptin mRNA in adipose tissues was also

upregulated in PPARa-null mice as compared to WT

animals (Fig. 5).

Hepatic TG 

0.00

5.00

10.00

15.00

20.00

µg
/g

 ti
ss

ue

0.00

2.00

4.00

6.00

8.00

µg
/g

 ti
ss

ue

Hepatic FFA
p<0.001 p<0.001

WT mice 

PPARα-null mice 

Serum FFA

Serum TG 

0.0

4000

8000

µg
/m

L

µg
/m

L

0.0

200.0

400.0

600.0

p<0.001

NS

Fig. 3 Serum and hepatic triglyceride (TG) and free fatty acids

(FFA) in wild type and PPARa-null mice. The lipid parameters were

determined as described in Research Methods and procedures section.
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Fig. 4 FAT/CD36 and SREPB-1c mRNA expression in liver of wild
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time RT-PCR as described in Research Methods and procedures

section. Values are means ± SEM, n = 15 per group of animals.

Data were analyzed by two-way ANOVA
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CD14, CD68, F4/80, IL-1b, and TCRa mRNA

expression in the adipose tissue

Obesity has been associated with the accumulation mac-

rophages [16] and T cell infiltration [18] in adipose tissue.

We, therefore, determined the presence of macrophage and

T cell markers in the adipose tissue of these animals. The

expression of CD14 and CD68 mRNA in adipose tissues

was upregulated in PPARa-null mice as compared to WT

animals (Fig. 6). On the other hand, the expression of

IL-1b and F4/80 mRNA was decreased in PPARa-null

mice as compared to WT animals (Fig. 6). However,

expression TCRa mRNA was not evident in WT and

PPARa-null mice (Fig. 6).

Expression of mRNA of other pro-inflammatory agents

in adipose tissue

Chronic inflammation has been associated with the devel-

opment of obesity [24]. In order to investigate the effect of

the PPARa gene deletion, we examined the expression of

some key inflammatory markers in adipose tissue of mice

as PPARa-null mice developed high overweight [5, 19].

The expression of MCP-1 and RANTES mRNA was lower

in PPARa-null mice than WT animals (Fig. 7). Interest-

ingly, CCR5 mRNA expression was not apparent in

adipose tissues of both the groups of animals. We did not

observe any significant differences in the expression of

TNF-a and IL-6 mRNA in the liver of these animals

whether they were WT and PPARa-null. However, the

expression of TNF-a and IL-6 mRNA was downregulated

in the adipose tissues of PPARa-null mice as compared to

WT animals (Fig. 8). On the other hand, PPARa-null mice

had higher expression of TLR-2 and TLR-4 mRNA than

WT animals (Fig. 9).
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Discussion

It has been reported that PPARa plays a key role in the

regulation of insulin secretion and inflammation [5, 20].

Hence, in order to shed light on the implication of PPARa
in the modulation of insulin gene transcription and adipo-

cyte inflammation, we conducted the present study on WT

and PPARa-null mice. The first and foremost question is

how PPARa, in fasted conditions, modulates b-cell func-

tions. As reported by other investigators [25], we also

observed, in our study that, under fasting conditions,

PPARa-null mice developed hypoglycemia which might be

related to impaired fatty acid oxidation and increased

reliance on glucose as an energy source [26]. Furthermore,

the PPARa-null mice exhibited low insulin concentrations

and mRNA transcripts as compared to WT mice. These

observations corroborate the study of Bihan et al. [20] who

have reported that PPARa is required to ensure correct

insulin secretory response and for the induction of insulin

mRNA, which is a part of the b-cell responses to

hyperglycemia.

Pancreatic b-cells produce and store insulin in response

to physiological demand; hence, hyperglycemia, within

15 min, results in the activation of a complex network of

intracellular signaling pathways that trigger insulin release

[27]. The positive transcription regulators are Pdx-1 and

MafA, which bind to the insulin promoter to provide a

synergistic effect [28]. Nkx6.1 also affects glucose-induced

insulin secretion [13]. Hypoinsulinemic state in PPARa-

null mice might be due to diminished expression of Pdx-1,

MafA, and Nkx6.1 mRNA in their pancreas. Again, highly

downregulated insulin gene transcription in PPARa-null

mice might be due to lower expression of Pdx-1 mRNA in

these animals than the control mice. Indeed, the deletion of

Pdx-1 gene in the pancreas results in abnormally low

insulin concentrations [29]. In our study, the action of

PPARa deletion on hypoinsulinemia does not seem to be
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mediated by C/EBP-b as the expression of this repressor

was not significantly altered in none of the groups. How-

ever, it is still not clear how PPARa is responsible for the

inhibition of the expression of Pdx-1, MafA, and Nkx6.1

mRNA. Whether this phenomenon is directly controlled by

PPARa or whether the lipotoxicity, caused by PPARa-

deficiency, is responsible for it.

In the present study, the WT and PPARa-null mice are

of C57BL/6J genetic background. The specificity related to

this mouse strain is that, at the same age, the weight gain is

greater in PPARa-null mice than in their counterpart WT

animals [19]. In this study, the PPARa-null mice exhibited

a high adiposity and high lipidemia. In the liver, we

observed that PPARa-null mice abundantly accumulated

not only free fatty acids but also TG. In contrast, these

animals exhibited low levels of serum TG or no difference

in FFA. This inverse correlation between liver and serum

levels of lipids might be due to the fact that PPARa con-

trols positively the mitochondrial b-oxidation of fatty

acids. PPARa deficient mice [19] exhibit a reduced

capacity to metabolize long-chain fatty acids [25] in the

serum, which likely contributes to dyslipidemia [30] and

larger adipose stores observed in these mice with aging

[31]. Campbell et al. [32] have explained this phenomenon

by demonstrating that there is a marked increase in malo-

nyl-CoA, a potent inhibitor of fatty acid oxidation, in the

hearts of PPARa-null mice. Our observations corroborate

the findings of several investigators [33] who have shown

that PPARa-null mice accumulate increased hepatic TG in

response to feeding and during fasting. Djouadi et al. [34]

have reported that PPARa-null mice develop massive

accumulations of myocardial lipids under conditions that

increase fatty acid flux. We would like to recall that

PPARa agonists lower TG levels by increasing lipoprotein

lipase gene expression via a PPAR response element

(PPRE) in the LPL promoter [35] and decreasing apo C-III

levels [36]. Besides, PPARa-null mice, in our study,

exhibit high levels of CD36/FAT which will again partic-

ipate in high uptake of lipids by liver and ultimately

contribute to liver steatosis in these animals. Furthermore,

the mRNA of SREBP-1c was downregulated in PPARa-

null mice. SREBP1c controls the transcription of lipogenic

genes. Hence, a high accumulation of TG and FFA in the

liver, due to high expression of FAT/CD36, might be

related to the PPARa gene deletion in these animals. On

the other hand, insulin is a major regulatory factor which

increases markedly and rapidly SREBP-1c in hepatocytes

[37]. In this study, the low levels of insulin may explain, at

least in part, the downregulation of hepatic SREBP-1c gene

expression in PPARa-null mice [38].

As far as the mechanistic aspect is concerned, it is well-

known that acute elevation of free fatty acids stimulates

insulin release, both under normal and high glucose con-

centrations [39, 40]. However, chronic exposure to fatty

acids inhibits insulin secretion [41]. The mechanism of this

reciprocal effect of fatty acids on insulin release needs to

be elucidated; indeed, the present study showed that

PPARa-null mice accumulated high FFA and TG in their

liver. In fact, it is well-known that the lack of PPARa leads

to lipid accumulation [5, 19]. PPARa-null mice also

showed low insulin contents, at protein and mRNA levels.

Our study revealed a double importance of PPARa which

is not probably, physiologically, independent to each other.

First, the lipid accumulation in PPARa-null mice may be

due to chronic exposure to fatty acids which contribute to

diminished insulin release [24]. Second, PPARa is needed

to ensure insulin secretion in response to glucose exposure

[20]. In summary, PPARa is required to ensure appropriate

insulin secretion through its ability to maintain lipid

homeostasis [20, 24, 41]. Furthermore, PPARa deficiency

leads to low GK mRNA level in PPARa-null mice as

compared to WT animals. Pancreatic b-cell function is

associated to glucokinase (GK) activity [42]. Hence, the

diminished GK mRNA in PPARa-null mice may further

contribute to reduced insulin b-cell function, thereby,

causing reduced insulin secretion [43]. Our results also

suggest that PPARa may be implicated in the control of

Glut2 or GK mRNA expression in the pancreas. Indeed,

PPARa has been considered as one of the transcription

factors involved in the upregulation of Glut2 or GK mRNA

[44]. Yoshikawa et al. [24] have shown that long-term
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cultures of pancreatic cells with palmitate were associated

to reduced expression of PPARa mRNA and, consequently,

to low expression of Glut2, GK, or preproinsulin mRNA

probably through the inhibition of Pdx-1 mRNA. Our

results, on the importance of PPARa in Glut2 or GK

mRNA expression in the pancreas, corroborate the recent

study of Lalloyer et al. [45]. These authors have shown

that, in the context of genetic obesity, PPARa-deficiency in

ob/ob mice affected pancreatic b-cell size and, thereby,

resulted in the decreased insulin secretion in response to

glucose in vitro and in vivo [45].

As far as the adipokines are concerned, we observed a

concomitant increase in adiponectin and leptin mRNA in

PPARa-null mice and this increase might be due to larger

adipose tissues in these animals as compared to WT mice. As

far as inflammation is concerned, high adiponectin may

counterbalance the effects of leptin as the former is anti-

atherogenic and anti-inflammatory whereas the latter is pro-

inflammatory [46]. We clearly demonstrated that PPARa
plays an important role in insulin secretion by pancreatic

b-cells and in inflammation [5, 20]. Moreover, the inflam-

mation has been established as a link between insulin

resistance and obesity, associated with lipid accumulation

[47]. In order to determine inflammation in adipocytes, we

quantified the mRNA of well-known markers of macro-

phages. Surprisingly, we observed that the expression of

mRNA of CD14 and CD68, but not F4/80, was upregulated

in PPARa-null mice. These observations suggested that the

adipocytes of PPARa-null mice seemed to be differentiated

into macrophage-like cells, as they expressed upregulated

mRNA transcripts of CD14 and CD68 antigens, generally

expressed by macrophages. However, there was no periph-

eral macrophages infiltration into adipose tissues, as the

mRNA expression of F4/80, a true macrophage marker, was

downregulated. Our observations are in close agreement

with the results of Khazen et al. [48] who have reported that

murine and human adipose tissues express CD14 and CD68,

but not F4/80, both at protein and mRNA levels. Besides,

Cousin et al. [49] have demonstrated that preadipocytes can

be differentiated into macrophage-like cells which are

stained with MOMA-2, a marker of monocyte-macrophage

lineage, but are negative for F4/80.

MCP-1 has been known to be secreted by adipose tissues

and this factor favors infiltration and the differentiation of the

macrophages [16]. We observed that PPARa-null mice

express lower MCP-1 mRNA than WT animals, suggesting

that the deletion of PPARa gene accounts for the diminution

of the population of macrophages in the adipose tissues.

Consequently, the adipose tissues of PPARa-null mice

express lower IL-1b, IL-6, and TNF-a mRNA than those of

WT animals.

RANTES has been considered as an adipokine and its

receptor CCR5 has been expressed principally on

infiltrated T-cells [18]. In our study, we could not detect

both the T-cells (as evidenced by the absence of TCRa
mRNA) and CCR5 mRNA in adipose tissues of the mice.

However, we observed that RANTES mRNA expression

was diminished in adipose tissues of PPARa-null mice.

Adiponectin has been shown to regulate RANTES

expression [18]. High adiponectin mRNA in adipose tis-

sues of these mice might be responsible for the

downregulation of RANTES mRNA. Our hypothesis can

be supported by the study of Wu et al. [18] who have

shown that RANTES mRNA levels were negatively cor-

related with adiponectin in mouse adipose tissues.

In vitro differentiated adipocytes have been shown to

express TLR-2 and TLR-4 [50]. Since TLRs are the

mediators of the cellular response to bacterial lipopoly-

saccharide (LPS), it possible that during an antigenic

(microbial) challenge, the adipocytes may play a role in

immunomodulation [51]. High expression of TLRs is

associated with increased inflammation. The upregulation

of TLR-2 and -4 mRNA in PPARa-null mice suggests that

PPARa might be implicated in the modulation of endo-

toxemia. As far as the mechanism in the induction of TLR

expression is concerned, we would like to state that leptin

has been recently shown to induce the expression of TLR1-

9 in adipocytes [52]. In our study, high levels of leptin

mRNA in PPARa-null mice might be responsible for the

upregulation of TLR-2 and -4 mRNA.

To sum up, our study demonstrates that PPARa controls

the transcription of insulin gene and modulates inflamma-

tion by downregulating the mRNA expression of certain

pro-inflammatory agents like mRNA of MCP-1, TNF-a,

IL-6 and RANTES though the mRNA of other pro-

inflammatory mediators like TLR-2 and TLR-4 are

upregulated in the absence of PPARa. In the light of our

results in PPARa-null mice, we can state that one should be

careful while interpreting the scientific data on these ani-

mals. However, further studies are required to clarify the

role of PPARa, in detail, in hyperglycemic conditions.
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