
Secretory cargo composition affects polarized secretion in MDCK
epithelial cells

Brigitte H. Fasciotto Æ Ulrike Kühn Æ
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Abstract Polarized epithelial cells secrete proteins at

either the apical or basolateral cell surface. A number of

non-epithelial secretory proteins also exhibit polarized

secretion when they are expressed in polarized epithelial

cells but it is difficult to predict where foreign proteins will

be secreted in epithelial cells. The question is of interest

since secretory epithelia are considered as target tissues for

gene therapy protocols that aim to express therapeutic

secretory proteins. In the parathyroid gland, parathyroid

hormone is processed by furin and co-stored with chro-

mogranin A in secretory granules. To test the secretion of

these proteins in epithelial cells, they were expressed in

MDCK cells. Chromogranin A and a secreted form of furin

were secreted apically while parathyroid hormone was

secreted 60% basolaterally. However, in the presence of

chromogranin A, the secretion of parathyroid hormone was

65% apical, suggesting that chromogranin can act as a

‘‘sorting escort’’ (sorting chaperone) for parathyroid hor-

mone. Conversely, apically secreted furin did not affect the

sorting of parathyroid hormone. The apical secretion of

chromogranin A was dependent on cholesterol, suggesting

that this protein uses an established cellular sorting

mechanism for apical secretion. However, this sorting does

not involve the N-terminal membrane-binding domain of

chromogranin A. These results suggest that foreign secre-

tory proteins can be used as ‘‘sorting escorts’’ to direct

secretory proteins to the apical secretory pathway without

altering the primary structure of the secreted protein. Such

a system may be of use in the targeted expression of

secretory proteins from epithelial cells.
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Abbreviations

CgA Chromogranin A

GH Growth hormone

MDCK Madin–Darby kidney epithelial

PTH Parathyroid hormone

Introduction

Polarized secretion is a hallmark of absorptive and secre-

tory epithelia throughout the body. In some cases,

including the exocrine glands, apical secretion is a major

cellular function while other epithelia primarily secrete

proteins to regulate the cellular environment or for host

defense. Polarized epithelial cells secrete proteins at either

the apical or basolateral cell surface. Multiple cellular
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mechanisms have been implicated in either apical or

basolateral sorting of secretory and membrane proteins

[1, 2]. These include cholesterol rafts, glycosylation, and

the pH of the secretory pathway. Endogenous secretory

proteins are equipped with the sorting signals necessary for

correct targeting to the apical or basolateral cell surface.

However, a number of non-epithelial secretory proteins

also exhibit polarized secretion when they are expressed in

polarized epithelial cells but it is less clear how these

proteins are sorted in epithelial cells. Thus, it is difficult to

predict where foreign proteins will be secreted in epithelial

cells [3]. The question is of interest since secretory epi-

thelia are considered as target tissues for gene therapy

protocols that aim to express therapeutic secretory proteins,

e.g., peptide hormones, either on the mucosal surface

(apical secretion) or in the circulation (basolateral secre-

tion) [4–7]. As an example, hGH expressed in salivary

gland epithelial cells is mainly secreted at the apical sur-

face into the oral cavity [8]. To achieve biological effect of

the transgene, however, the protein must be redirected to

the basolateral pathway for endocrine secretion. In the

salivary gland, this can be achieved by in vivo treatment

with the weak base hydroxychloroquine [9]. A better

understanding of sorting pathways in polarized secretory

cells is needed to fully take advantage of epithelial cells for

these protein delivery protocols.

A number of sorting mechanisms for secretory proteins

have been described in polarized epithelial cells [1]. These

include cellular proteins, including galectins 3 and 4

[10, 11], MAL/VIP17 [12–14], SNAP-23 [15], annexin II

[16], and a-kinase 1 [17]. In addition specific sorting sig-

nals have been identified on individual secretory proteins.

Cholesterol-rich rafts have been implicated in the apical

secretory pathway in polarized epithelial cells [18, 19].

Reduction of cholesterol levels broadly decreases apical

secretion and increases basolateral secretion, suggesting

that cholesterol plays a role in the apical transport pathway

rather than in the function of specific sorting signals [20].

Apical transport of membrane proteins [21] and secretory

proteins, including GP-80 and thyroglobulin [21, 22] can

be mediated by cholesterol-rich rafts. Nevertheless, raft

association is not a universal sorting mechanism since it is

not required for apical secretion of modified GFP [23] or

serpins [24] in Madin–Darby Canine Kidney (MDCK)

cells.

N-glycosylation has been reported to play a role for

apical secretion of several proteins [25]. Upon N-glyco-

sylation, erythropoietin [26], and human growth hormone

(hGH) (engineered to include N-glycosylation sites) are

secreted apically in MDCK cells [27], but glycosylated

hGH is not secreted apically in ECV304 cells [28]. Indeed,

N-glycosylation is not necessary for all apical secretion in

MDCK cells since corticosteroid binding globulin and

osteopontin reach the apical cell surface without N-glyco-

sylation [29, 30]. To determine if cellular N-glycosylation,

as opposed to glycosylation of secretory proteins, could

play a role in apical sorting, we tested the secretion of

chromogranin A, which is not N-glycosylated. Chromogr-

anin A (CgA) is secreted apically in MDCK cells but

redirected to the basolateral cell surface when N-glyco-

sylation is inhibited by tunicamycin [31]. O-glycosylation

can also play a role in polarized secretion since a domain

rich in O-glycosylated Ser and Thr residues is necessary for

the apical transport of both membrane-bound and secretory

forms of p75 neurotrophin receptor [32]. Mucin-like

domains, but not O-glycosylation in general, were suffi-

cient to target secreted green-fluorescent protein to the

apical secretory pathway [23]. However, as is the case for

N-glycosylation, O-glycosylation is not necessary for api-

cal delivery of all proteins [33].

The mechanisms for basolateral sorting of secretory

proteins is less well studied but the pH of secretory

organelles appears to play a role since weak bases inhibit

basolateral secretion and increase apical secretion in

MDCK cells [31, 34]. In this case, modulation of the

luminal milieu could serve to modulate the sorting of

secretory proteins without altering the structure of the

sorted protein. We have recently found that protein sorting

can also be modified by manipulating the relative amounts

of acidic and basic proteins, either by inhibiting the pro-

duction of acidic proteins [35] or by overexpressing

proline-rich proteins (mainly basic) in chronically isopro-

terenol-stimulated rats [36]. These findings indicate that the

composition of cargo proteins in epithelial cells, could

affect the polarity of protein secretion. This is of particular

interest when the sorted protein is to serve a therapeutic

role after secretion. To further determine how polarized

secretion can be modulated without altering the structure or

function of the sorted protein, we considered the role of

secretory cargo composition on polarized secretion in

MDCK cells. The results show that cargo protein compo-

sition is sufficient to modulate the sorting of secretory

proteins in MDCK cells.

Materials and methods

Materials

Antiserum to GP-80 was from Dr. David D. Sabatini and

kindly provided by Dr. Michael J. Rindler, New York Uni-

versity. MDCK cells were from American Type Culture

Collection, Manassas, VA. Fetal bovine serum was obtained

from Hyclone, Logan, UT while DMEM, Lipofectamine,

penicillin/streptomycin and Geneticin were from Life

Technologies, Gaithersburg, MD. The expression vector
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pcDNA3 was purchased from Invitrogen, Carlsbad, CA.

Protease inhibitors and horse-radish peroxidase-conjugated

sheep anti-rabbit IgG were from Roche Molecular Bio-

chemicals, Indianapolis, IN. Chemiluminescent peroxidase

substrate was from Pierce, Rockford, IL.

Plasmids and stable transfection of MDCK cells

Recombinant DNA techniques were carried out according

to standard procedures. A secreted form of mouse furin

(s-furin) was provided to us by Dr. R. Mackin, Creighton

University who truncated the protein at residue 705, thus

eliminating the transmembrane and cytosolic domains. The

furin cDNA was originally from Dr. K. Nakayama, Uni-

versity of Tsukuba, Japan. The cDNAs for bovine

chromogranin A (bCgA) [37] and s-furin were subcloned

into the pcDNA3 expression vector (Invitrogen, Carlsbad,

CA). The cDNA for human prepro-parathyroid hormone

(preproPTH) (a kind gift of Dr. Henry Kronenberg, Har-

vard University) was subcloned into pcDNA3.1/zeo(+).

MDCK cells were transfected with pcDNA3-bCgA,

pcDNA3-s-furin, or with pcDNA3.1-prepro-hPTH using

LipofectAMINE (Invitrogen). Beginning 48 h after trans-

fection, multiclonal stable transfectants containing

pcDNA3 were selected with 800 lg/ml Geneticin (Invit-

rogen) while transfectants containing pcDNA3.1-Zeo were

selected with 200 lg/ml zeocin (Invitrogen). In double

transfection experiments, MDCK/hPTH cells were re-

transfected with pcDNA3-bCgA or with pcDNA3-s-furin

using LipofectAMINE and selection of multiclonal double

stable transfected cells was performed with 800 lg/ml

G418 and 200 lg/ml zeocin.

Construction of CgA mutants

Construction of the pcDNA3-CgAwt and pcDNA3-

CgADcc plasmids was as described [38]. CgA lacking both

the N-terminal hydrophobic peak [39] and containing the

mutation Cys38Ser (CgADNHP) was prepared by PCR based

mutagenesis using separate primers (50-CGTGGTACCTT

TATTCATGGGGCTGTT-30 and 50-TACGGTACCCCCA

TGCCAGTCAGCAAGGAGTCTTTTGAG-30). Primers for

the 30 and 50 un-translated regions were as described [38]. The

PCR products were joined at a newly created Kpn I site and

cloned into pcDNA3. Introduction of the Kpn I site created a

conservative point mutation in the CgA coding sequence,

Ser30Thr. The identities of the CgA mutants were confirmed

by DNA sequencing.

Cell culture and secretion experiments

MDCK cells were cultured and transfected as described

earlier [31]. Transfected cells were selected with Geneticin,

and colonies were isolated and expanded as described [40].

The cell clones used in this study were maintained in com-

plete medium supplemented with 800 lg/ml of Geneticin.

Secretion experiments were performed as described

[31]. Sodium butyrate (5 mM) was used to induce protein

expression from the plasmid CMV promoter [41]. This

treatment did not affect polarized secretion (not shown).

The apical and basolateral secretion media were supple-

mented with protease inhibitors (1 mM PMSF, 5 mM

EDTA) or Complete protease inhibitor cocktail (Roche

Molecular Biologicals, Indianapolis, IN) and analyzed by

SDS-PAGE and immunoblotting as described [31].

For cholesterol depletion [20, 21], the cells were cul-

tured overnight in complete medium supplemented with

4 lM fluvastatin, and 0.25 mM mevalonic acid lactone.

Prior to the secretion experiments, the cells were treated

with 10 mM methyl-ß-cyclodextrin for 60 min in complete

medium. Cyclodextrin was also included in subsequent

wash and secretion buffers.

Floatation gradients

Confluent monolayers of MDCK wt cells were rinsed with

PBS and lyzed for 20 min on ice in 25 mM Tris–HCl, pH

7.5, 150 mM NaCl, 5 mM EDTA, 1% Triton X-100 (2 ml/

10 cm dish). The cells were scraped and homogenized by

passage through a 26G needle fitted on a tuberculin syr-

inge. The homogenate was centrifuged for 10 min at 500g

to remove cellular debris and the supernatants were

adjusted to 40% sucrose. The samples were placed in

centrifuge tubes and overlaid with a 5–30% sucrose step

gradient and centrifuged at 4�C for 22 h at 200,000g

(39,000 rpm, Beckman SW40 rotor). Gradient fractions

(1 ml) were collected from the top and their refractive

index determined and converted to percent sucrose. The

samples were concentrated by trichloro-acetic acid pre-

cipitation and analyzed by immunoblotting [31] using a

monoclonal antibody to caveolin-1 (BD Transduction

Laboratories, Lexington, KY) diluted 1:10,000 in Tris-

buffered saline.

RIA for hPTH

The RIA for hPTH was conducted using the Allegro intact

hPTH kit (Nichols institute, San Juan Capistrano, CA).

Aliquots (200 ll) of secretion media or cell extracts were
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incubated with anti-hPTH(39-84)-coated beads and 125I-

labeled anti-hPTH(1-34) to form a ‘‘sandwich’’ complex.

After washing, the radioactivity bound to the beads was

quantitated in a gamma counter.

Immunoblotting for chromogranin A and furin

Aliquots (500 ll) of secretion media or cell extracts were

trichloro-acetic acid/acetone precipitated as described ear-

lier [38]. The final pellets were dissolved in SDS-sample

buffer and analyzed by SDS-PAGE [42] on 10% gels and

transferred to PVDF membranes [43]. Membranes were

blocked with 2% Tween-20 in Tris-buffered saline and

incubated with either bCgA antiserum (r-Gil #5, generated

in our lab) at a dilution of 1:10,000, or monoclonal antibody

to mouse furin (MON148 [44]) at a dilution of 1:500 in

0.005%Tween in Tris-buffered saline containing 10 mg/ml

BSA. After washing, the blots were incubated with horse-

radish peroxidase conjugated anti-rabbit (CgA) or anti-

mouse (furin) IgG and detected with chemiluminescent

substrate [45].

Statistical analysis

Where appropriate, the data are expressed as mean ±

s.e.m. Control and treated samples were analyzed by Stu-

dent’s t-test and P \ 0.05 was considered statistically

significant.

Results

As a model of polarized secretion of peptide hormone in

epithelial cells, we expressed PTH in MDCK cells. PTH is

normally expressed in parathyroid chief cells where it is

stored in secretory granules and secreted to the circulation

in response to low plasma calcium concentrations [46].

Unlike endocrine or exocrine glands, MDCK cells do not

contain secretory granules and, therefore, allow the anal-

ysis of polarized sorting without any contribution from a

regulated secretory pathway. In MDCK cells, PTH was

secreted predominantly in an endocrine fashion (basolat-

eral secretion) (Fig. 1a) and this polarized secretion of PTH

was consistent over a broad range of PTH expression

(Fig. 1b).

To test if apical secretory proteins could redirect PTH to

a more apical secretion, we co-expressed PTH with two

different apical secretory proteins. We have previously

reported that the endocrine protein CgA is secreted by the

apical pathway in MDCK cells [31]. As a further test

protein, we expressed a secreted form of furin in MDCK

cells. Furin is responsible for proteolytic processing of

proPTH in the parathyroid gland, suggesting that the two

proteins can interact in the secretory pathway. The wild-

type membrane bound form of furin is expressed at both

the apical and basolateral plasma membrane in MDCK

cells, with a preference for the latter [47] consistent with

the presence of a basolateral sorting signal in the mem-

brane domain [48]. Accordingly, when truncated furin,

lacking the transmembrane and cytosolic domains, was

expressed in MDCK cells, the protein was secreted

exclusively from the apical side of the cells (Fig. 2a). To

test if the apical secretion of furin could affect the

polarized secretion of PTH, the peptide hormone was

co-expressed with s-furin. Figure 2b shows that overex-

pression of s-furin did not alter the polarized secretion of

PTH, suggesting that the two proteins are not strongly

associated in the secretory pathway.
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Fig. 1 Expression of hPTH in MDCK cells. (a) Filter-grown MDCK

cells stably expressing hPTH (MDCK/hPTH) or bCgA (MDCK/

bCgA) were analyzed for the distribution of apical secretion (filled

bars), basolateral secretion (open bars) and cell lysate content

(hatched bars) of hPTH. Cells were cultured in the presence of

5 mM Na-Butyrate for 18–20 h prior to secretion experiments. Intact

hPTH in the samples was analyzed by RIA and expressed as pg/ml

(Different from basolateral secretion, *P \ 0.02, n = 3). (b) The %

apical secretion (apical secretion/apical + basolateral secre-

tion) 9 100% was plotted vs. the mean of the total amount of

secreted PTH in each culture well (pg PTH secreted/well). Each data

point represents the mean ± SD of a single experiment, n = 3–6
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PTH is a polyanion binding protein [49] and we have

previously found that CgA, an acidic sulfated glycoprotein,

co-aggregates with PTH under the conditions that exist in

the trans-Golgi network [50]. To test if CgA could affect

PTH secretion, the proteins were co-expressed in MDCK

cells. Figure 3 shows that CgA significantly increased the

apical secretion of PTH from 38% apical in the absence of

CgA to 65% apical in the presence of CgA. The sequence

of transfection was not important since the effect was seen

in two different stable cell lines (see Methods and methods

for details).

It has been reported that entry into the apical secretory

pathway can be saturated in polarized RPE-J cells [51]. To

test if overexpression of CgA affected apical secretion in

general, we analyzed the apical secretion of the endogenous

apical secretory protein GP-80 in the presence or absence of

CgA. In the absence of CgA, secretion of GP-80 was

79 ± 1.0% (mean ± s.e.m. n = 4) apical, consistent with a

previous report [52] compared to 77% apical secretion of

GP-80 in MDCK cells that express CgA [31]. As a further

control, we noted that secretion of the apical marker protein

SEAP [31] was 75–80% apical over an expression-level

range of two orders of magnitude in MDCK cells (not

shown).

It is thought that apical secretory proteins are sorted by

interaction with membrane components of MDCK cells

[2], including cholesterol-rich membrane rafts [20, 21]. To

confirm the presence of cholesterol rafts in our cultured

MDCK cells, a Triton X-100 detergent solubilized cell

homogenate was subjected to density gradient centrifuga-

tion. The gradient fractions exhibited peaks in cholesterol

(not shown) and caveolin 1, a marker for cholesterol rafts

(Fig. 4a) in fractions containing 23–25% sucrose. This is

consistent with the presence of cholesterol rafts in MDCK

cells. To test if cholesterol played a role in CgA sorting,

MDCK cells were treated with fluvastatin, mevalonate, and

methyl-ß-cyclodextrin to reduce cellular cholesterol syn-

thesis and content. The secretion of CgA and the

endogenous apical secretory protein GP-80 were analyzed

by immunoblotting (Fig. 4b). Both proteins were secreted

apically in untreated cells. However, after cholesterol

depletion, GP-80 was secreted randomly at the apical and

basolateral surface (50% each) (Fig. 4c) while CgA was

secreted predominantly (71%) from the basolateral cell

surface (Fig. 4c). Thus, cholesterol is required for apical

sorting of both CgA and GP-80. The difference in GP-80

and CgA secretion in fluvastatin-treated cells suggests that

the proteins are actively secreted rather than passively

diffusing, e.g., by a paracellular pathway.
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Fig. 2 Effect of furin on polarized secretion of hPTH. Filter-grown

MDCK/hPTH or MDCK/hPTH+s-furin cells were analyzed for the

distribution of apical and basolateral secretion of truncated secreted

furin (s-furin) (a) and hPTH (b). (a) Secreted furin was analyzed by

western blotting. Lanes 1 and 3: MDCK/hPTH (negative control);

lanes 2 and 4: MDCK/hPTH+s-furin. Each lane shown is represen-

tative of six samples. The experiment was repeated with similar

results. (b) Intact hPTH in the samples was analyzed by RIA. %

apical secretion = (apical secretion/apical + basolateral secre-

tion) 9 100%. Data are presented as the mean ± s.e.m. (n = 6).

The experiment was repeated with similar results
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Fig. 3 CgA-induced apical delivery of hPTH in MDCK cells. Filter-

grown MDCK/hPTH, MDCK/hPTH+bCgA or MDCK/bCgA+hPTH

cells were analyzed for the distribution of apical and basolateral

secretion of hPTH by RIA. % apical secretion = (apical secretion/

apical + basolateral secretion) 9 100%. The data are presented as the

mean ± s.e.m. (n = 6). *Different from MDCK/hPTH, P \ 0.0001
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The mechanism for cholesterol-dependent apical sorting

of CgA is not known but the N-terminal domain of CgA

has been implicated in membrane-binding of this protein

[53]. This domain consists of an N-terminal hydrophobic

domain [39] that is part of a disulfide bonded loop, which is

necessary for sorting of chromogranins to secretory gran-

ules in PC12 cells [38]. To test if the N-terminal

hydrophobic domain or the N-terminal disulfide loop were

necessary for apical sorting of CgA, the Cys residues

forming the N-terminal disulfide loop and the entire

N-terminal domain (including Cys residues) were deleted

in separate CgA mutants (Fig. 5a). The secretion of wild-

type and mutant forms of CgA was tested in polarized

MDCK cells. Figure 5b shows that both mutants exhibited

apical secretion that was similar to the secretion of wild-

type CgA. This indicates that the N-terminal membrane-

binding domain is not required for apical sorting of CgA.

Discussion

Polarized epithelia are attractive targets for gene therapy

protocols since they are often readily accessible (e.g., in the

lungs and GI tract) and the vector need not be introduced

systemically to achieve expression. However, to achieve

therapeutic effect, the transgene products must be correctly

targeted to either the mucosal surface (apical secretion) or

circulation (basolateral secretion). Indeed, foreign secre-

tory proteins can be sorted in polarized epithelial cells,

although the direction of their secretion is not directly

predictable. As an example, secretion of hGH is apical in

salivary epithelial cells [8], non-polarized in MDCK cells

[54], and basolateral in colon epithelial Caco-2 cells [55].

The endocrine secretory granule protein CgA is sorted to

the apical cell surface in polarized MDCK cells [31] while

PTH, which is co-stored with CgA in secretory granules of

endocrine cells, is mainly secreted at the basolateral cell

Fig. 4 Role of cholesterol in apical secretion of CgA. (a) Identifi-

cation of cholesterol rafts. MDCK cell homogenates were separated

by floatation in a 5–30% sucrose step gradient. Fractions were

collected from the top and analyzed for caveolin-1 contents by

immunoblotting. Fraction numbers and the position of caveolin-1 are

indicated. (b) Cholesterol depletion. Secretion of CgA and GP-80 was

analyzed in untreated and cholesterol-depleted MDCK cells. Apical

(AP) and basolateral (BL) secretion media were analyzed by

immunoblotting. The positions of CgA, proteoglycan CgA and GP-

80 are indicated. (c) Quantitation of the Western blot results by

densitometric scanning. % apical secretion = (apical secretion/api-

cal + basolateral secretion) 9 100%. The data are presented as

mean ± s.e.m., n = 3–8. *Different from untreated control,

P \ 0.01, **Different from untreated control P \ 0.0001

1        10        20         30        40
CgA-WT LPVNSPMNKGD TEVMKCIVEVISDTLSKPSPMPVSKECFE 
CgA-CC LPVNSPMNKGDTEVMK S IVEVISDTLSKPSPMPVSKE S FE 
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A 

B 
 

Fig. 5 Expression of CgA mutants in MDCK cells. (a) N-terminal

Sequences of the CgA mutants (without signal peptides). (b) CgA

mutants were expressed in MDCK cells and the apical (A) and

basolateral (B) secretion media were analyzed by immunoblotting.

Each condition is representative of triplicate samples from a single

experiment
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surface (this report). In each case, the secretory protein

presumably interacts with the cellular sorting machinery

for the apical and basolateral secretory pathway respec-

tively. In this study, we asked if such interactions could be

exploited to redirect protein secretion by co-expressing

different secretory proteins. As a model experimental

system, we co-expressed PTH in MDCK cells with the

apical secretory proteins s-furin and CgA, which have been

implicated in proPTH processing and storage, respectively.

CgA was able to partially redirect PTH to the apical

secretory pathway. Indeed, the 65% apical secretion of

PTH obtained in cells that co-express CgA is close to the

apical secretion of the endogenous secretory protein GP-80

(about 80% apical). If we assume that this represents the

maximum efficiency of apical secretion in MDCK cells,

CgA re-directed PTH with over 80% efficiency. These

results suggest that ‘‘protein escorts’’ (sorting chaperones)

can be used to redirect the secretion of a peptide hormone

in polarized epithelial cells.

Unlike membrane-bound furin, which is transported

with a polarity similar to that of PTH secretion [47],

secreted furin is released at the apical cell surface (Fig. 2a).

The apically secreted furin was unable to redirect PTH,

although PTH is a substrate for furin processing in the

secretory pathway [56]. Since furin converts proPTH to

PTH [56], it is possible that the mature PTH peptide is

released by furin shortly after processing of the precursor.

Although, we found no rate-limiting effects of the level of

protein expression in the apical or basolateral pathways in

MDCK cells, we cannot completely rule out that the

expression level of furin was insufficient to affect PTH

secretion.

In addition to the modulation of PTH secretion by pro-

tein escorts, this report shows that apical secretion of CgA

depends on cellular cholesterol. A similar conclusion has

been reported for the polarized secretion of erythropoietin

in MDCK cells [57] whereas apical secretion of serpins is

independent of raft association [24]. This difference in use

of cellular sorting mechanisms has also been noted for

cellular N-glycosylation, which is necessary for apical

sorting of CgA in MDCK cells [31], but not for sorting of

an unglycosylated form of hepatitis B surface antigen [58].

Together the above results confirm that the secretion of

foreign proteins from MDCK cells can be modulated by

manipulating the cellular milieu without changing the

structure of the secreted protein. This is desirable from an

in vivo application standpoint, since altering the structure

of the secreted protein could also alter its function and/or

stability in vivo. On the other hand, changing the cellular

milieu with inhibitors of cholesterol or oligosaccharide

synthesis, are broad measures that affect many cellular

functions and are not specific for the cells that express the

protein of interest. The use of ‘‘sorting escorts’’ may offer

an alternate approach for the targeted delivery of thera-

peutic secretory proteins from transfected epithelial cells.

Since the protein of interest and the ‘‘sorting escort’’ can be

co-expressed in individual cells, only these cells would be

affected by the changes in protein secretion. Other cells in

the tissue or in other tissues would be unaffected. Together

with our recent reports on aggregation chaperones that can

modulate the storage of secretory proteins in endocrine

cells [59, 60], these results suggest that the protein com-

position in the secretory pathway can be modified to

regulate protein transport.
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