
Molecular mechanisms of resveratrol (3,4,5-trihydroxy-trans-
stilbene) and its interaction with TNF-related apoptosis inducing
ligand (TRAIL) in androgen-insensitive prostate cancer cells

Sharmila Shankar Æ Imtiaz Siddiqui Æ
Rakesh K. Srivastava

Received: 23 March 2007 / Accepted: 3 May 2007 / Published online: 17 July 2007

� Springer Science+Business Media B.V. 2007

Abstract Although resveratrol, an active ingredient de-

rived from grapes and red wine, possesses chemopreven-

tive properties against several cancers, the molecular

mechanisms by which it inhibits cell growth and induces

apoptosis have not been clearly understood. Here, we

examined the molecular mechanisms of resveratrol and its

interactive effects with TRAIL on apoptosis in prostate

cancer PC-3 and DU-145 cells. Resveratrol inhibited cell

viability and colony formation, and induced apoptosis in

prostate cancer cells. Resveratrol downregulated the

expression of Bcl-2, Bcl-XL and survivin and upregulated

the expression of Bax, Bak, PUMA, Noxa, and Bim, and

death receptors (TRAIL-R1/DR4 and TRAIL-R2/DR5).

Treatment of prostate cancer cells with resveratrol resulted

in generation of reactive oxygen species (ROS), translo-

cation of Bax to mitochondria and subsequent drop in

mitochondrial membrane potential, release of mitochon-

drial proteins (cytochrome c, Smac/DIABLO, and AIF) to

cytosol, activation of effector caspase-3 and caspase-9, and

induction of apoptosis. Resveratrol-induced ROS produc-

tion, caspase-3 activity and apoptosis were inhibited by N-

acetylcysteine. Bax was a major proapoptotic gene medi-

ating the effects of resveratrol as Bax siRNA inhibited

resveratrol-induced apoptosis. Resveratrol enhanced the

apoptosis-inducing potential of TRAIL, and these effects

were inhibited by either dominant negative FADD or cas-

pase-8 siRNA. The combination of resveratrol and TRAIL

enhanced the mitochondrial dysfunctions during apoptosis.

These properties of resveratrol strongly suggest that it

could be used either alone or in combination with TRAIL

for the prevention and/or treatment of prostate cancer.
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Introduction

Prostate cancer is the most common malignancy and the

second leading cause of cancer mortality in elderly men

[1]. Prostate cancer is unique among human cancers be-

cause of its striking age-dependent incidence and variable

penetrance. Prostate cancer has a long latency often

requiring more than 10 years to develop into a clinically

significant disease. The development of prostate cancer in

humans has been viewed as a multistage process, involving

the onset as small latent carcinoma of low histological

grade to large metastatic lesion of high grade [2]. Unfor-

tunately, there are limited treatment options available for

this disease and metastatic disease frequently redevelops

even after surgery [3, 4]. Therefore, there is an urgent need

to discover novel and effective chemopreventive and

therapeutic approaches for prostate cancer.

The age-adjusted incidence of prostate cancer has been

increasing by approximately 3% annually worldwide [5].

Many risk factors for human prostate cancer have been

proposed, including genetic predisposition, age, diet, hor-

mones, and environmental factors. However, its etiology is

still largely unknown. The importance of prevention in

reducing the morbidity and mortality from cancer has been

widely recognized. Future clinical chemoprevention stud-

ies should focus on phytochemicals, cancer preventive

compounds in fruits, vegetables, and other plants. Many

phytochemicals are excellent potential chemopreventive
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agents, because, in addition to their cancer preventive

effects, they are relatively non-toxic and inexpensive, they

can be taken orally and some of them have other health

benefits as well. There is also a great need to investigate

potential benefits and risks of administering phytochemi-

cals before, during or after conventional therapies, such as

surgery, chemotherapy, radiation, or hormonal therapy. In

addition, administration of chemopreventive agents prior to

surgery provides an opportunity to investigate the modu-

lation of genetic and epigenetic pathways by putative

cancer preventive compounds and nutrients.

The polyphenolic compound resveratrol is a naturally

occurring phytochemical and can be found in many plant

species, including grapes, peanuts, and various herbs.

Resveratrol has been shown to have anti-inflammatory,

antioxidant, antitumor, neuroprotective, and immunomod-

ulatory activities [6–8]. It also has activity in the regulation

of multiple cellular events associated with carcinogenesis.

Furthermore, it has been examined in several model sys-

tems for its potential effect against cancer [9, 10]. Its

anticancer effects include its ability to inhibit cell prolif-

eration and angiogenesis, and induce apoptosis in pre-

clinical studies [11, 12]. In addition, resveratrol enhances

the therapeutic potential of anticancer drugs and sensitizes

cancer cells to chemotherapy and radiotherapy [13–16].

These studies with resveratrol provide strong support for

the use of resveratrol in human cancer chemoprevention

and combination with chemotherapeutic drugs or cytotoxic

factors in the treatment of drug refractory tumor cells.

TRAIL, a type II membrane protein belonging to the

TNF cytokine family, induces apoptosis in a wide variety of

transformed cells [17, 18]. TRAIL binds to several distinct

receptors: (a) TRAIL-R1 (DR4) [19]; (b) TRAIL-R2 (DR5)

[20]; (c) TRAIL-R3 (DcR1) [21]; and (d) TRAIL-R4

(DcR2) [22]. Both DR4 and DR5 contain the intracellular

death domain (DD) essential for the induction of apoptosis

following receptor ligation [23]. In contrast, neither DcR1

nor DcR2 mediates apoptosis due to a complete or partial

lack of the intracellular DD, respectively [24, 25]. TRAIL

receptors are expressed ubiquitously in cancer cells. The

binding of TRAIL to DR4 and DR5 leads to the activation

of caspase-8 or caspase-10 [26], that in turn activates

downstream effector caspases such as caspase-3, and cas-

pase-7 [18]. Activation of caspase-8 or caspase-10 by

TRAIL also cleaves BID (a Bcl-2 inhibitory protein) [27].

Truncated BID (tBID) triggers mitochondrial depolariza-

tion (decrease in DWm) and causes subsequent release of

mitochondrial proteins (cytochrome c, Omi/HtrA2, AIF,

and Smac/DIABLO) to cytosol [18, 28]. Bcl-2 and Bcl-XL

preserve mitochondrial transmembrane potential and blocks

the release of mitochondrial proteins [29, 30]. Once cyto-

chrome c is released into the cytosol, it binds to Apaf-1

(apoptotic protease-activating factor 1) and, in the presence

of dATP, recruits and activates procaspase-9 to form the

apoptosome [31]. Activated caspases cleave several

downstream death substrates and activate endonucleases

resulting in apoptosis [31].

The objectives of our study were to examine the

molecular mechanisms by which resveratrol enhances the

therapeutic potential of TRAIL in androgen-insensitive

prostate cancer cells. In the current study, we showed that

resveratrol induced apoptosis, and inhibited cell-viability

and colony formation, and these effects were further en-

hanced in the presence of TRAIL. Resveratrol induced

apoptosis through regulation of Bcl-2 family members,

induction of death receptors TRAIL-R1/DR4 and TRAIL-

R2/DR5, translocation of Bax to mitochondria, and release

of mitochondrial proteins to cytosol, inhibition of survivin,

and activation of caspase(s). In conclusion, our data sug-

gest that resveratrol can be used either alone or in combi-

nation with TRAIL for the treatment and/or prevention of

prostate cancer.

Materials and methods

Reagents

Antibodies against Bcl-2, Bcl-XL, Bax, Bak, PUMA, Noxa,

Bim, Bid, AIF, tubulin, survivin, XIAP, cIAP1, cIAP2, and

b-actin were purchased from Santa Cruz Biotechnology

Inc. (Santa Cruz, CA). Anti-cytochrome c, and anti-Smac/

DIABLO antibodies were purchased from BD Biosciences/

Pharmingen (San Diego, CA). N-acetylcysteine (NAC), JC-

1, and 5-(and-6)-chloromethyl-2¢,7¢-dichlorodihydrofluo-

rescein diacetate, acetyl ester (CM-H2DCFDA) were pur-

chased from Invitrogen/Molecular Probes, Inc. (Eugene,

OR). Caspase-8 siRNA, Bax siRNA, and control plasmids

were purchased from BioVision, Inc. (Mountain View,

CA). Terminal Deoxynucleotidyl Transferase Biotin-dUTP

Nick End Labeling (TUNEL) assay kit, and caspase-3 and

caspase-8 activity kits were purchased from EMD Bio-

sciences/Calbiochem (San Diego, CA). Resveratrol was

purchased from LKT Laboratories, Inc. (St. Paul, MN).

Enhanced chemiluminescence (ECL) Western blot detec-

tion reagents were purchased from Amersham Life Sci-

ences Inc (Arlington Heights, IL). TRAIL was purified as

described elsewhere [32].

Cell culture

DU145, and PC3 cells were obtained from the American

Type Culture Collection (Manassas, VA) and cultured in

RPMI 1640 supplemented with 10% fetal bovine serum

(FBS) and 1% antibiotic–antimycotic (Invitrogen) at 37�C

in a humidified atmosphere of 95% air and 5% CO2.
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XTT assay

Cells (1 · 104 in 200 ll culture medium per well) were

seeded in 96-well plate (flat bottom), treated with or

without drugs and incubated for various time points at

37�C and 5% CO2. Before the end of the experiment, 50 ll

XTT labeling mixture (final concentration, 125 lM XTT

(sodium 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tet-

razolium-5-carboxanilide inner salt) and 25 lM PMS

(phenazine methosulfate) per well was added and plates

were incubated for further 4 h at 37�C and 5% CO2. The

spectrophotometric absorbance of the sample was mea-

sured using a microtitre plate reader. The wavelength to

measure absorbance of the formazon product was 450 nm,

and the reference wavelength was 650 nm.

Soft agar assay

Cells (2 · 104 cells/well) were seeded in 12-well culture

dishes in RPMI/0.35% bacto-agar over a bottom layer of

RPMI/0.6% bacto-agar. Cells were then fed with growth

media (100-200 ll/well) once a week until colonies grew

to a suitable size for observation (about 3 weeks). Number

of colonies were counted after they were stained with 3-

(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-

mide (1 mg/ml, 100 ll/well) overnight for better visuali-

zation.

Transient transfection

Cells were plated in 60-mm dishes in RPMI 1640 con-

taining 10% FBS and 1% penicillin-streptomycin mixture

at a density of 1 · 106 cells/dish. The next day transfection

mixtures were prepared. Cells were transfected with

expression constructs encoding dominant negative FADD

(DN-FADD) or empty vector in the presence of an

expression vector pCMV-LacZ (Invitrogen life technolo-

gies) expressing b-galactosidase. For each transfection, 2

lg of DNA was diluted into 50 ll of medium without

serum. After the addition of 3 ll of LipofectAMINE (In-

vitrogen life technologies) into 50 ll Opti-MEM medium,

the transfection mixture was incubated for 10 min at room

temperature. Cells were washed with serum-free medium,

the transfection mixture was added, and cultures were

incubated for 24 hrs in the incubator. The next day, culture

medium was replaced with fresh RPMI 1640 containing

10% FBS and 1% penicillin–streptomycin mixture. Cells

were treated with or without resveratrol. At the end of

incubation, cells were harvested to measure protein

expression by western blot analysis or apoptosis by DAPI

staining.

For siRNA experiment, PC-3 cells were transiently

transfected with plasmids expressing caspase-8 siRNA

(pGB-Caspase-8), Bax siRNA (pGB-Bax siRNA), or con-

trol siRNA (pGB-control) in the presence of pCMV-LacZ

(Invitrogen life technologies) vector expressing b-galacto-

sidase to control transfection efficiency. Cells were treated

as described above.

Measurement of apoptosis

Apoptosis was measured by the terminal deoxynucleotidyl

transferase-mediated nick end-labeling method (TUNEL).

Stained cells were mounted and analyzed under a fluores-

cence Olympus microscope (Olympus America Inc, Mel-

ville, NY). Pictures were captured using a Photometrics

Coolsnap CF color camera (Olympus) and SPOT software

(Diagnostic Instruments Inc., Sterling Heights, MI). In

some cases, the data were confirmed by staining cells with

DAPI as previously described.

Caspase-3 assay

Cells (3 · 104 per well) were seeded in a 96-well plate

with 200-ll culture medium. Approximately 16 h later,

cells were treated with various doses of resveratrol to in-

duce apoptosis. Casapse-3 activity was measured as per

manufacturer’s instructions (EMD Biosciences) with a

fluorometer.

Cellular fractionation

Purified mitochondrial preparations were prepared as we

described elsewhere [28].

Western blot analysis

Cell pellets were lysed in RIPA buffer containing 1· pro-

tease inhibitor cocktail, and protein concentrations were

determined using the Bradford assay (Bio-Rad, Philadel-

phia, PA). Cell lysates were electrophoresed in 12.5% SDS

polyacrylamide gels and then transferred onto nitrocellulose

membranes. After blotting in 5% nonfat dry milk in TBS,

the membranes were incubated with primary antibodies at

1:1,000 dilution in TBS-Tween 20 overnight at 4�C, and

then secondary antibodies conjugated with horseradish

peroxidase at 1:5,000 dilution in TBS-Tween 20 for 1 h at

room temperature. Protein bands were visualized on X-ray

film using an enhanced chemiluminescence system.

Reverse transcription reaction, cDNA synthesis, and

PCR

The RT-PCR assay was performed as per the manufac-

turer’s instructions (Access RT-PCR System, Promega,

Madison, WI). The primer sequences are as follows: Bak
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forward, 5¢-AGAGCTGTCTGAACTCACGT-3¢, reverse,

5¢-TTACACTGTGCCAGAGCCAT-3¢; Bax forward 5¢-
AAGAAGCTGAGCGAGTGT-3¢, reverse 5¢-GGAGGAA

GTCCAATGTC-3¢; Bim forward, 5¢-0C ATGAGAAGATC

CTCCCTGCT-3¢; reverse 5¢-AATGCATTCTCCACACC

AGG-3¢; Puma forward, 5¢-CAGACTGTGAATCCTGTG

CT-3¢, reverse 5¢-ACAGTATCTTACAGGCTGGG-3¢;
Bcl-2 forward, 5¢-GTGGAGGAGCTCTTCAGGGA-3¢,
reverse 5¢-AGGCACCCAGGGTGATGCAA-3¢; Bcl-XL

forward 5¢-GCTGGAGTCAGTTTAGTGATGTGGAA-3¢,
reverse 5¢-GTGGAGCTGGGATGTCAGGTC-3¢; and

GAPDH forward 5¢-TCTGCCCCCTC TGCTGATGC-3¢,
reverse 5¢-CCACCACCCTGTTGCTGTAG-3¢. The PCR

was performed for 35 cycles consisting of the following

steps: denaturation at 94�C for 1 min; annealing at 66�C

for 1 min; and extension at 72�C for 2 min. Both gel

analysis and a second PCR reaction amplifying the glyc-

eraldehyde-3-phosphate dehydrogenase housekeeping gene

were used to assess mRNA integrity. Internal negative

control reactions for the RT-PCR were performed using all

of the reagents as for the experimental samples, but with

lymphoblast RNA in each of the assays. None of the assays

exhibited a signal from the internal negative control.

Measurement of mitochondrial membrane potential

(DWm)

Mitochondrial energization was determined by retention of

JC-1 dye (Molecular Probes Inc., Eugene) as we described

earlier [28, 33]. Briefly, drug treated cells (5 · 105) were

loaded with JC-1 dye (1 lg/ml) during the last 30 min of

incubation at 37�C in a 5% CO2 incubator. Cells were

washed in PBS twice. Fluorescence was monitored in a

fluorometer using 570-nm excitation/595-nm emission for

the J-aggregate of JC1. DWm was calculated as a ratio of

the fluorescence of J-aggregate (aqueous phase) and

monomer (membrane-bound) forms of JC1.

Determination of reactive oxygen species (ROS)

PC-3 cells were seeded in 96-well plates. After 16 h, cells

were loaded with 5 lM CM-H2DCFDA dye for 30 min,

and treated with either resveratrol (10 or 20 lM) or 0.05%

DMSO for 0–360 min. Fluorescence was measured at

excitation wavelength of 488 nm and emission wavelength

of 515 nm using a fluorescence plate reader.

Immunocytochemistry

Cells were grown on fibronectin-coated coverslips (Beck-

ton Dickinson, Bedford, MA), washed in PBS, and fixed

for 15 min in 4% paraformaldehyde. Fibronectin-coated

coverslips allow cells to adhere properly and reduce the

chance detachment during staining. Cells were permeabi-

lized in 0.1% Triton X-100, washed and blocked in 10%

normal goat serum. Cells were incubated with anti-Bax

antibody (1:200) for 18 h at 4�C. Cells were then washed

and incubated with fluorescently labeled secondary anti-

bodies (1:200) along with DAPI (1 lg/ml) for 1 h at room

temperature. Cells were washed and coverslips were

mounted using Vectashield (Vector Laboratories, Bur-

lington, CA). Isotype-specific negative controls were in-

cluded with each staining. Stained cells were mounted and

visualized under a fluorescence Olympus microscope

(Olympus America Inc.). Pictures were captured using a

Photometrics Coolsnap CF color camera (Olympus) and

SPOT software (Diagnostic Instruments Inc.).

Statistical analysis

All data were presented as mean ± SD from at least three

sets of independent experiments. ANOVA analysis with

Tukey’s multiple comparisons was used to determine the

significance of statistical differences between data at the

level of P < 0.05 using SPSS computer statistics software

(SPSS, Inc., Chicago, IL).

Results

Interactive effects of resveratrol and TRAIL on cell

viability and colony formation of prostate cancer cells

We have previously shown that TRAIL induces apoptosis

in human prostate cancer cells with varying sensitivity

[34], and chemotherapeutic drugs and histone deacetylase

inhibitors enhanced the apoptosis-inducing potential of

TRAIL [33, 35]. Here, we first measured the effects of

resveratrol and/or TRAIL on cell viability in androgen-

insensitive prostate cancer PC-3 (p53 null), and DU-145

(mutant p53) cells (Fig. 1). Resveratrol (0–30 lM) inhib-

ited cell viability of PC-3 and DU-145 in a dose-dependent

manner (Fig. 1A–B). TRAIL significantly inhibited cell

viability in PC-3 cells and was moderately effective in DU-

145 cells. Resveratrol enhanced the inhibitory effects of

TRAIL on cell viability in PC-3 and DU-145 cells. These

data suggest that resveratrol can enhance the biological

effect of TRAIL in androgen-insensitive prostate cancer

cells.

Since anchorage independent growth is one of the fea-

tures of tumor formation, we sought to measure the effects

of resveratrol and TRAIL on colony formation in soft agar

(Fig. 1C). Resveratrol and TRAIL alone inhibited colony

growth of PC-3 cells in a dose-dependent manner. Fur-

thermore, resveratrol enhanced the inhibitory effects of
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TRAIL on PC-3 cell colony formation. We next measured

the interactive effects of resveratrol and TRAIL on apop-

tosis in PC-3 cells (Fig. 1D). Resveratrol and TRAIL alone

induced apoptosis in PC-3 cells. Interestingly, resveratrol

enhanced the apoptosis-inducing potential of TRAIL.

These data demonstrate that resveratrol inhibits anchorage-

dependent and -independent growth of prostate cancer

cells, and enhances the therapeutic potential of TRAIL.

We next sought to examine whether pretreatment of PC-

3 and DU-145 cells with resveratrol followed by TRAIL

induced more apoptosis than the concurrent treatment or

TRAIL followed by resveratrol (Fig. 2). The pretreatment

of cells with resveratrol may increase the apoptotic effects

of TRAIL by up-regulating death receptors. PC-3 and DU-

145 cells were pre-treated with resveratrol for 24 h, fol-

lowed by TRAIL for another 24 h, and vice versa. Inter-

estingly, the pretreatment of cells with resveratrol followed

by TRAIL induced significantly more apoptosis than con-

current treatment or single agent alone. In order to under-

stand the mechanism behind this interaction, reverse

sequence of drug exposure was used in which cells were

pre-treated with TRAIL for 24 h followed by treatment

with resveratrol for additional 24 h. Reverse sequence of

treatment, TRAIL followed by resveratrol, has resulted

significantly less apoptosis than the sequential treatment of

cells with resveratrol followed by TRAIL. However, there

was no difference between concurrent treatment and

TRAIL followed by resveratrol. These data suggest that

sequential treatment with resveratrol followed by TRAIL

can be used to enhance the apoptosis-inducing potential of

TRAIL in prostate cancer cells.

Upregulation of TRAIL-R1/DR4 and TRAIL-R2/DR5

by resveratrol

TRAIL binds to TRAIL-R1/DR4 and TRAIL-R2/DR5

[26]. Since resveratrol enhances the apoptosis-inducing

potential of TRAIL, we sought to examine the effects of

resveratrol on cell-surface expression of death receptors by

flow cytometry. Resveratrol induced expression of death

receptors TRAIL-R1/DR4 and TRAIL-R2/DR5 in PC-3

cells (Fig. 3). By comparison, resveratrol had no effects on

the expression of decoy receptors TRAIL-R3/DcR1 and

TRAIL-R4/DcR2. These data suggest that upregulation of

death receptors may be one of the mechanisms by which

resveratrol enhances the apoptosis-inducing potential of

TRAIL.

The involvement of caspases and FADD in synergistic

interactions between resveratrol and TRAIL

Caspases mediate both apoptosis and inflammation through

aspartate-specific cleavage of a wide number of cellular

substrates [36]. We therefore examined the activation of

caspase-3 and caspase-8 by fluorogenic assay in PC-3 cells

(Fig. 4A–B). Resveratrol induced caspase-3 activity in

0

02

04

06

08

001

021 lortnoC
uM5seR
01seR
51seR
02seR
52seR
03seR

0

02

04

06

08

001

021 lortnoC
5seR

01seR
51seR
02seR
52seR
03seR

C
el

l V
ia

bi
lit

y 
(%

)
C

el
l V

ia
bi

lit
y 

(%
)

Mn52LIART+-

Mn05LIART+-

A

B

3-CP

541-UD

*
*

*

*

0

02

04

06

08

001

TRAILControl

Control

Resveratrol 30 uM
Resveratrol 20 uM
Resveratrol 10 uM
Resveratrol 5 uM

N
o 

of
 C

ol
on

ie
s *

*

3-CP

0

02

04

06

08

100

TRAILMn520

lortnoC

Mu5seR

Mu01seR

Mu02seR

Mu03seR

%
 A

po
pt

os
is

3-CP

*
*

C

D

uM
uM
uM
uM
uM

uM
uM
uM
uM
uM
uM

Fig. 1 Interactive effects of resveratrol and TRAIL on cell viability,

colony formation, and apoptosis in prostate cancer cells. (A)

Interactive effects of resveratrol and TRAIL on cell viability. PC-3

cells were treated with various doses of resveratrol (0–30 lM) in the

presence or absence of TRAIL (25 nM) for 48 h. Cell viability was

measured by XTT. Data represent mean ± SE. *Significantly

different from respective control, P < 0.05. (B) Interactive effects

of resveratrol and TRAIL on cell viability in DU-145 cells. Cells were

treated with various doses of resveratrol (0–30 lM) in the presence or

absence of TRAIL (50 nM) for 48 h. Data represent mean ± SE.

*Significantly different from respective control, P < 0.05. (C)

Interactive effects of resveratrol and TRAIL on colony formation.

PC-3 cells were treated with various doses of resveratrol (0–30 lM)

in the presence or absence of TRAIL (25 nM). After 3 weeks, no of

colonies were stained and counted. (D) Interactive effects of

resveratrol and TRAIL on apoptosis. PC-3 cells were treated with

various doses of resveratrol (0–30 lM) in the presence or absence of

TRAIL (25 nM) for 48 h. Apoptosis was measured by DAPI staining
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PC-3 cells in a dose-dependent manner. Resveratrol

slightly activated caspase-8. By comparison, TRAIL in-

duced caspase-8 activity in PC-3 cells. Interestingly, the

combination of resveratrol and TRAIL further enhanced

caspase-8 activity.

Poly-ADP Ribose Polymerase (PARP), a major sub-

strate, is cleaved by caspase(s) during apoptosis [33, 37–

39]. The cleavage of procaspases is an indication of their

activation. We therefore examined the cleavage of caspase-

8, caspase-3, caspase-9, and PARP in PC-3 cells by the

Western blot analysis (Fig. 4C). Casapse-8 and caspase-9

antibodies recognize the whole molecule (procaspases),

whereas casaspe-3 and PARP antibodies recognize their

cleavage products. Treatment of PC-3 cells with resveratrol

resulted in cleavage of caspase-3, caspase-9, and PARP. By

comparison, TRAIL caused cleavage of caspase-8, caspae-

3, caspase-9, and PARP. The combination of resveratrol

and TRAIL further enhanced the cleavage of caspase-8,

caspase-3, caspase-9, and PARP. The data suggest that

resveratrol activates effector caspases, whereas TRAIL

activates initiator as well as effector caspases to induce

apoptosis.

Since resveratrol enhanced the apoptosis-inducing po-

tential of TRAIL, we next sought to examine the

involvement of death receptor pathway in this synergistic

interaction. Here, we have taken two approaches. In the

first approach we have used dominant negative FADD

(DN-FADD), whereas in second approach we have used

caspase-8 siRNA to inhibit death receptor pathway. These

proteins are essential for the formation of active TRAIL-

DISC. PC-3 cells were transfected with plasmid expressing

DN-FADD, caspase-8 siRNA or respective controls

(Fig. 4D). Data revealed that DN-FADD and caspase-8

siRNA inhibited the expression of FADD and caspase-8,

respectively. Resveratrol and TRAIL alone induced apop-

tosis, and the combination of these agents induced apop-

tosis in a synergistic manner. Overexpression of DN-

FADD inhibited TRAIL-induced apoptosis and abolished

the synergistic interaction between resveratrol and TRAIL
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Fig. 2 Effects of different treatment combinations of resveratrol and

TRAIL on apoptosis. (A) PC-3 cells were treated with resveratrol

(15 lM) in the presence or absence of TRAIL (25 nM). TRAIL was

added simultaneously with resveratrol (cotreatment), before or after

24 h of resveratrol treatment. Apoptosis was measured by DAPI

staining. Data represent mean ± SE. *Significantly different from

respective control, P < 0.05. (B) DU-145 cells were treated with

resveratrol (15 lM) in the presence or absence of TRAIL (50 nM).

TRAIL was added simultaneously with resveratrol (cotreatment),

before or after 24 h of resveratrol treatment. Apoptosis was measured

by DAPI staining. Data represent mean ± SE. *Significantly different

from respective control, P < 0.05

Fig. 3 Effects of resveratrol on

the expression of death

receptors. PC-3 cells were

treated with resveratrol (0, 10,

or 20 lM) for 48 h and

expressions of death receptors

DcR1, DcR2, DR4, and DR5

were measured by flow

cytometry
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(Fig. 4D). Similarly, caspase-8 siRNA inhibited the syn-

ergistic interaction between resveratrol and TRAIL

(Fig. 4D). These data suggest that death receptor pathway

is involved in synergistic interaction between resveratrol

and TRAIL.

Effects of resveratrol on mitochondrial membrane

potential, release of mitochondrial proteins, and

expression of IAPs

The intrinsic pathway is engazed by the trascriptional or

post-traslational regulation of Bcl-2 proteins that directly

impact on mitochondrial outer-membrane permeabilization

(MOMP) [40]. Upon induction of MOMP, mitochondrial

proteins such as cytochrome c, Smac/DIABLO, and AIF

are released to cytosol [41]. Cytochrome c causes APAF-1

oligomerization resulting in apoptosome formation. This

complex, in turn, recruits and activates procaspase-9,

which then activates executioner caspase-3 and caspase-7.

We therefore measure the mitochondrial membrane po-

tential, and release of cytochrome c, AIF and Smac/DIA-

BLO from mitochondria to cytosol. Treatment of prostate

cancer PC-3 cells with resveratrol resulted in dropping of

mitochondrial membrane potential (Dwm) in a time-

dependent manner (Fig. 5A).

We next examined whether the combination of resve-

ratrol and TRAIL had additive effects on mitochondrial

events such as drop in mitochondrial membrane potential

(Fig. 5B). Similar to resveratrol, treatment of PC-3 cells

with TRAIL caused a drop in Dwm at 8 and 16 h. The
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Fig. 4 Interactive effects of resveratrol and TRAIL on caspase

activity and PARP cleavage. (A) Interactive effects of resveratrol and

TRAIL on caspase-3 activity. PC-3 cells were treated with resveratrol

(0–30 lM) in the presence or absence of TRAIL (25 nM) for 24 h. At

the end of incubation period, caspase-3 activity was measured by

flurometric assay. (B) Interactive effects of resveratrol and TRAIL on

caspase-8 activity. PC-3 cells were treated with resveratrol (0–

30 lM) in the presence or absence of TRAIL (25 nM) for 24 h. At the

end of incubation period, caspase-8 activity was measured by

flurometric assay. (C) Interactive effects of resveratrol and TRAIL

on cleavage of caspase-8, caspase-3, caspase-9, and PARP. PC-3 cells

were treated with resveratrol (0, 10, or 20 lM) in the presence or

absence of TRAIL (25 nM) for 24 h. At the end of incubation period,

cells were harvested. Crude proteins were run on SDS-PAGE, and

immunoblotted with anti-caspase-8, anti-caspase-3, anti-caspase-9,

and anti-PARP antibodies. b-actin was used as a loading control. (D)

Effects of dominant negative FADD or caspase-8 siRNA on

resveratrol and/or TRAIL-induced apoptosis. PC-3 cells were

transiently transfected with either control plasmid or plasmid

expressing dominant negative FADD (DN-FADD) or caspase-8

siRNA along with plasmid (pCMV-LacZ) encoding the b-galactosi-

dase (b-Gal) enzyme. There was no difference in transfection

efficiency among groups. Cell lysates were run on SDS-PAGE to

measure the expression of FADD and caspase-8 by Western blot

analysis. Transfected cells were treated with resveratrol (0, 10, or

20 lM) in the presence or absence of TRAIL (25 nM) for 48 h.

Apoptosis was measured by DAPI staining. Data represent

mean ± SE. *Significantly different from respective control; # and

$ = treatment groups were significantly different, P < 0.05
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combination of resveratrol and TRAIL was more effective

in dropping Dwm than single agent alone.

We next examined the effects of resveratrol on the release

of cytochrome c, AIF and Smac/DIABLO from mitochondria

to cytosol (Fig. 5C). PC-3 cells were treated with resveratrol

and cytoplasmic fractions were run on SDS-PAGE. Treat-

ment of cells with resveratrol caused the release of cyto-

chrome c, AIF, and Smac/DIABLO from mitochondria to

cytosol. These data strongly suggest that resveratrol induces

apoptosis through mitochondrial pathway.

Mammalian cells express mainly four inhibitors of

apoptosis proteins (IAPs) which bind to caspases and in-

hibit their activity [42, 43]. We therefore sought to measure

the expression of human IAPs (XIAP, survivin, cIAP1, and

cIAP2) (Fig. 5D). Resveratrol inhibited the expression of

survivin and had no effect on XIAP, cIAP1, and cIAP2

expression. These data suggest that survivin may be a

critical regulator of cells death as it is highly expressed in

prostate cancer cells.

Resveratrol regulates Bcl-2 family members and

translocates Bax to mitochondria

The Bcl-2 family of proteins plays a key role in regulating

apoptosis mainly at the level of mitochondria, and thus

controlling the release of mitochondrial proteins, and cas-

pase activation [28, 44]. We therefore sought to examine

the effects of resveratrol on Bcl-2 family members by the

Western blot analysis and RT-PCR (Fig. 6A and B). Res-

veratrol induced the expression of proapoptotic proteins

Noxa, Bim, Bak, and Bax, and inhibited antiapoptotic

proteins Bcl-2 and Bcl-XL (Fig. 6A). Resveratrol also in-

duced Bid cleavage. Similarly, resveratrol inhibited gene

expression of Bcl-2 and Bcl-XL and induced Bax, Bak,

Bim, and PUMA, as measured by RT-PCR (Fig. 6B).

These data suggest that resveratrol regulates both pro- and

anti-apoptotic members of Bcl-2 family, and may link

death receptor pathway through cleavage and activation of

Bid.

We and others have previously shown that Bax trans-

location from cytosol to mitochondria is essential for Bax

and Bak oligomerization, and the release of mitochondrial

proteins such as cytochrome c and Smac/DIABLO [28, 45].

We therefore examined whether resveratrol induces trans-

location of Bax to mitochondria by immunohistochemistry

(Fig. 6C). In control cells, Bax was not co-localized to

mitochondria, as it was clear from the appearance of dis-

tinct red (mitochondria) and green (Bax) color. Treatment

of PC-3 cells with resveratrol resulted in translocation of

Bax to mitochondria (appearance of yellow mitochondria),
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Fig. 5 Effects of resveratrol on mitochondrial membrane potential

and release of mitochondrial proteins to cytosol. (A) Resveratrol

induces drop in mitochondrial membrane potential (Dwm). PC-3 cells

were treated with resveratrol (20 lM) for 0–24 h. Cells were stained

with JC1 dye, and Dwm was measured by a fluorometer as per

manufacturer’s instructions. (B) Interactive effects of resveratrol and

TRAIL on mitochondrial membrane potential (Dwm). PC-3 cells were

treated with resveratrol (20 lM) in the presence or absence of TRAIL

(25 nM) for 0, 8, and 16 h. Cells were stained with JC1 dye, and Dwm

was measured by a fluorometer as per manufacturer’s instructions.

(C) PC-3 cells were treated with resveratrol (20 lM) for 0, 6, 12, or

24 h, and cytoplasmic fractions were prepared. Crude proteins were

subjected to SDS-PAGE and immunoblotted with anti-cytochrome c
(Cyto C), anti-AIF, or anti-Smac/DIABLO antibody. (D) Effects of

resveratrol on the expressions of IAPs in PC-3 cells. Cells were

treated with resveratrol (0–20 lM) for 24 or 48 h. Crude proteins

were subjected to SDS-PAGE and immunoblotted with antibody

specific for XIAP, survivin, cIAP1, or cIAP2
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suggesting the translocation and activation of Bax may

disrupt mitochondrial homeostasis.

We next examined the effects of inhibiting Bax by

siRNA on resveratrol-induced apoptosis. Transfection of

PC-3 cells with plasmid expressing Bax siRNA signifi-

cantly inhibited Bax expression (Fig. 6D). Resveratrol and

TRAIL alone induced apoptosis in PC-3 cells. Bax siRNA

significantly inhibited resveratrol and/or TRAIL-induced

apoptosis. These data suggest that Bax is required for

apoptosis induced by resveratrol and TRAIL alone or by

their combination.

Generation of reactive oxygen species (ROS) by

resveratrol

Generation of ROS by oxidative damage play an important

role in apoptosis [46, 47]. We and others have shown that

chemopreventive agents induce apoptosis in cancer cells

through generation of ROS [48–50]. We therefore

examined whether generation of ROS was responsible for

apoptosis induction by resveratrol. Treatment of PC-3 cells

with resveratrol resulted in ROS production which in-

creased over time, reached a maximum level at 120 min,

and declined there after (Fig. 7A). Pretreatment of PC-3

cells with N-acetylcysteine (NAC) inhibited resveratrol-

induced ROS production. NAC is precursor of glutathione

(GSH), an antioxidant. Since resveratrol induced caspase-3

activity and apoptosis, we next examined whether gener-

ation of ROS was responsible for caspase-3 activation and

apoptosis. Resveratrol induced caspase-3 activity in a dose-

dependent manner (Fig. 7B). Pretreatment of PC-3 cells

with NAC followed by resveratrol treatment caused a

significant inhibition of resveratrol-induced apoptosis

(Fig. 7C), which was correlated with a marked reduction in

resveratrol-induced caspase-3 activity (Fig. 7B). Together

these results suggest that resveratrol-induced apoptosis is

also mediated through generation of ROS which, in turn,

may activate cell-intrinsic pathway.
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Fig. 6 Effects of resveratrol on the expressions of Bcl-2 family

members, and translocation of Bax to mitochondria in PC-3 cells. (A)

Effects of resveratrol on protein expression of Bcl-2 family members.

Cells were treated with resveratrol (0–20 lM) for 24 or 48 h. The

expressions of Noxa, Bim, Bak, Bax, Bid, Bcl-2, and Bcl-XL were

examined by Western blot analysis. (B) Regulation of gene

expression of Bcl-2 family members by resveratrol. Cells were

treated with or without resveratrol (10 or 20 lM) for 6, 12, or 24 h.

The expressions of Bak, Bax, Bim, PUMA, Bcl-2, and Bcl-XL were

examined by RT-PCR. GAPDH was used as a loading control. (C)

Resveratrol induces translocation of Bax to the mitochondria. PC-3

cells were treated with or without resveratrol (20 lM) for 2 or 4 h.

Cells were fixed, permeabilized, and stained with anti-Bax antibody at

4�C for 18 h. After washing, cells were stained with mitotracker red

(mitochondrial staining), DAPI (nuclear staining) and secondary

antibody conjugated with FITC (for Bax). Red color = mitochondria,

green color = Bax, blue color = nucleus, yellow = translocation of

Bax or p53 to mitochondria. (D) Effects of Bax inhibition by siRNA

on resveratrol and/or TRAIL-induced apoptosis. PC-3 cells were

transiently transfected with either control plasmid or plasmid

expressing Bax siRNA along with plasmid (pCMV-LacZ) encoding

the b-galactosidase (b-Gal) enzyme. There was no difference in

transfection efficiency between groups. Cell lysates were run on SDS-

PAGE to measure the expression of Bax by Western blot analysis.

Transfected cells were treated with or without resveratrol (10 or

20 lM) in the presence or absence of TRAIL (25 nM) for 48 h
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Discussion

In the present study, we have demonstrated that resveratrol

inhibits growth and induces apoptosis in androgen-insen-

sitive prostate cancer cells through activation of multiple

signaling pathways. Resveratrol induces apoptosis mainly

through mitochondrial-dependent pathway which was evi-

dent by drop in mitochondrial membrane potential, gen-

eration of reactive oxygen species (ROS), and release of

mitochondrial proteins (cytochrome c, Smac/DIABLO, and

AIF) in prostate cancer cells. Resveratrol induces expres-

sion of proapoptotic proteins (Bax, Bak, PUMA, Noxa, and

Bim) and inhibits expression of antiapoptotic proteins (Bcl-

2 and, Bcl-XL). These proteins exert their effect mainly at

the level of mitochondria and regulate the release of

mitochondrial proteins. Furthermore, resveratrol enhances

translocation of Bax to mitochondria where it may interact

with other Bcl-2 family members to cause permeabilization

of outer mitochondrial membrane (OMM) and release of

mitochondrial proteins leading to caspase activation and

apoptosis. Finally, resveratrol enhances the apoptosis-

inducing potential of TRAIL by up-regulating death

receptors (DR4 and DR5) and cleaving Bid.

In order for a mitochondria to undergo mitochondrial

outer membrane permeabilization (MOMP), a coordinated

effort between numerous Bcl-2 proteins must be engaged

to allow for permeabilization of the OMM [46]. This per-

meabilization is likely achieved by the formation of

membrane-spanning pores through which the intermem-

brane space proteins are released. Once MOMP has

occurred, the cytosolic machinery responds by activating

caspases. This process may utilize ROS. Our data have

shown that resveratrol causes drop in mitochondrial

membrane potential and release of Smac/DIABLO,
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Fig. 7 Involvement of reactive oxygen species in resveratrol induced

caspase-3 activity and apoptosis. (A) Generation of ROS by

resveratrol. PC-3 cells were seeded in 96-well plates, loaded with

5 lM CM-H2DCFDA dye for 30 min, and treated with either

resveratrol (20 lM) or N-acetylcysteine (NAC) (50 mM) plus

resveratrol (20 lM) for 0–360 min. Fluorescence was measured by

a fluorometer as per manufacturer’s instructions (EMD Biosciences/

Molecular Probes). *Significantly different from respective controls,

P < 0.05. (B) Inhibition of resveratrol-induced caspase-3 activity by

NAC. PC-3 cells were pre-treated with 50 mM NAC for 2 h followed

by treatment with resveratrol (10 or 20 lM) for 12 h, and caspase-3

activity was measured by a fluorometer as per manufacturer’s

instructions. *Significantly different from respective control; # or

$ = pointed groups were significantly different, P < 0.05. (C)

Inhibition of resveratrol-induced apoptosis by NAC. PC-3 cells were

pre-treated with 50 mM NAC for 2 h followed by treatment with 10

or 20 lM resveratrol for 48 h, and apoptosis was measured by

TUNEL assay. a and c were significantly different from b and d,

respectively, P < 0.05
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cytochrome c and AIF from mitochondria to cytosol. We

have recently shown that Bax and Bak differentially reg-

ulate the release of cytochrome c and Smac from mito-

chondria to cytosol upon treatment with TRAIL [28]. The

effects of resveratrol on mitochondrial events were further

enhanced in the presence of TRAIL. Smac is released from

mitochondria to the cytosol after cellular insults and binds

to IAPs (XIAP, survivin, c-IAP-1, or c-IAP-2), and abro-

gates IAP-mediated inhibition of caspase-3 and caspase-7,

thereby facilitating caspase-mediated apoptosis. Our data

indicate that the major IAP regulated by resveratrol is

survivin. The release of mitochondrial apoptogenic factors

is regulated by the pro- and anti-apoptotic Bcl-2 family

proteins, which either induce or prevent the permeabiliza-

tion of the OMM. Upon disruption of mitochondrial

function, energy production wanes and the cell is left to

die.

Recently, the Bcl-2 gene family has emerged as critical

regulators of apoptosis in a variety of physiological and

pathological contexts [44, 51]. Study of the mechanism of

apoptosis by Bcl-2-related genes offers new possibilities

for prevention and treatment of several human diseases.

Members of the Bcl-2 protein family are distinguished by

the presence of up to four different Bcl-2 homology do-

mains (designated BH1-4) [51, 52]. In general, those that

contain all four domains (Bcl-2, Mcl-1 and Bcl-XL) are

antiapoptotic, whereas those that contain less are proa-

poptotic. The proapoptotic group can be further divided

into two groups, multidomains or BH123 members such as

Bax and Bak, and BH3-only proteins, including Bid, Bim,

and PUMA. The multidomain proapoptotic proteins Bax

and Bak are constitutively expressed and only induce

MOMP following apoptotic stimuli, suggesting that they

are inactive in non-apoptotic cells [52, 53]. Bcl-2 inhibits

Bax translocation from cytosol to mitochondria during

drug-induced apoptosis of human tumor cells [54]. Indeed,

the ratio between these two subsets determines, in part, the

susceptibility of cells to a death signal [55]. Furthermore,

these death-inducing proteins heterodimerize with mem-

bers of the death-inhibitory family [56]. Overexpression of

Bcl-2 and Bcl-XL protein protects a wide variety of cell

types from many death-inducing stimuli [29, 30, 57, 58]. In

the present study, Bax appear to play a major role as Bax

siRNA inhibited resveratrol-induced apoptosis. Further

studies are needed to examine the role of other proapop-

totic proteins such as PUMA in resveratrol-induced apop-

tosis.

The integrity of mitochondrial function is fundamental

to cell life. The cell demands for mitochondria and their

complex integration into cell biology, extends far beyond

the provision of ATP. We and others have shown that

disturbances of mitochondrial function lead to disruption of

cell function, expressed as disease or even death.

Mitochondria are major producers of free radical species

and also possibly of nitric oxide, and are, at the same time,

major targets for oxidative damage [59, 60]. Reactive

oxygen species induce a vide range of responses depending

on the cell type and the levels of ROS within the cell. High

levels of ROS can lead to necrotic cell death, whereas low

levels of ROS have been shown to induce apoptotic cell

death [61, 62]. The induction of ROS by resveratrol in

cancer cells is one of the mechanisms by which it prefer-

entially kills cancer cells.

Resveratrol is found in high concentrations (2–40 lM)

in red wine [63]. Our data on IC50 values (5–10 lM) for

inhibition of cell proliferation by resveratrol are in agree-

ment with others [64–66]. The bioavailability of free res-

veratrol in humans is reported to be extremely low. A

recent study has shown the plasma concentrations of free

resveratrol of approximately 21 nM after an oral dose of

25 mg [67]. Resveratrol can be metabolized through

hydroxylation, glucuronidation, sulfation, and hydrogena-

tion. Although the bioavailability of resveratrol itself is low

in humans, peak plasma levels of total resveratrol of up to

2 lM have been reported in humans [67].

In summary, we have demonstrated that resveratrol

inhibits growth and induces apoptosis of androgen-insen-

sitive prostate cancer cells through multiple mechanisms. It

regulates Bcl-2 family members, causes translocation of

Bax to mitochondria, releases mitochondrial proteins

(Smac/DIOABLO, cytochrome c, and AIF), generates

ROS, inhibits surviving, and activates caspase(s). Further-

more, resveratrol upregulates TRAIL-R1/DR4 and TRAIL-

R2/DR5 which, in turn, enhances the apoptosis-inducing

potential of TRAIL. Thus, resveratrol alone or in combi-

nation with TRAIL can be used to prevent and/or treat

human prostate cancer.
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