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Abstract The trans-sulfuration pathway is a bio-

chemical mechanism that links methionine metabolism

to the biosynthesis of cellular redox-controlling mole-

cules, like cysteine, glutathione, and taurine. While

there is some knowledge about the metabolic inter-

mediates and enzymes that participate in trans-sulfu-

ration, little is known about the physiological

importance of this mechanism. Deficiencies within the

trans-sulfuration pathway induces (i) the generation of

reactive species of oxygen (ROS) and halogens (RHS),

(ii) homocyst(e)ine accumulation, and (iii) the syn-

thesis of proinflammatory molecules by macrophages,

and contribute to humans pathologies like atheroscle-

rosis and tumor development. In this review we outline

the role of this biochemical pathway in tumor devel-

opment and analyze current findings on the role of

trans-sulfuration in mammalian physiology. The po-

tential relationship between chronic inflammation, and

tumor and atherosclerotic development are discussed.
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Introduction

Methionine is an essential amino acid that influences

cellular metabolism. It is a proteinogenic amino acid

and an essential precursor for the synthesis of gluta-

thione (c-glutamyl-cysteinyl-glycine; GSH), a molecule

that participates in spermine and spermidine synthesis

and is the major source of methyl groups for biological

molecules. Methionine is also necessary for cysteine

biosynthesis, a process carried out through a special-

ized biochemical pathway called the trans-sulfuration

pathway [1]. Methionine metabolites are essential for

phosphatidyl choline regeneration in the cytoplasmic

membrane, and methionine is required for the meta-

bolic pathways that regulate gene expression, chro-

matin structure, transcription, post-transcriptional

processing, and protein synthesis [2].

Methionine metabolism can be divided into five

major but interdependent biochemical pathways: (i)

the methionine salvage pathway, (ii) the methionine

cycle, (iii) the trans-sulfuration pathway, (iv) the GSH

synthesis pathway, and (v) the taurine synthesis path-

way (Fig. 1) [1, 3, 4]. The methionine salvage pathway

is important for methionine conservation in cells that

synthesize large amounts of polyamines for the cell

cycle [1]. In the salvage pathway, methylthioadenosine

phosphorylase (MTAP; E.C. 2.4.2.28) (Fig. 1, reaction

14) is one of the key enzymes. Deficiencies in the sal-

vage pathway are responsible for many kinds of tu-

mors, including non-small cell lung cancer, leukemia,

glioma, rectal adenocarcinoma, and melanoma [5–8].

The methionine cycle plays an important role in cell

physiology in a broad sense. It is the place where S-

adenosylmethionine (SAM) biosynthesis occurs in a

reaction catalyzed by methionine adenosyltransferase
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(MAT, EC 2.5.1.6; Fig. 1, reaction 1) [9]. SAM is

the major biological methyl donor for other mole-

cules such as DNA and plays an important allosteric

role in the regulation of sulfur metabolism [9]. The

methionine cycle is also responsible for (i) converting

betaine into dimethyl-glicine, which regenerates

methionine from cysteine in a reaction catalyzed by

betaine homocysteine methyltransferase (EC 2.1.1.5;

Fig. 1, reaction 8), and (ii) converting 5-methylenetet-

rahydrofolate (5-THF) into tetrahydrofolate (THF;

Fig. 1, reaction 10) by methionine synthase (EC

2.1.1.13), which produces methionine from homocy-

steine (Fig. 1) [3, 10].

The biochemical mechanism of trans-sulfuration is

less well characterized than the methionine salvage and

cycle pathways. However, the trans-sulfuration path-

way is necessary for cellular physiology because it

connects the methionine metabolic pathways to the

generation of cysteine, glutathione (GSH), and taurine

(Fig. 1) [11, 12]. Tarver et al. first demonstrated that

cysteine could be synthesized from methionine in 1939

[12], and called it the trans-sulfuration or cystathionine

pathway [11]. This pioneer work served as the base for

further characterization of the trans-sulfuration path-

way using isolated hepatocytes from the mammalian

liver [13]. The first step of trans-sulfuration involves

the formation of cystathionine from homocysteine and

serine, in a reaction catalyzed by cystathionine syn-

thase (EC 2.5.1.48; Fig. 1, reaction 4). Once formed,

cystathionine is cleaved by cystathionase (cystathio-

nine c-lyase; EC 4.4.1.1), releasing free cysteine (Fig. 1,

reaction 5). In the presence of high cysteine levels,

cystathionine is directed into the GSH and taurine

synthesis pathways [14]. Thus, cysteine levels are con-

sidered the limiting step in liver GSH synthesis [11, 14,

15], where approximately 50% of the cysteine used for

GSH anabolism is derived from methionine that was

synthesized from the trans-sulfuration pathway [16,

17]. When homocysteine levels are low, cysteine flux

through the trans-sulfuration pathway becomes down-

regulated in order to conserve homocysteine for the

methionine cycle [18]. Trans-sulfuration activity in the

Fig. 1 A simplified metabolic chart of biologically important
sulfur compounds. The five discrete, interconnected pathways
are indicated by different shades of gray. The enzymes required
in each pathway are (1) methionine adenosyltransferase (MAT),
(2) general methyltransferase, (3) adenosylhomocysteinase, (4)
cystathionine b-synthase, (5) c-cystathionase, (6) c-glutamilcy-
steine synthase, (7) glutathione synthase, (8) choline dehydro-

genase plus betaine aldehyde dehydrogenase, (9) betaine
homocysteine methyltransferase, (10) methionine synthase, (11)
serine-hydroxymethylase, (12) methylenetetrahydrofolate reduc-
tase, (13) spermidine synthase, (14) methylthioadenosine phos-
phorylase, (15) S-methyl-5-thioribose-1-phosphate isomerase,
(16) methylthioribulose 1-phosphate dehydratase, (17) tyrosine
transaminase, and (18) cysteine dioxygenase
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liver is markedly impaired or absent in fetuses, new-

borns, cirrhotic patients, and patients with homo-

cyst(e)inemia [19]. The trans-sulfuration pathway is

also blocked in some liver tumor cell lines, including

HepG2 and HuH-7 cells [20]. While the mechanism of

this blockade is currently unknown, these cells are

unable to form GSH from methionine but can syn-

thesize large amounts of homocyst(e)ine [20]. It is

demonstrated that approximately 50% of all tumors

are incapable of proliferating when methionine is re-

placed by homocysteine, resulting in cell cycle arrest,

strict inhibition of mitosis, and eventual death [21–26].

Tumor cells export large amounts of homocyst(e)ine

when placed in culture medium that contains high

methionine, suggesting that there is an anomaly in

methionine metabolism [2]. This absolute requirement

for methionine by tumor cells is known as ‘‘methionine

dependency’’ or ‘‘methionine stress’’ [1, 2]. The

molecular mechanism of methionine dependency is

currently unknown, but may be triggered by high

transmethylation rates [27] that result in the hyper-

production of S-adenosylhomocysteine (AdoHcy) and

homocysteine [1]. While the influence of methionine-

dependence on trans-sulfuration is unknown, the

accumulation and export of homocysteine probably

impairs cysteine biosynthesis possibly affecting the

function of major enzymes in the trans-sulfuration

pathway. An understanding of how the major enzymes

of the trans-sulfuration pathway control the flux of

sulfur-containing molecules and cellular redox

homeostasis is necessary in order to understand the

role of this biochemical mechanism in tumor growth

and development.

The first enzyme of the trans-sulfuration pathway:

adenosylhomocysteinase

Adenosylhomocysteinase (S-Adenosylhomocysteine

hydrolase or AdoHcyase; EC 3.3.1.1) is a cytoplasmic

enzyme that catalyzes the reversible hydrolysis of

AdoHcy into adenosine and homocysteine (Fig. 1,

reaction 3) [28, 29]. AdoHcyase is a tetrameric protein

with a molecular weight of 45–50 kDa, in which each

subunit contains one molecule of tightly bound NAD+

[28, 30], as determined by X-ray crystallography

(Fig. 2) [31, 32]. Three-dimensional characterization of

mammalian AdoHcyase showed that the four NAD+-

binding domains are located near the center of the

tetramer while the catalytic domains are located far

from the center [32].

The thermodynamic equilibrium of the reaction fa-

vors AdoHcy synthesis in vitro [33], but the hydrolysis

of AdoHcy into adenosine and homocysteine by

AdoHcyase prevails under physiological conditions

because both reaction products are rapidly removed

Fig. 2 Three-dimensional
models of tetrameric human
adenosyl-homocysteinase
(Protein Data Bank accession
number 1LI4), cystathionine
b-synthase (Protein Data
Bank accession number
1JBQ), and monomeric yeast
c-cystathionase (Protein Data
Bank accession number
1N8P). A pyridoxal-5¢-
phosphate molecule is shown
in the active site of yeast
c-cystathionase. The models
are shown at a 90� angle to
illustrate their distinctive
characteristics
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[29]. Once formed, adenosine is either deaminated by

adenosine deaminase (EC 3.5.4.4) or enters the purine

nucleotide pool through the action of adenosine kinase

(EC 2.7.1.20). Homocysteine can enter the trans-sulf-

uration pathway and be metabolized into cystathionine

(Fig. 1, reaction 4) or be re-methylated into methio-

nine (Fig. 1, reactions 8 and 10) [29]. The existence of

multiple routes for the metabolism of AdoHcy (SAM)

precursors and its metabolic products, adenosine and

homocysteine, is consistent with the requirement for

efficient product removal to prevent AdoHcy accu-

mulation. AdoHcy accumulation can interfere with

AdoMet-dependent methyltransferases by product

inhibition, which results in epigenetic alterations [29].

The AHCY gene, which encodes AdoHcyase, was

mapped to the human chromosome 20q13.1 [34], and

many alleles are associated with hypermethioninemia

and coronary heart disease [35, 36].

The second enzyme of the trans-sulfuration pathway:
cystathionine b-synthase

The cystathionine b-synthase (EC 4.2.1.22; CBS)

gene, situated on chromosome 21q22.3, encodes an

enzyme that catalyzes the synthesis of cystathione, the

second step in the trans-sulfuration pathway (Fig. 1,

reaction 4) [37]. Human cystathionine b-synthase is a

63 kDa enzyme that contains an N-terminal heme

domain that regulates enzymatic activity, a catalytic

domain that binds PLP (pyridoxal 5¢-phosphate), and

a C-terminal domain that confers responsiveness to

the allosteric activator SAM. The full-length human

enzyme exists in a tetrameric state (Fig. 2) [38], in

which the catalytic core resembles other members of

the fold II family of PLP-dependent enzymes [39].

Thus, because of its location at a branch point

for remethylation and trans-sulfuration, cystathionine

b-synthase is a highly regulated enzyme (Fig. 1,

reaction 4) [4]. The C-terminal regulatory domain

inhibits activity of the full-length enzyme, but binding

of SAM to this domain converts the enzyme to an

activated state [40]. The activation of full-length

cystathionine b-synthase by SAM involves a confor-

mational change, so that the C-terminal domain can

no longer play an autoinhibitory role [38]. Interest-

ingly, point mutations in the C-terminal domain of

cystathionine b-synthase have been identified in ho-

mocyst(e)inuric patients [4], and shown to result in

diminished SAM responsiveness and varying degrees

of constitutive activation [41, 42]. The consequence of

cystathionine b-synthase activation by SAM is an in-

crease in the remotion of homocysteine through the

trans-sulfuration pathway. The heme group present in

the N-terminus of mammalian cystathionine b-syn-

thase may act as a redox sensor [39]. While reduction

of the heme moiety is associated with decreased en-

zyme activity, flux through cystathionine b-synthase is

increased under oxidizing conditions [43]. Redox

regulation of cystathionine b-synthase activity is con-

sistent with the reported reciprocal sensitivity of the

trans-sulfuration pathway to pro- and antioxidants,

which enhance or diminish homocysteine flux through

the trans-sulfuration pathway, respectively [43].

Cystathionine b-synthase enzyme deficiencies are

associated with mental retardation, elevated homocy-

steine levels [homocyst(e)inuria], skeletal abnormali-

ties, elevated risk of blood clots and atherosclerosis

[44], as well as neurodegenerative diseases like Alz-

heimers and dementia [45]. Homocyst(e)inuria is cor-

related with other vascular effects like

atherothrombosis and endothelial dysfunction because

of its auto-oxidative potential, and a related increase in

the production of reactive oxygen species (ROS) [46].

Since reduced free homocysteine contains a free thiol

group, this molecule can react with itself to form ho-

mocystine, or with albumin and cysteine to increase RS

production [47]. Plasma levels of reduced free homo-

cysteine are found to enhance oxidative stress [47]. In

addition, chronic exposure of endothelial cells to

homocysteine accelerates the rate of endothelial

senescence and decreases telomere length for every

population doubling [48].

The third enzyme of the trans-sulfuration pathway:
c-cystathionase

c-Cystathionase (CSE, cystathionine c-lyase; EC

4.4.1.1) is a PLP-dependent enzyme that catalyzes the

conversion of cystathionine into cysteine, a-ketobuty-

rate, and ammonia (Fig. 1, reaction 5). L-cysteine is

further metabolized in the liver to yield GSH or tau-

rine, although CSE itself is capable of metabolizing

cyst(e)ine and producing H2S, a gaseous neuromodu-

lator and smooth-muscle relaxant [49].

Messerschmidt et al. resolved the three-dimensional

structure of yeast CSE and showed that it exists in a

tetrameric state [50]. Each monomer contains one PLP

cofactor and 393 amino acids (Fig. 2). Similar to other

PLP-dependent enzymes, the monomer comprises

three structurally and functionally distinct regions in

which the N-terminus interacts with the active site of

the neighboring monomer and a large PLP-binding

domain that carries most of the catalytically important

residues [50].
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The CTH gene on human chromosome 1p31.1 en-

codes the enzyme CSE [51]. Recessive mutant alleles

for CTH are associated with cystathioninuria, a disease

characterized by abnormal accumulation of plasma

that leads to increased urinary excretion of cystathio-

nine [51]. Screening surveys of neonatal urine samples

estimated the prevalence of cystathioninuria at

~1:14,000 live births [52, 53].

The trans-sulfuration pathway and tumor protection/

promotion: is there a link?

The three enzymatic steps of the trans-sulfuration

pathway provide the amount of cysteine required to

synthesize the cellular redox-controlling molecules,

like GSH and taurine, that protect the molecular

constituents of cells against reactive species (SP)-in-

duced damages (Fig. 3A). For example, mitochondrial

and nuclear DNA are continuously and chemically

damaged by both endogenous and exogenous RS,

which contributes to degenerative processes such as

aging and cancer [54]. It is widely accepted that RS

produce a broad range of DNA damage including base

and sugar modifications, base-free sites, DNA-protein

cross-links, and strand breaks [55–58]. Until now, more

than 20 different types of base damage have been

identified following exposure to oxidative stress [59].

The most prevalent damage to purines is 7,8-dihydro-8-

oxoguanine (8-oxoguanine or 8-oxoG), while the most

common damage to pyrimidines is the formation of

thymine glycol (Tg) [59]. Modified bases generated by

RS are highly mutagenic and can induce base mi-

spairing during DNA replication, generating mutations

that affect cellular physiology [59].

Oxidative stress and carcinogenesis

The specific mechanism by which oxidative stress

contributes to carcinogenesis is largely unknown [60],

but two different mechanisms are thought to play a

role: (i) modulation of gene expression and (ii)

induction of genetic modifications [60]. Modulation of

gene expression by oxidative damage affects carcino-

genesis by altering the epigenetic effects and chromo-

somal rearrangements. Epigenetic effects on gene

expression stimulate growth signals and proliferation

[60], while chromosomal rearrangements contribute to

neoplasic progression [60]. In addition, a redox

imbalance is shown to stimulate protein kinase and

poly(ADP ribosylation) pathways, affecting signal

transduction and promoting tumor development [61].

Interestingly, studies examining the effects of high

homocysteine levels show that poly(ADP-ribose)

polymerase (PARP) enzymes repair single strand

DNA breaks (SSBs) induced by genotoxic agents or

oxidative stress [62–64]. The best-studied enzyme of

the PARP family, PARP-1, is characterized as an

abundant nuclear protein that binds SSBs and double

strand DNA breaks (DSBs) [64]. PARP-1 is involved

in DNA repair, recombination, and genomic stability

[65, 66] of extensive DNA breakage that is triggered by

massive oxidative or nitrosative stress [67–69]. The

overactivation of PARP depletes the cellular stores of

NAD+ and ATP [69], leading to a severely compro-

mised cellular energetic state that inhibits apoptotic

cell death and results in necrotic cell death, followed by

the activation of inflammatory processes that augment

tumor development.

In all related cases, the initiation potential of oxi-

dants seems to contribute to carcinogenesis by induc-

Fig. 3 A model showing how tumors can form from deficiencies
in the trans-sulfuration pathway. The equilibrium between
methionine homeostasis and the trans-sulfuration pathway
balances the level of homocysteine in cells and keeps the redox
homeostasis (A). Metabolic deficiencies in the trans-sulfuration
pathway imbalance homocysteine levels in the cell, which
increases homocysteine concentration and alters redox homeo-
stasis, as well as the DNA methylation pattern. The low
concentration of GSH and taurine leads to an increase in
reactive oxygen species (ROS) generation, DNA damage, gene
mutation, protein inactivation, and the altered activity of cell
cycle checkpoints. All these cellular phenomena may ultimately
result in tumor growth and expansion (B)
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ing DNA base changes in certain oncogenes and tumor

suppressor genes [70–72]. It is shown that the hydroxyl

radical (HO�) is able to activate certain oncogenes,

such as K-ras and C-Raf-1. Activation proceeds

through the induction of point mutations in CpG base

pairs and gene deletions [72]. Point mutations in CpG

dinucleotides are frequently found in certain tumor

suppressor genes, such as p53 and ras, leading to

inactivation [60]. Furthermore, HO� attacks cells con-

taining mutant or absent p53, resulting in failure to

arrest in G1, and reducing cell capacity to repair

damaged DNA [60, 72]. This increase in replication

errors can initiate additional oncogene activation and

tumor suppressor gene inactivation, ultimately con-

tributing to malignancy. Free radical-induced cytotox-

icity may also initiate carcinogenesis by depleting the

normal cell population and promoting the clonal

expansion of more resistant cells, thus increasing the

probability of mutation [60].

The roles of GSH and taurine in cancer prevention

or promotion

Considering the mechanisms of tumor induction, it is

reasonable to assume that the trans-sulfuration path-

way is necessary to maintain intracellular redox

homeostasis. Alterations in this pathway increase the

rate of base mispairing due to base oxidation, abasic

sites, error-prone recombination events, alterations in

gene expression, and chronic inflammatory processes,

thus inducing tumor progression (Fig. 3B). Another

mechanism that could contribute to tumor induction is

the depletion of functional proteins by RS, resulting in

an increase in oxidized protein level (Fig. 3B). Once

formed, oxidized proteins need to be recycled by the

ubiquitin system, increasing the amino acid require-

ment for protein synthesis, especially methionine and

cysteine [4]. Assuming that cysteine levels are main-

tained by the breakdown of GSH [11, 73], there is a

shift in the redox balance following the induction of

oxidative stress, such that the ratio of GSH to GSSG

(the oxidized form of GSH) is altered in favor of GSSG

[11, 73].

In addition to its function as a cysteine repository,

GSH is the most prevalent non-protein thiol in mam-

malian cells and the major low molecular-weight pep-

tide present in eukaryotic cells [73]. GSH acts as a

reducing agent, is involved in the metabolism of xe-

nobiotics, is a free-radical scavenger, aids in cell-cycle

regulation and microtubular-related mechanisms, reg-

ulates Ca2+ homeostasis, regulates protein function and

gene expression via thiol-disulfide exchange reactions,

modulates lymphocyte function and immune re-

sponses, and participates in the mitochondrial mecha-

nisms that link the opening of the permeability

transition pore complex to the activation of cell death

[74]. Since GSH has such a wide range of functions,

alterations in GSH levels are associated with numerous

human diseases, including cancer, neurodegeneration,

acquired immune deficiency syndrome (AIDS), aging,

cystic fibrosis, liver diseases, heart attack, stroke,

seizure, diabetes, sickle cell anemia, and kwashiorkor

[74, 75].

Glutathione also appears to be very important for

tumor development and growth. Hirono [76] was the

first to show that ascites tumor cells, which are highly

resistant to alkylating agents, have higher GSH levels

than non-tumor cells. Different types of tumor,

including melanoma, bladder carcinoma, lung cancer,

colon cancer, and breast tumors that are multidrug and

radiation resistant, are also found to have a high GSH

content [77–81]. Considering the homeostatic redox

buffer function of GSH and its role in inactivating

some carcinogens [82] and protecting cells against

DNA-damaging free radicals and lipid peroxidation

[83], it is plausible that tumor cells may need more

GSH for their survival than other cell types. This is

supported by results showing that levels of GSH and

enzymes related to the GSH synthesis pathway (Fig. 1)

fluctuate over a wide range of concentrations (up to 40-

fold), regardless of treatment status or primary tumor

origin [84]. One of the best known enzymes in GSH

metabolism, glutathione-S-transferase (GSTs; EC

2.5.1.18) is shown to be associated with multidrug

resistance of tumor cells [85]. GSTs belong to the

family of phase II detoxification enzymes that catalyze

GSH (S-glutathionylation) conjugation with different

chemotherapeutic compounds to form mercapturates

[86], which are easily excreted in urine, thus dimin-

ishing the therapeutic effects of antitumor drugs. In

addition, GST overexpression can increase suscepti-

bility to carcinogenesis and inflammatory disease [86],

which is associated with tumor progression. High GSH

concentrations in cancer cells, induction of GSH in

murine melanocytes following c-H-ras oncogene-in-

duced transformation, or impairment of metastatic

spread by GSH depletion have also been described,

further highlighting the importance of GSH pathways

in tumor development and growth [87, 88]. Under

metastatic conditions, high levels of GSH can support

(i) a rapid cell cycle, (ii) an elevated rate of DNA

synthesis, and (iii) a block in apoptosis [74]. Thus, GSH

can be characterized as a double edged sword, pro-

tecting non-tumor cells against oxidative stress induced

by metabolism or exogenous compounds and at the

6 Mol Cell Biochem (2007) 301:1–12

123



same time, protecting tumor cells from apoptosis and

chemotherapeutic treatments, thus furthering tumor

development and metastasis. A recent study by Uthus

et al. [89] demonstrated that the Ames dwarf mouse

has significantly increased hepatic GSH levels because

of an absence of growth hormone (GH). The lack of

GH in dwarf mice results in higher overall levels of

tissue glutathione S-transferase and GSH [90],

enhancing cellular detoxification and providing resis-

tance against toxic/oxidative stress [89]. It is also re-

ported that Ames dwarf mice live 50–64% longer than

their wild type littermates [90] because of the delayed

occurrence and reduced incidence of fatal neoplasic

disease. These data support the hypothesis that

heightened antioxidative defenses may prolong life

span [90]. Thus, the Ames dwarf mouse may be more

resistant to oxidative stress because it has a relatively

large pool of GSH as a result of altered levels of GSH

metabolites and other sulfur-containing molecules.

In its turn, taurine is a conditionally essential non-

proteinogenic amino acid that is required for many

aspects of mammalian metabolism [91]. Taurine is re-

quired for the development and survival of mammalian

cells, being the most abundant single amino acid in

leukocytes (20–50 mM) [92–95]. Taurine also protects

the lung from ozone, bleomycin, nitrogen dioxide, and

amiodarone induced injury [96–99]. In addition, tau-

rine can protect cells from oxidant-induced injury by

forming taurine chloramine (Tau-Cl). Tau-Cl synthesis

occurs through a reaction between taurine and plasma

hypochlorous acid (HOCl) [100], resulting in the

inactivation of this strong oxidant and cytotoxic agent.

HOCl is the final product of the reaction between

H2O2 and chloride (Cl-) ion that is catalyzed by mye-

loperoxidase (MPO; EC 1.11.1.7). HOCl is also found

in equilibrium with molecular chlorine (Cl2), and

responsible for damaging lipids, proteins, and DNA

[101, 102]. High levels of HOCl production by poly-

morphic variants of MPO are associated with chronic

inflammation, which increases the risk of leukemia,

lung cancer, and laryngeal cancer [101, 102]. Chronic

inflammation induced by elevated levels of HOCl is

also observed in atherosclerotic tissue [103], a common

condition in hyperhomocyst(e)inuric patients. HOCl

can halogenate/oxidize pyrimidine and purine bases of

DNA, generating the highly mutagenic 5-chloro-2¢-
deoxycytidine (5-CldC) [102]. 8-Chlorinated products

of 2¢-deoxyadenosine and 2¢-deoxyguanosine, as well as

semistable or unstable chloramines (RNHCl and

RR’NCl) [101] are also generated from the reaction

with HOCl [102], Unstable nucleoside chloramines,

such as thymidine chloramine, are shown to initiate

DNA single and double strand breaks through nitro-

gen-centered radicals and to transfer chlorine atoms to

other nucleosides [101]. While uracil concentrations

are normally low in plasma, the dissolution of dead

cells by necrosis, which is induced by PARP enzyme

overexpression [64] and hyperhomocyst(e)inuria, lib-

erates nucleobases and nucleosides into the extracel-

lular environment [102]. This phenomenon increases

the uracil content in inflamed tissue fluid (which is as

high as 600 lM) to almost 1000-fold higher than the

plasma level [102] and provides MPO with ample

substrate for halogenation. Thus, all of the necessary

factors for pyrimidine halogenation are provided by

the inflammatory milieu [101, 102]. Furthermore, be-

cause inflammation also causes cells to proliferate, it

sets the stage for thymine analogs like halogenated

nucleobases to be misincorporated into newly synthe-

sized DNA, which induces mutations [102]. The

inflammation-mediated chlorination of cytosine resi-

dues in DNA may also account for several DNA

alterations observed in human tumors, including

alterations in methylation patterns [104].

Under normal conditions, taurine controls cell and

tissue levels of Cl– and HOCl by reacting with these

molecules to generate Tau-Cl [91]. In addition, Tau-Cl

downregulates the immunologic response by reducing

the production of proinflammatory mediators like ni-

tric oxide, tumor necrosis factor-K, prostaglandin E2,

and monocyte chemotactic protein-1, which blocks the

cascade effect of chronic inflammation that leads to

tumor progression [91].

Is the methionine dependency of tumor cells
an adaptation?

Considering that chronic inflammation and mutagene-

sis are important factors for tumor development, and

that metabolic deficiencies in the trans-sulfuration

pathway are directly correlated with chronic inflam-

mation (especially deficiencies that result in cellular

homocyst(e)ine accumulation), it is likely that the

elevated production of homocyst(e)ine by methionine-

dependent cancer cells is an adaptation that has

allowed tumor cells to survive and colonize a con-

stantly changing, biological environment. In this sense,

atherosclerosis and cancer share many common

mechanisms related to disease development and pro-

gression, both being a consequence of complex inter-

actions between genetic and environmental factors

[105]. Recently, a number of reports have suggested

that both atherosclerosis and cancer develop from a

clonal proliferation of altered cells at the sight of local

tissue injury, inflammation, and genomic instability
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[105–107]. Atherosclerosis may begin when an injury

or infection transforms a single arterial smooth-muscle

progenitor of a proliferative clone, which resembles

carcinogenesis [108, 109]. Atherosclerotic plaque and

malignant tumor formation are associated with (i) cell

proliferation regulatory pathways, (ii) alterations in

adhesion molecule expression, (iii) alterations in pro-

tease expression, (iv) altered ligand-growth factor

interactions, (v) altered nuclear transcription factor

expression, and (vi) the production of angiogenesis

modulators [105]. The infiltration of macrophages into

the cellular mass [110] is another common character-

istic of atherosclerotic lesions and tumors. Since Ru-

dolf Virchow first demonstrated that the inflammatory

process influences atherosclerosis and tumor develop-

ment in the 19th century [111], a growing body of

evidence has shown that macrophages play an impor-

tant role in initiating and promoting both pathologies

[110, 111]. For example, microbial and viral infections

induce a chronic immunologic response that results in a

persistent inflammatory process that could result in

tumor development. The induction of a chronic

inflammatory process by the tumor itself or its leuko-

cyte-infiltrate may also accelerate cancer growth and

metastasis [112, 113]. In both cases, the combined ef-

fects of ROS, cytokines, chemokines, as well as

angiogenic factors produced by tumor-associated

macrophages (TAMs) and other inflammatory cells

explains the abnormal growth of healthy cells [110,

114]. Although the molecular mechanisms of macro-

phage-inducing tumor and atherosclerosis develop-

ment remain poorly understood, it is well established

that once a cellular mass becomes infiltrated by mac-

rophages, the ability of tumor and atherosclerotic tis-

sue to survive the immune response increases

exponentially. If we consider that methionine-depen-

dent tumors produce large amounts of homocyst(e)ine

from methionine (Fig. 4), and hyperhomocyst(e)inuric

individuals are at increased risk of developing athero-

sclerosis, it is plausible that homocysteine is one of the

signals required to recruit macrophages to the site of

tumor and atherosclerotic cells (Fig. 4). It is possible

that tumor cells induce a local hyperhomocyst(e)inuria

that recruits a subpopulation of macrophages (Fig. 4).

Once established, the macrophages trigger a series of

biochemical events that result in the increased syn-

thesis of proinflammatory molecules, RS, halogenated

pyrimidines, angiogenic and growth factors, and create

an optimal cellular microenvironment (Fig. 4). This

may lead to the selection and stimulation of cells with

the ability to evade the immune system and colonize

other tissues. Evidence for a role of homocyst(e)ine in

the recruitment of macrophages and induction of

inflammatory processes further supports this idea

[115]. Further studies will be needed to analyze the

effect of local hyperhomocyst(e)inuria that has re-

sulted from trans-sulfuration deficiencies on the

development of optimal microenvironments for tumor

and atherosclerosis development.

Concluding remarks

The trans-sulfuration pathway is an important bio-

chemical mechanism that links methionine metabolism

to the production of redox-controlling molecules.

While genetic and biochemical knowledge about the

Fig. 4 Schematic model of a cancer microenvironment induced
by chronic inflammation and local hyperhomocyst(e)inuria.
assuming that methionine-dependent tumor cells produce high
levels of homocysteine and generate a localized hyperhomo-
cyst(e)inuria, macrophages are recruited by the release of
reactive oxygen species (ROS). The combination of ROS,
homocyst(e)ine and parp overexpression, induces tumor cell
necrosis, releasing high amounts of pyrimidines into the tumor
mass. the pyrimidine molecules are converted into halogenated
pyrimidines by macrophage myeloperoxidase and HOCL. the
halogenated pyrimidines are strong mutagenic substances that (i)
increase the genetic diversity of tumor cells and help to select the
best-adapted cells, and (ii) convert some macrophages into
tumor-associated macrophages (TAMs). once established with
the tumor cells, TAMs initiate angiogenic and growth factor
synthesis that contributes to the expansion and maintenance of a
cancer microenvironment. in addition, the induction of a
constant, chronic inflammatory response by macrophages results
in the liberation of proinflammatory molecules that induce
necrosis and increase the velocity of tumor cell division
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trans-sulfuration pathway has been accumulated in the

past few years, further research is required to assess the

physiological importance of this pathway in eukaryotic

cells. Deficiencies in certain components of the trans-

sulfuration pathway are linked to the development of

various pathologies in humans. For example, excessive

homocyst(e)ine production, observed in particular

trans-sulfuration pathway deficiencies, may result in a

chronic inflammatory process that leads to atheroscle-

rosis development. It is also observed that the exces-

sive production of homocyst(e)ine may activate

macrophages and induce proinflammatory molecule

synthesis that is associated with the development and

selection of tumor cells, and the establishment of

optimal biochemical and environmental conditions for

metastasis. In this sense, a study analyzing the impor-

tance of the trans-sulfuration pathway in tumor and

atherosclerotic development, the recruitment of mac-

rophages for active growing cellular masses, and the

creation of microenvironments that select active

growing cells is urgently required in order to effectively

design new chemotherapeutical molecules or proto-

cols.
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