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Abstract

Peroxisome proliferator-activated receptor c (PPARc) is a member of the nuclear receptor superfamily known to regulate
adipocyte differentiation. However, its role in skeletal muscle differentiation is not known. To investigate possible involvement
of PPARc in skeletal muscle differentiation, we modulated its expression in C2C12 mouse skeletal muscle cells by stable
transfection with sense or antisense plasmid constructs of PPARc cDNA. Phenotypic observations and biochemical analysis of
different myogenic markers showed that altered expression of PPARc inhibited the formation of myotubes, as well as
expression of muscle-specific myogenic proteins including myogenin, MyoD and creatine kinase activity. Together, we show
that critical expression of PPARc is required for skeletal muscle cells differentiation.
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Introduction

The development of skeletal muscle is a highly regulated
process in which pluripotent mesodermal cells give rise to
myoblasts that subsequently withdraw from the cell cycle
and differentiate to form myotubes through temporally
distinct sequence of events. Muscle cells undergo a distinct
and well-characterized series of biochemical and morpho-
logical changes during the process of differentiation i.e.
myogenesis. The process leads to the induction of several
differentiation-linked genes specifically expressed in muscle
cells. At molecular level, myogenesis is controlled by a
family of myogenic regulatory factors, which includes my-
ogenin, muscle creatine kinase and MyoD that are expressed
with a well-defined time course [1–3]. Myoblasts align and

fuse to form multinucleated myotubes. The endocrine fac-
tors and signal transduction pathways that coordinate skel-
etal muscle cell differentiation and expression of muscle-
specific proteins [4, 5] have been extensively studied [3,
6–8]. However, the mechanisms and molecules that are
temporally required for regulating the process of skeletal
muscle differentiation are not fully understood [7].

Peroxisome proliferator-activated receptors (PPARs) are
members of nuclear receptor superfamily [9] and regulate a
large number of genes that are essential for lipid and met-
abolic homeostasis and energy balance [10]. PPARc is
expressed predominantly in mature adipocytes and its role
as a key transcriptional factor controlling adipocyte differ-
entiation has been demonstrated [11, 12]. Although very
little amount of PPARc is detectable in skeletal muscle cells
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(5–10% of the expression observed in fat cells) [13–17], its
physiological role in muscle is suggested by the fact that
insulin sensitizers such as thiazolidinediones confer action
on muscle as PPARc ligand, the main site for insulin-
stimulated glucose uptake [18–20]. Role of PPARc in
skeletal muscle differentiation is not clear. Earlier studies
with genetic manipulation of PPARc failed because com-
plete elimination of functional PPARc gene by knockout
resulted in embryonic lethality [20–22] making PPARc an
essential gene for their survival. Role of PPARc in the
urothelial differentiation programme has been proposed
[23]. Recently, an interaction between MyoD and PPARc
has been reported indicating a connection between PPARc
and MyoD [24]. However, whether PPARc could mediate
myogenic differentiation of skeletal muscle cells remains to
be established.
To elucidate a functional link between PPARc expression

and the induction of myogenic differentiation, we tested
whether modulation of PPARc expression can affect skeletal
muscle cells differentiation. Results suggest that critical
expression of PPARc is required in the normal myogenic
differentiation of skeletal muscle cells. To the best of our
knowledge, this is the first report, which establishes the
relationship between skeletal muscle cell differentiation as a
function of PPARc expression.

Materials and methods

Materials

C2C12 Mouse skeletal muscle cell line was kindly provided
by Dr. H. Blau, Stanford University, School of Medicine,
Stanford, USA and Dr. J. Dhawan, CCMB, India. Dul-
becco’s modified Eagle’s medium (DMEM), horse serum
and trypsin-EDTA were purchased from Gibco BRL, USA.
Foetal calf serum (FCS) was from Biological Industries,
Israel. Rabbit polyclonal PPARc antibody, anti-myogenin
antibody and anti-MyoD antibody were purchased from
Santa Cruz Biotechnology, USA. Nitrocellulose mem-
branes, TEMED, acrylamide, bisacrylamide and glycine
were purchased from Bio-Rad, USA. All other rea-
gents, unless attributed specifically, were purchased from
Sigma, USA. All the plasticwares were purchased from
Tarsons, India.

Plasmid constructs

For sense and antisense constructs of PPAR-c, a copy of
�1.5 kb mouse PPAR-c gene was isolated from pCMX-
mPPARg cDNA clone (kind gift from Ronald M. Evans,
The Salk Institute for Biological Studies, San Diego, CA,

USA) and inserted into the cloning site of the plasmid
pCDNA3.1neor (Invitrogen) in sense and antisense orien-
tation with respect to CMV promoter (sense, pCDNA3.1-
mPPARc/+ and antisense, pCDNA3.1-mPPARc/)). Plas-
mids were expanded in Escherichia coli (strain DH5a) and
isolated with Wizard Plus Midiprep DNA isolation kit
(Promega, Madison, WI, USA).

Transfection

C2C12 skeletal muscle cells in the exponential growth
phase were transfected with PPAR-c sense or antisense
plasmid construct using TransFast transfection reagent
(Promega, Madison, WI, USA), as described previously [6].
Briefly, transfection reagent was incubated with plasmid
DNA constructs in serum-free DMEM at room temperature
for 15 min. This transfection mixture was applied to the
proliferating cells and incubated for 1 h at 37 �C. Following
incubation, DMEM with 15% FCS was overlaid on the plate
and further incubated at 37 �C. Selection drug (G-418) was
applied to a final concentration of 400 lg ml)1 after 24 h
incubation and were maintained in a medium containing G-
418 until proliferating cells in the control plate had died
(approximately after 8–10 subculture). At this stage all the
proliferating cells from the plates containing transfected
cells were trypsinized, washed, and a part of the cells was
continued with the subculturing without G418 and another
part was subjected to differentiation, according to the pro-
cedure described below. After differentiation, the cells were
lysed and tested for the degree of expression of PPARc
protein. When expected results were obtained (over
expression in case of PPARc/+ transfected cells and under
expression in PPARc/) transfected cells) in the differenti-
ated cells, the proliferated cells, which were being parallaly
subcultured, were grown in bigger culture, frozen as stocks
of stably transfected cell lines. As and when required cells
were thawed from the stocks, subcultured 2–3 times, tested
for degree expression of PPARc in respective stable cell line
and subjected to experimentation.

Cell culture and induction of differentiation

The C2C12 skeletal muscle cell lines (wild type and trans-
fectants) were cultured as described previously [25]. Briefly,
they were maintained in DMEM supplemented with 15%
FCS and antibiotics (penicillin 100 IU ml)1, streptomycin
100 lg ml)1) in 5% CO2 at 37 �C. When the cells achieved
70% confluency, they were differentiated in 2% horse serum
for 3 days. Under these conditions, cells were found to be
healthy, viable and not undergoing necrosis or apoptosis, as
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observed under phase contrast microscope (Fig. 1) and
trypan blue staining (data not shown). Moreover, all three
kinds of cells were found to be capable of significant
amount of glucose uptake [26].

Cell counting for determination of fusion index

Fusion index of the myotubes were calculated as described
previously [27] with minor modifications. Briefly, cells were
grown over cover slips, fixed with paraformaldehyde (3%,
w/v) and stained with 10 lg ml)1 propidium iodide (PI).
The total number of nuclei and the number of nuclei
incorporated in myotubes were scored in 10 microscopic
fields/dish chosen at random. The fusion index was calcu-
lated as the percentage of nuclei incorporated in the myo-
cytes relative to the total number of nuclei.

Preparation of cell lysates and Western-immunoblotting

Cells were lysed and protein expression levels were ana-
lyzed by Western-immunoblot analysis, as described previ-
ously [25]. Equal amount of protein samples were resolved

by sodium dodecyl sulphate poly-acrylamide gel electro-
phoresis (SDS-PAGE) and transferred to nitrocellulose
membranes. The membranes were blocked with 5% bovine
serum albumin (BSA) and incubated with the indicated
primary antibodies for 12–16 h, followed by 1 h incubation
with alkaline phosphatase conjugated secondary antibody.
The protein bands were visualized with BCIP/NBT as sub-
strate.

Creatine kinase (CK) assay

The CK assay was performed, as described previously [6].
Briefly, cells growing on 35 mm Petri plates were washed
twice with ice-cold PBS. To each Petri plate, 40 ll of ice-
cold 0.05 M glycylglycin (pH 6.75) was added. Petri plates
were kept at )20 �C for 24 h. The cells were scrapped after
thawing on ice, centrifuged at 16,000 · g for 10 min at
4 �C and subjected to CK assay. The assay contained
10 mM glucose, 2.5 mM magnesium acetate, 0.5 mM ADP,
5 mM AMP, 0.4 mM NADP, 10 mM creatine phosphate,
1 U/ml hexokinase, 0.5 U/ml glucose-6-phosphate dehy-
drogenase and freshly added 1.54 mg/ml dithiothreitol in
0.1 M glycylglycin (pH 6.75). The reaction was initiated by

Proliferated cells  Differentiated cells 

C2C12wt

C2PPARγ /+

C2PPARγ /-

Fig. 1. State of differentiation due to modulation of PPARc expression in C2C12 myoblasts. C2C12wt, C2PPARc/+ and C2PPARc/) cells were proliferated
for 48 h after subculture. When cells reached to 70% confluency, they were differentiated for 3 days in differentiation medium containing 2% horse serum and
photographed.
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adding 1 lg of protein in a total assay volume of 50 ll. The
change in absorbance was measured at 340 nm up to 5 min
using Lambda Bio 10 UV/vis spectrometer (Perkin Elmner,
USA).

Immunofluorescence microscopy

Immunofluorescence microscopy studies were carried out,
as described previously [26] and visualized under flores-
cence microscope (Nikon E600, Japan).

Densitometric analysis

Densitometric analyses of the Western blots were done using
Gel Doc 2000 equipped with Quantity One 1-D analysis
software (Bio-Rad, USA) as described previously [26]. The
relative values of the samples were determined by giving an
arbitrary value of 1.0 to the respective control samples of
each experiment, keeping the background value as 0.

Statistical analysis

The data are expressed as mean ± standard error of mean
(s.e.m.). For comparison of two groups, p-values were cal-
culated by two-tailed unpaired Student’s t-test. In all cases,
p < 0.05 was considered to be statistically significant.

Results

C2C12 is well-characterized cell culture model used to
study skeletal muscle differentiation. Under conditions
permissive for differentiation, such as low serum concen-
tration, C2C12 myoblasts undergo differentiation to form
myotubes. We have previously established cell lines derived
from C2C12 myoblasts after stable transfection with sense
(C2PPARc/+) or antisense (C2PPARc/)) plasmid constructs
of mouse PPARc in order to study its role in insulin resis-
tance [26]. By Western-immunoblot analysis, we have
shown that stable transfection of C2C12 skeletal muscle
cells with sense or antisense plasmid constructs of PPARc
significantly modulated the level of PPARc expression with
28.57% increase in C2PPARc/+ cells or 23.07% decrease in
C2PPARc/) cells as compared to C2C12wt [26]. Using
these cell lines, present studies were designed to analyze the
potential effect(s) of PPARc expression on skeletal muscle
cell differentiation.
To investigate the effect(s) of PPARc expression in skel-

etal muscle differentiation, wild type and transgenic C2C12
myoblasts (C2C12wt, C2PPARc/+ and C2PPARc/))

were incubated under conditions permissive for differentia-
tion and cultures were examined daily. When cultured
in DMEM growth medium containing 15% FCS, all the three
cell lines mentioned above proliferated normally (Fig. 1).
When these cells were incubated for 3 days in differentiation
medium containing 2% horse serum, extensive myotube
formation was observed in C2C12wt cells adopting a
spindle shaped morphology and membrane fusion to form
multinucleated myotubes, as expected under these condi-
tions (Fig. 1). Similar results were obtained in cells that
contained vectors without the inserted gene (data not
shown). In contrast, C2C12 cells either overexpressing
(C2PPARc/+) or inhibited PPARc (C2PPARc/)) expression
exhibited a marked reduction in their ability to form
myotubes (Fig. 1).

To visualize the nuclei, cells were stained with propidium
iodide (Fig. 2A). In C2C12wt cells, majority of them were
multinucleated (Fig. 2A) with average number of nucleus in
each myotubes being 13.2 ± 1.28 (Fig. 2B, lane 1) and the
fusion index was calculated to be 38.75 ± 1.6 (Fig. 2C, lane
1). However, in C2PPARc/+ or C2PPARc/) cells, majority
of them were mononucleated (Fig. 2A, B) and the fusion
index was decreased to 3.8 ± 0.92 and 4.2 ± 1.4 respectively
(Fig. 2C, lanes 2 and 3). Thus, data shows that altered
expression of PPARc repressed the myogenesis process in
C2C12 cells.

To further establish these observations, the phenomenon
was investigated biochemically by the determination of
myogenin and MyoD expression levels and creatine kinase
activity, as they are known muscle differentiation markers
[27–29]. During differentiation, these myogenic factors
activates muscle-specific genes and coordinate withdrawal
from the cell cycle [4]. It has been well established that
expression of myogenin, an early marker for the entry of
myoblasts into the differentiation pathway occurs only in
post-mitotic myocytes and is expressed between 8 and 24 h
of the in vitro initiation of differentiation [2, 7, 30, 31].
Therefore, our initial interest was to determine whether
myogenin expression is affected due to alteration of
expression of PPARc in C2C12 skeletal muscle cells. To
this end, all the three cell lines (C2C12wt, C2PPARc/+ and
C2PPARc/)) were incubated for 24 h under conditions for
differentiation (DMEM containing 2% horse serum) and the
level of myogenin expression was examined by Western-
immunoblotting (Fig. 3). Myogenin expression was not
detected in proliferating myoblasts of all the three cell lines
(data not shown), which was expected [2, 32, 33]. C2C12wt
cells differentiated in 2% horse serum medium showed high
level of myogenic expression (Fig. 3, lane 1). In contrast,
the level of myogenin expression was very low in
C2PPARc/+ (6.4% of C2C12wt) (Fig. 3, lane 2 compared to
lane 1; p< 0.01) or in C2PPARc/) cells (4.4% of C2C12wt)
(Fig. 3, lane 3 compared to lane 1; p < 0.01).
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Proliferating myoblast showed no detectable CK activity
(data not shown); however, CK activity was detectable after
day 1 of culture in differentiation medium. In C2C12wt
cells, CK activity increased by about 3.5-fold from day 1 to
day 3 when incubated in differentiation medium (Fig. 4,
lanes 7 compared to lane 1, p< 0.01), which was consistent
with our previously reported results [25]. However, when
C2PPARc/+ or C2PPARc/) cells were incubated in differ-
entiation medium, the CK activity was constantly lower than
that detected in C2C12wt cells for the entire 3 days period
of differentiation (Fig. 4). C2PPARc/+ cells showed 3.5-
fold and 4.5-fold less activity than C2C12wt after day 2 and
day 3, respectively (Fig. 4, lane 5 compared to lane 4 and
lane 8 compared to lane 7; p< 0.01), whereas C2PPARc/)
cells showed 3.3-fold and 4.1-fold less activity than
C2C12wt after day 2 and day 3, respectively (Fig. 4, lane 6
compared to lane 4 and lane 9 compared to lane 7; p < 0.01).
To determine the degree of MyoD expression, all the

three cell lines were incubated in the differentiation medium

for 3 days. Cells were lysed and Western immunoblotted
using anti-MyoD antibody (Fig. 5A). Marked reduction of
MyoD expression was observed in C2PPARc/+ or
C2PPARc/) cells as compared to C2C12wt cells (Fig. 5A,
lanes 2 and 3 compared to lane 1; p< 0.01). The expression
of MyoD was also monitored by immunofluorescence
microscopy. Cells growing on coverslips were incubated in
differentiation medium for 3 days and subjected to immu-
nofluorescence microscopy analysis probing anti-MyoD
antibody and visualized by FITC labeled secondary anti-
body. Immunofluorescent image showed that the expression
of MyoD was greatly inhibited in cells with altered PPARc
expression (C2PPARc/+ or C2PPARc/)) (Fig. 5B). Thus,
data show that alteration of PPARc expression in C2C12
cells repressed the myogenesis process.

These observations suggest that the critical level of
expression of PPARc is required for normal differentiation of
skeletal muscle cells. Any alteration in the PPARc expres-
sion in skeletal muscle may cause faulty differentiation.
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Fig. 2. Determination of nuclear fusion in differentiated cells. (A) C2C12wt, C2PPARc/+ and C2PPARc/) cells were grown on coverslips and differentiated
for 3 days. Cells were fixed, permeabilized and stained with PI (10 lg/ml). At least 10 microscopic fields were photographed and a representative figure is
shown. (B) Average number of nuclei per myotubes were counted and presented. lane 1: C2C12wt; lane 2: C2PPARc/+; lane 3: C2PPARc/). (C) Fusion index
were calculated as described in ‘material and methods’. lane 1: C2C12wt; lane 2: C2PPARc/+; lane 3: C2PPARc/). Data are mean ± standard error of mean
(s.e.m.) of three independent experiments (*p< 0.01).
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Discussion

Physiological characterization of PPARc deficiency in mice
has been limited to the study of heterozygous PPARc+/)
mice or tissue-specific deletions; because PPARc)/) mice
die during intra-uterine development owing to defects in the
placenta [34, 35]. Muscle-specific PPARc deficient mice
have been shown to develop insulin resistance [16, 17].
PPARc is required in mature white and brown adipocytes
for their survival in the mouse [36]. It has been shown
in vitro that PPARc is required for differentiation of adipose
cells from embryonic stem cells and from embryonic
fibroblasts [37]. These studies have led to re-interpret the
role of PPARc in the control of cellular physiology and
prompted us to investigate whether PPARc is required for
skeletal muscle cell development and differentiation.
Recently, we have shown that inhibition of muscle

PPARc expression caused insulin resistance in vitro [26].
Overexpression of PPARc sensitized the cells to insulin
causing more glucose uptake even under insulin resistant

conditions [26]. However, the cells with alerted PPARc
expression could not differentiate properly. In cultured cell
systems, it has been possible to observe the activation of
inappropriate programme of gene expression. In this study,
alteration in the expression of PPARc completely blocked
muscle differentiation and prevented transcriptional activa-
tion of muscle-specific genes by the myogenic activators
myogenin, MyoD and creatine kinase, which are directly
linked to cell cycle regulating proteins and are regulators of
skeletal muscle differentiation. The ability to form myotubes
was completely lost if the expression of PPARc was altered.
This suggests PPARc‘s role as myogenic transcriptional
regulators. To date there are no report of the role of PPARc
in skeletal muscle differentiation. It appears from present
studies that critical expression of PPARc is necessary to
maintain differentiation in skeletal muscle cells. Long-term
expression or activation of PPARc may result in modulation
of different subsets of differentiation related genes. The
mechanism whereby PPARs may participate in different
cellular processes is still not clear but may involve different
substrates, which needs to be addressed. This suggests
PPARc‘s role as myogenic transcriptional regulators.

The three PPAR subtypes identified PPARa, PPARd (also
called b), and PPARc (c1, c2, and c3 isoforms) exhibit
unique as well as overlapping tissue-specific expression and
ligand activation profiles, and regulate physiological pro-
cesses [38–40]. They are encoded by separate genes and
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exhibit distinct tissue distribution in animals [41–42].
However, the normal function of PPARs remains unclear.
PPARc is expressed predominantly in mature adipocytes
and its role as a key transcriptional factor controlling adi-
pocyte differentiation has been demonstrated [43–46]. Per-
oxisome proliferation (PP) family of nuclear receptors are
PPARa, PPARc, and PPARd. PP is mediated by PPARa,
that regulate the expression of genes associated with lipid
metabolism and adipocyte differentiation. PPARc is
involved in adipogenesis and differentiation, but the events
do not directly involve peroxisomes and peroxisome pro-
liferation. PPARs heterodimerize with 9-cis-retinoic acid
receptor (RXR), and bind to PP response element(s)
(PPREs) on the target gene promoter to initiate transcrip-
tional activity. There are tissue- and species-specific
responses that depend on relative abundance of PPAR,
PPRE, the degree of competition and/or cross-talk among
nuclear transcription factors, pharmacokinetics and modu-
lations of coactivators and corepressors on ligand-dependent
transcription of PPARs [47]. Zhu and Reddy [47] have
identified PPAR coactivators like steroid receptor coactiva-
tor-1 (SRC-1) and PPAR-binding protein (PBP). PPARc
coactivator-1a (PGC-1a), a coactivator at the transcriptional
level is specifically expressed in skeletal muscle. The
expression of PGC-1a in muscle is regulated by two tran-
scription factors, MEF2 and FKHR, implicated in terminal
differentiation of muscle [48, 49]. In both C2C12 and Sol8
myoblasts, Chang et al. [49] observed that myogenic bHLH

proteins, MyoD, activated PGC-1a expression in vivo,
which in turn was activated during terminal muscle differ-
entiation. These results directly implicated the activation of
the key fibre-type and metabolic switch gene PGC-1a.
PGC-1a and PGC-1b regulate PPARa [50]. Identification of
additional coactivators that may be responsible for cell-
specific transcriptional activation of PPAR-mediated target
genes will be necessary to gain more insight into the
responses regulated by PPAR. We have provided evidences
for a cellular control component that regulate muscle-spe-
cific proteins. PPARc conceivably participates through a
variety of known and/or yet unknown coactivators, as
discussed above. It may affect the myogenic factors in the
regulatory networks that convey inhibitory signals in myo-
blasts to the important myogenic control factors present in
the nucleus. In this connection, it is important to assemble a
complete picture of signaling pathways triggered by pro-
liferative and differentiation factors, and the mechanisms
that coordinate these processes leading to muscle diff-
erentiation. This understanding, together with greater
physiological knowledge of the impact of certain gen-
etic manipulations in vivo, is essential to design future
approaches for the treatment of skeletal muscle diseases and
for the prevention of or recovery from muscle loss in situ-
ations such as cachexia, muscle wasting or sarcopenia. From
a pathophysiological point of view, it may be essential to
ensure that PPARc expression is not altered as it may alter
sequence of events in the repair of injured muscles during
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subsequent differentiation of myotubes. To the best of our
knowledge, this is the first report, which establishes the
relationship between skeletal muscle cell differentiation as a
function of PPARc expression.
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