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Abstract
We investigate the dynamics of customer geometric abandonment within a queueing frame-
work characterized by renewal input batch arrivals and multiple vacations. Customers’
impatience becomes evident when confronted with server vacations, triggering instances
of abandonment. This phenomenon reduces the number of customers within the system dur-
ing abandonment epochs following a geometric distribution. The probability of customers
leaving the queue escalates with prolongedwaiting times.We derive concise and closed-form
expressions for system-length distributions at pre-arrival and arbitrary epochs by harness-
ing the power of supplementary variable and difference operator methods. Furthermore, we
elucidate specific instances of our model, shedding light on its versatility. To substantiate
our theoretical framework, we provide a series of illustrative numerical experiments pre-
sented through meticulously crafted tables and graphs, thereby showcasing the robustness
and applicability of our methodology.

Keywords Renewal input · Batch arrival · Geometric abandonment · Difference operator ·
Roots · Vacations

Mathematics Subject Classification 60K25 · 68M20 · 90B22

1 Introduction

Numerous articles have investigated server vacations in queueing systems, analyzing situa-
tions where servers may become temporarily unavailable to serve jobs during specific time
intervals. These scenarios are prevalent in real-life applications. For further insights into
vacation queues and related topics, one may refer to Doshi (1986), Takagi (1991) and Tian
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and Zhang (2006). Another area of research focuses on impatient queueing systems, where
impatience can arise due to server unavailability (vacations). Customer satisfaction decreases
when customers experience longer waiting times during server vacations, often leading to
abandonment and reluctance to return to the system, resulting in customers leaving with-
out being served. The literature, along with references such as Barrer (1957), Daley (1965),
Baccelli and Hebuterne (1981), Baccelli et al. (1984), De Kok and Tijms (1985), Goswami
(2015), andGoswami andMund (2020), delves into customer impatiencewithin the queueing
system. This queueing model plays a significant role in various real-life scenarios, including
call centers, emergency rooms of hospitals, and inventory systems storing perishable goods.
The literature explores multiple types of impatience, considering customer abandonments
such as independent, binomial, and geometric.

Several researchers have extensively studied independent abandonments in queueing sys-
tems, as evidenced by the works of Altman and Yechiali (2006), Yechiali (2007), Perel and
Yechiali (2010) and Dudin et al. (2023), and the references to these. These studies have pro-
vided a foundation for exploringmore complex abandonment patterns, such as geometric and
synchronized abandonment. Dimou and Economou (2013) analyzed the M/M/1 queue with
geometric reneging and catastrophes, providing valuable insights into the impact of geometric
abandonment and unexpected system failures. The concept of synchronized abandonment,
involving various variations in simple Markovian queues, has been thoroughly discussed
in the works of Economou (2004), Adan et al. (2009), Economou and Kapodistria (2010),
Kapodistria (2011), Panda et al. (2016) and Panda and Goswami (2020). Adan et al. (2009)
also examined the M/M/1 and M/G/1 multiple vacation queues with synchronized aban-
donment, considering both single and multiple abandonment epochs occurring during each
vacation period. Goswami and Panda (2021) analyzed the renewal input multiple vacations
queue with synchronized abandonment, contributing to a comprehensive understanding of
abandonment patterns in complex queuing systems. Dimou et al. (2011) extended the study to
encompass theM/M/1 queue with vacations and geometric abandonment, adding to the exist-
ing knowledge on the interplay between vacations and geometric abandonment in queueing
systems. Furthermore, Sun et al. (2023) explored customers’ strategic behavior in an observ-
able N policy M/M/1 queue with geometric abandonments, shedding light on the influence
of observable queue information on customer decision-making. These research contributions
have significantly advanced our understanding of abandonment patterns in queueing systems,
providing valuable insights that apply to real-life scenarios in diverse industries.

Queueingmodels that prioritize customers arriving in batches rather than individually find
practical applications in various domains, including inventory and manufacturing systems.
However, the current literature review highlights the need for more attention to the renewal
batch arrival single server vacation queue with geometric abandonment. Fortunately, there is
a simple and effective solution using the supplementary variable technique and the shift oper-
ator technique, which enables the derivation of analytical explicit results without the need for
obtaining the Markov chain’s transition probability matrix at arrival moments or inverting
any probability-generating function. This method has gained popularity among researchers
due to its ease of implementation and understanding (Barbhuiya and Gupta 2019; Barbhuiya
et al. 2019; Yu and Tang 2022). A batch arrival single server vacation queue with geometric
abandonment is a specific queuing system type encompassing multiple customer arrivals
in batches, a single server responsible for handling these customers, and the possibility of
customers abandoning the queue based on a geometric distribution. As customers arrive in
batches, the system efficiently serves a single server. However, customers might leave the
system during vacation if their waiting time surpasses a certain threshold. A geometric dis-
tribution accurately models the abandonment behavior, where the probability of customers
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leaving the queue increases as their waiting time escalates. This comprehensive model effec-
tively captures real-world scenarios where customersmay abandon the queue due to extended
waiting times during server vacations.

A realistic understanding of customer behavior in batch arrival queueingmodelswith vaca-
tions and geometric abandonment is essential due to their relevance in real-life applications.
Travel, hospitality, and retail industries experience fluctuations in customer demands and
service requirements during vacation. These peak vacation periods often witness a surge in
customer traffic and longer service times due to increased demand and limited staff availabil-
ity. In such scenarios, a geometric abandonment queueing system becomes relevant, where
number of customers leaving the queue sequentially based on a geometric distribution if they
have to wait beyond a certain threshold during server’s absence. Implementing a vacation
queueing model enables organizations to effectively manage their resources and meet cus-
tomer needs during peak vacation periods. Despite its practical significance, the literature
on this topic remains limited due to the analytical complexity arising from geometric aban-
donment. This paper addresses this gap by analyzing the abandonment issue in a renewal
batch arrival and vacation queue setting. By delving into the dynamics of customer behav-
ior in such systems, the study provides valuable insights for organizations to optimize their
operations and enhance customer satisfaction during peak vacation periods. For instance,
consider a customer support call center that operates year-round but experiences a surge in
call volume during vacations. The call center has a limited number of operators available to
handle the calls, which leads to longer average time between arrivals during vacation periods.
To maintain a high service level, the call center aims to keep the average waiting time for
customers minimal. If a customer waits beyond a certain threshold, there is a probability that
they may abandon the queue. In such a setting, the call center can use a geometric aban-
donment queue model to analyze the system’s performance during vacations. By employing
the geometric abandonment queueing model, the call center can optimize staffing levels and
other operational parameters to achieve the desired service level targets and minimize cus-
tomer abandonment rates during peak vacation periods. This approach allows the call center
to efficientlymanage customer demands and enhance overall service quality during increased
call volume.

The rest of the paper is organized into the following sections. Section 3 describes the
model and governing equations. Section 4 delves into analyzing steady-state queue-length
distributions at various epochs using the shift operator and the theory of difference equa-
tion method. Different performance descriptors of the system are presented in Section 5,
while Section 6 explores several specific cases of the proposed model. In Section 7, various
numerical examples illustrate the findings. Finally, Section 8 concludes the paper.

2 Call Center Application

A renewal batch arrival queue with vacations and geometric abandonment is a queuing
system that incorporates several features to model real-world scenarios more accurately. Let
us take an example of the call center. Call centers (Fig. 1) are one of the primary channels of
communication between businesses and their clients in various industries.

Operations must be increasingly customized and cater to customers’ needs as an essen-
tial requirement to meet their expectations. The quality of services can be measured using
stochastic models in queuing theory. In a call center queueing model, users call to get infor-
mation or resolve a particular issue, the servers are the system’s agents providing services
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Fig. 1 Schematic diagram of a call center

to users, and the queues are the users waiting for assistance. Call Centers frequently use a
queueing model to measure operational service quality in terms of performance metrics and
congestion. Whitt (2005) examined the queueing model in call centers without considering
the abandonment behavior of users, while literature (Baccelli and Hebuterne 1981; Garnett
et al. 2002;Mandelbaum and Zeltyn 2005; Brown et al. 2005) examinedmodels that included
abandonment. The call center sector has increased, and due to this growth, managing call cen-
ters has become a complex business. Call center managers should choose a more appropriate
set of actions to maintain strategic and operating decisions.

In the existing literature, researchers discussed the arrival of calls single at a time that
follows Poisson distribution. There needs to be more discussion on the issue that multiple
calls arrive at the queue simultaneously as a group or batch following a general distribution.
However, as call centers expand, managing them becomes increasingly complex, necessitat-
ing data-driven decisions to improve strategic and operational aspects (Fig. 2). This study
proposes a GIX /M/1 + M queue model with multiple vacations and geometric abandonment,
where the impatience timer follows an exponential distribution. This approach effectively
assesses congestion issues and supports design and operational decisions in call centers.
The model considers incoming calls arriving in batches during specific time intervals, with
call center agents taking scheduled breaks (vacations) during which no service is provided.
Arriving callers may either wait until the planned vacation ends or abandon the queue due to
extended waiting times. The exponential distribution helps to model abandonment patterns,
where the probability of abandonment decreases with each attempt to get service. In other

Fig. 2 A batch queueing model representation of a call center
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words, the longer an entity waits in the queue, the more likely it is to abandon it. Applying
this model enables businesses and organizations to assess call center performance, identify
bottlenecks, and optimize resource allocation to enhance customer satisfaction and overall
efficiency. Organizations can make data-driven decisions that improve service quality and
customer experience by understanding call center dynamics through queuing models.

3 Description of theModel and Governing Equations

We consider a continuous-time GIX /M/1 + M queue with multiple vacations and geometric
abandonment. The key assumptions and description of the model are as follows:

– Customers arrive in batches of random size X with probability mass function (pmf) gi for
i = 1, 2, . . . . The probability generating function (pgf) is denoted asG(z) = ∑∞

i=1 gi z
i ,

and the mean batch size is ḡ = ∑∞
i=1 igi . Since real-world scenarios often involve finite

batch sizes, we assume the maximum batch size is � for practical and computational
reasons. Therefore, the pgf and the mean batch size become G(z) = ∑

�

i=1 gi z
i and

ḡ = ∑
�

i=1 igi , respectively.
– The inter-arrival times of successive batch arrivals are independent and identically dis-
tributed (iid) random variables with cumulative distribution function A(u), probability
density function a(u) for u ≥ 0, Laplace-Stieltjes transform (LST) denoted as A∗(s), and
mean inter-arrival time 1/λ = −A∗(1)(s), where A∗(1)(0) represents the first derivative
of A∗(s) evaluated at s = 0.

– The service times are exponentially distributed random variables with rate μ. Customers
upon arrival join a single queue with infinite capacity and are served on a first-come-
first-served basis.

– After a service completion, if the system becomes empty the server goes on vacation.
Upon returning from vacation, if the server finds an empty system, it takes another
vacation. Otherwise, they end the vacation and return to active mode to serve customers
in the queue. Vacation times are exponentially distributed with rate η.

– During server vacations, customers may abandon the queue according to a Poisson pro-
cess with rate ϕ. At each abandonment opportunity, customers are considered one by
one sequentially. They either abandon the system with probability p or choose to stay in
the system with probability q , where p + q = 1. Alternatively, we can also assume that
at an abandonment opportunity epoch, the number of customers in the system decreases
based on a geometric distribution.

– The traffic intensity of the system is given by ρ = λḡ/μ, where ρ < 1 ensures the
stability of the system under steady-state conditions.
In summary, the GIX /M/1 +Mmodel accounts for the complexities of real-world scenar-
ios, such as batch arrivals, server vacations, and customer abandonment, which are vital
considerations for understanding and optimizing the performance of queueing systems
in various practical applications.

We study steady-state system using the supplementary variable technique. The system state
at time t can be described by a Markov process {(N (t), I (t), V (t)), t ≥ 0}, with state space
{(n, i) : n ≥ i = 0, 1} × [0,∞), where

– N (t) is the number of customers in the system at time t ,
– I (t) is the server’s state at time t , 0 if the server is in vacation, and 1 if the server is busy,
– V (t) is the remaining inter-arrival time of the next arrival at time t .
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Let us define the joint probabilities as

πk,0(v, t)dv = P {N (t) = k, v ≤ V (t) < v + dv, I (t) = 0} , v ≥ 0, k ≥ 0,

πk,1(v, t)dv = P {N (t) = k, v ≤ V (t) < v + dv, I (t) = 1} , v ≥ 0, k ≥ 1.

In steady-state, we have

πk,0(v) = lim
t→∞ πk,0(v, t), v ≥ 0, k ≥ 0,

πk,1(v) = lim
t→∞ πk,1(v, t), v ≥ 0, k ≥ 1.

By relating the states of the system at time t and t + �t , using supplementary variable
technique and taking lim

t→∞ after simplification, we obtain the following set of difference-

differential equations.

− d

dv
π0,0(v) = μπ1,1(v) + ϕ

∞∑

j=1

p jπ j,0(v), (1)

− d

dv
πk,0(v) = − (ϕ + η)πk,0(v) + a(v)

k∑

i=1

giπk−i,0(0)

+ ϕq
∞∑

j=k

p j−kπ j,0(v), 1 ≤ k ≤ � − 1,

(2)

− d

dv
πk,0(v) = − (ϕ + η)πk,0(v) + a(v)

�∑

i=1

giπk−i,0(0)

+ ϕq
∞∑

j=k

p j−kπ j,0(v), k ≥ �,

(3)

− d

dv
π1,1(v) = −μπ1,1(v) + ηπ1,0(v) + μπ2,1(v), (4)

− d

du
πk,1(v) = − μπk,1(v) + μπk+1,1(v)

+ a(v)

k−1∑

i=1

giπk−i,1(0) + ηπk,0(v), 2 ≤ k ≤ �,

(5)

− d

du
πk,1(v) = − μπk,1(v) + μπk+1,1(v)

+ a(v)

�∑

i=1

giπk−i,1(0) + ηπk,0(v), k ≥ � + 1.
(6)
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To obtain the steady-state probabilities πk,i , k ≥ i, i = 0, 1, we introduce the following
Laplace-Stieltjes transforms (LSTs).

π∗
k,i (s) =

∫ ∞

0
e−svπk,i (v)dv, k ≥ i, i = 0, 1,

∫ ∞

0
e−sv d

dv
πk,i (v)dv = sπ∗

k,i (s) − πk,i (0), n ≥ i, i = 0, 1.,

πk,i = π∗
k,i (0) =

∫ ∞

0
πk,i (v)dv, k ≥ i, i = 0, 1.

Multiplying (1) to (4) by e−θv and integrating with respect to v from 0 to ∞, we have

(ϕ − s)π∗
0,0(s) = μπ∗

1,1(s) + ϕ

∞∑

j=0

p jπ∗
j,0(s) − π0,0(0), (7)

(ϕ + η − s)π∗
k,0(s) = A∗(s)

k∑

i=1

giπk−i,0(0)

+ ϕ

∞∑

j=k

qp j−kπ∗
j,0(s) − πk,0(0), 1 ≤ k ≤ � − 1,

(8)

(ϕ + η − s)π∗
k,0(s) = A∗(s)

�∑

i=1

giπk−i,0(0)

+ ϕ

∞∑

j=k

qp j−kπ∗
j,0(s) − πk,0(0), k ≥ �,

(9)

(μ − s)π∗
1,1(s) = μπ∗

2,1(s) + ηπ∗
1,0(s) − π1,1(0) (10)

(μ − s)π∗
k,1(s) = μπ∗

k+1,1(s) + ηπ∗
k,0(s)

+ A∗(s)
k−1∑

i=1

giπk−i,1(0) − πk,1(0), 2 ≤ k ≤ �,
(11)

(μ − s)π∗
k,1(s) = μπ∗

k+1,1(s) + ηπ∗
k,0(s)

+ A∗(s)
�∑

i=1

giπk−i,1(0) − πk,1(0), k ≥ � + 1.
(12)

Adding Eqs. (7) to (12) for all values of n, and simplifying gives

∞∑

k=0

π∗
k,0(s) +

∞∑

k=1

π∗
k,1(s) = 1 − A∗(s)

s

{ ∞∑

k=0

πk,0(0) +
∞∑

k=1

πk,1(0)

}

. (13)

Applying the normalization condition
∞∑
k=0

πk,0 +
∞∑
k=1

πk,1 = 1 in (13) and taking limit as

s → 0, we obtain the relation

∞∑

k=0

πk,0(0) +
∞∑

k=1

πk,1(0) = λ. (14)
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The left-hand side of (14) refers to the average number of system entries per unit of time and
is equal to the average arrival rate λ.

4 System-Length Distribution

We define the shift operator E for the sequences
{
πk,	(0) k ≥ 	

}
and

{
π∗
k,	(s) k ≥ 	

}

(	 = 0, 1) by Eπ∗
k,	(s) = π∗

k+1,	(s) and Eπk,	(0) = πk+1,	(0), 	 = 0, 1. Applying
the shift operator to Eq. (8) and simplifying, we get
(

s − η − ϕ + ϕq
∞∑

	=0

p	E	

)

π∗
k,0(s) =

(

E� − A∗(s)
�∑

i=1

gi E
�−i

)

πk−�,0(0), k ≥ �.

(15)

Setting s = η + ϕ − ϕq
∑∞

	=0 p
	E	 in (15), we have

[

E� − A∗
(

η + ϕ − ϕ q

1 − pE

) �∑

i=1

gi E
�−i

]

πk,0(0) = 0, k ≥ 0. (16)

The characteristic equation representing to (16) is

z� − A∗
(

η + ϕ − ϕ q

1 − pz

) �∑

i=1

gi z
�−i = 0, since |pz| < 1. (17)

Theorem 1 The characteristic equation z� − A∗
(
η + ϕ p(1−z)

1−pz

)∑
�

i=1 gi z
�−i = 0 has pre-

cisely � roots inside the unit circle.

Proof Let the functions g(z) = z� and k(z) = −A∗
(
η + ϕ p(1−z)

1−pz

)∑
�

i=1 gi z
�−i be analytic

in the circle |z| < 1. Consider H(z) = A∗
(
η + ϕ p(1−z)

1−pz

)
. For a sufficiently small ε > 0,

H(z) is holomorphic on and inside the closed disk |z| = 1 + ε. There exists a power series∑∞
	=0 hk(z−1)	 which converges to H(z) for complex analytic function in conformity with

Taylor’s theorem, where the coefficients hk = H	(1)
	! . Applying the Taylor series expansion

for H(z), on the simple closed curve |z| = 1 − δ, where δ > 0 and is sufficiently small, we
have

|g(z)| = (1 − δ)� = 1 − �δ + o(δ),

|k(z)| = |H(z)|
∣
∣
∣
∣
∣

�∑

i=1

gi z
�−i

∣
∣
∣
∣
∣
≤ H(|z|)

�∑

i=1

gi |z|�−i = H(1 − δ)

�∑

i=1

gi (1 − δ)�−i

=
{

H(1) + H
′
(1)

1! (1 − δ − 1) +
∞∑

	=2

H (	)(1)

	! (1 − δ − 1)	
}

�∑

i=1

gi [1 − �δ + o(δ)]

= 1 − �δ +
(

ḡ − μ p

λ q

)

δ + o(δ) ≤ |g(z)|

So, from Rouché’s theorem, one can state that g(z) and g(z) + k(z) have precisely � zeros
inside the unit disk. �	
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Considering the roots of (17) have � distinct roots inside the unit circle of the complex
plane and denoted by ω1, ω2, . . . , ω�. Thus, the general solution of (16) leads to the form

πk,0(0) =
�∑

j=1

c jω
k
j , k ≥ 0, (18)

where c j , j = 1, 2, . . . , � are arbitrary constants which are to be found. Putting (18) in (15),
we have
(

s − η − ϕ + ϕq
∞∑

	=0

p	E	

)

π∗
k,0(s) =

(

E� − A∗(s)
�∑

i=1

gi E
�−i

)
�∑

j=1

c jω
k−�

j , k ≥ �.

(19)

Equation (19) is a non-homogeneous difference equation. The corresponding homogeneous

part of (19) isπ∗(hom)
k,0 (s) = C1

(
s−η−ϕ p
p(s−η−ϕ)

)k
,whereC1 is an arbitrary constant. Theparticular

solution of (19) is

π
∗(par)
k,0 (s) =

�∑

j=1

c j

{
ω�

j − A∗(s)
∑

�

i=1 giω
�−i
j

s − η − ϕ + ϕ q
1−pz

}

ωk−�

j , k ≥ �, (20)

and thus, the general solution is of the form

π∗
k,0(s) = C1

(
s − η − ϕ p

p(s − η − ϕ)

)k

+
�∑

j=1

c j

{
ω�

j − A∗(s)
∑

�

i=1 giω
�−i
j

s − η − ϕ + ϕ q
1−pz

}

ωk−�

j , k ≥ �,

(21)

The undetermined constant C1 = 0, as s → 0 and
∑∞

k=�
π∗
k,0(s) = ∑∞

k=�
πk,0 < 1,

otherwise
∑∞

k=�
πk,0 will diverge. Therefore, (21) reduces to

π∗
k,0(s) =

�∑

j=1

c j

{
ω�

j − A∗(s)
∑

�

i=1 giω
�−i
j

s − η − ϕ + ϕ q
1−pz

}

ωk−�

j , k ≥ �. (22)

Now, we try to find the solution under which π∗
k,0(s) has the same type as given in (22) for

1 ≤ k ≤ � − 1. For this, putting (18) into (8) and (9), and equating the first term of the
right hand side of the Eqs. (8) and (9), we observe that c j the unknown constants meet the
relationship

A∗(s)
k∑

i=1

gi

�∑

j=1

c jω
k−i
j = A∗(s)

�∑

i=1

gi

�∑

j=1

c jω
k−i
j

⇒ A∗(s)
�∑

j=1

c j

�∑

i=k+1

giω
k−i
j = 0, 1 ≤ k ≤ � − 1.

(23)

Substituting k = � − 1, � − 2, . . . , 1, recursively in (23), and remarking that g� �= 0, we
obtain the following set of � − 1 equations.

�∑

j=1

c j
ω j

=
�∑

j=1

c j
ω2

j

= · · · =
�∑

j=1

c j

ω�−2
j

=
�∑

j=1

c j

ω�−1
j

= 0. (24)
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If the above results hold true, for any k ≥ 1,

π∗
k,0(s) =

�∑

j=1

c j

{
ωk

j − A∗(s)
∑

�

i=1 giω
k−i
j

s − η − ϕ + ϕ q
1−pz

}

. (25)

We again apply the displacement operator E in (12), which yields

(s − μ + μE) π∗
k,1(s) =

(

E� − A∗(s)
�∑

i=1

gi E
�−i

)

πk−�,1(0) − ηπ∗
k,0(s), k ≥ � + 1.

(26)

Setting s = μ − μE in (26) and putting (25) into (26) gives

[

E� − A∗ (μ − μE)

�∑

i=1

gi E
�−i

]

πk,1(0) = ηπ∗
k,0(μ − μE)

= η

�∑

j=1

c j

{
ω�

j − A∗(μ − μE)
∑

�

i=1 giω
�−i
j

μ − μE − η − ϕ + ϕ q
1−pω j

}

ωk
j , k ≥ 1.

(27)

Employing Rouché’s theorem as used earlier, the following Theorem 2 expresses that under
specific conditions, the characteristic equation of the above difference equation also has
exactly � roots inside the unit disk, let us denote � roots by ψ1, ψ2, . . . , ψ�.

Theorem 2 The characteristic equation z� − A∗ (μ − μz)
∑

�

i=1 gi z
�−i = 0 has precisely

� roots inside the unit circle, if λḡ
μ

< 1.

By similar procedure to find π∗
k,0(s), the general solution of (27) is given by

πk,1(0) =
�∑

j=1

d jψ
k
j + η

�∑

j=1

c jωk
j

μ(1 − ω j ) − η − ϕ + ϕ q
1−pω j

, k ≥ 1, (28)

where d1, d2, . . . , d� in the first part of right hand side (28) are the arbitrary constants
affiliated with the solution of homogeneous Eq. (27). Furthermore, the second part of (27)
is a particular solution. Putting (25) and (28) into the right hand side (26), we get

(s − μ + μE) π∗
k,1(s) =

(

E� − A∗(s)
�∑

i=1

gi E
�−i

)⎧
⎨

⎩

�∑

j=1

d jψ
k−�

j

+ η

�∑

j=1

c jω
k−�

j

μ(1 − ω j ) − η − ϕ + ϕ q
1−pω j

⎫
⎬

⎭

− η

�∑

j=1

c j

{
ω�

j − A∗(s)
∑

�

i=1 giω
�−i
j

s − η − ϕ + ϕ q
1−pω j

}

ωk−�

j
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=
�∑

j=1

d j

(

ψk
j − A∗(s)

�∑

i=1

giψ
k−i
j

)

+ η

�∑

j=1

c j

{
ωk

j − A∗(s)
∑

�

i=1 giω
k−i
j

μ(1 − ω j ) − η − ϕ + ϕ q
1−pω j

}

− η

�∑

j=1

c j

{
ωk

j − A∗(s)
∑

�

i=1 giω
k−i
j

s − η − ϕ + ϕ q
1−pω j

}

, k ≥ � + 1. (29)

The general solution of the associated homogeneous equation of (29) has the form

π
∗(hom)
k,1 (s) = C2

(
1 − s

μ
)
)k
, where C2 is an arbitrary constant. For more details about

difference equations, one may refer Eladyi (2005). The particular solution of (29) after sim-
plification is

π
∗(par)
k,1 (s) =

�∑

j=1

d j

(

ψk
j − A∗(s)

�∑

i=1
giψ

k−i
j

)

s − μ + μψ j

+
�∑

j=1

ηc j

(

ωk
j − A∗(s)

�∑

i=1
giω

k−i
j

)

((
μ − ϕ p

1−pω j

)
(1 − ω j ) − η

) (
s − η − ϕ p(1−ω j )

1−pω j

)

(30)

Thus, for k ≥ � + 1, the general solution of (29) may be rewritten as π∗
k,1(s) = π

∗(hom)
k,1 (s)

+ π
∗(par)
k,1 (s). Adding over all k from � to ∞ and assuming the limit as k → 0,

∑∞
k=�

π∗
k,1(0) = ∑∞

k=�
πk,1 ≤ 1 clearly holds. Thus, C2 = 0. Thus, the solution of (29) has

the following form

π∗
k,1(s) =

�∑

j=1

d j

(

ψk
j − A∗(s)

�∑

i=1
giψ

k−i
j

)

s − μ + μψ j

+
�∑

j=1

ηc j

(

ωk
j − A∗(s)

�∑

i=1
giω

k−i
j

)

((
μ − ϕ p

1−pω j

)
(1 − ω j ) − η

) (
s − η − ϕ p(1−ω j )

1−pω j

) , k ≥ � + 1.

(31)

Now, we obtain the condition under which the expression for π∗
k,1(s) given in (11) also true

when 2 ≤ k ≤ �. Putting Eqs. (25) and (29) into Eqs. (11) and (12), respectively. Comparing
the third term of the right hand side of Eqs. (11) and (12), we get

�∑

j=1

d j

�∑

i=k

giψ
k−i
j +

�∑

j=1

ηc j
(
μ − ϕ p

1−pω j

)
(1 − ω j ) − η

�∑

i=k

giω
k−i
j = 0, 2 ≤ k ≤ �.

(32)

123

Page 11 of 27 20



Methodology and Computing in Applied Probability (2024) 26:20

Substituting k = �, � − 1, . . . , 2 in (32) and letting that g� �= 0. Now, (32) may be written
in linear equation with variables d j and c j 1 ≤ j ≤ � as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�∑

j=1
d j +

�∑

j=1

ηc j[(

μ− ϕ p
1−pω j

)

(1−ω j )−η

] = 0

�∑

j=1

d j
ψ j

+
�∑

j=1

ηc j[(

μ− ϕ p
1−pω j

)

(1−ω j )−η

]

ω j

= 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
�∑

j=1

d j

ψ�−3
j

+
�∑

j=1

ηc j[(

μ− ϕ p
1−pω j

)

(1−ω j )−η

]

ω�−3
j

= 0

�∑

j=1

d j

ψ�−2
j

+
�∑

j=1

ηc j[(

μ− ϕ p
1−pω j

)

(1−ω j )−η

]

ω�−2
j

= 0

(33)

Therefore, for k ≥ 2 has the following expression

π∗
k,1(s) =

�∑

j=1

d j

(
1 − A∗(s)G(ψ−1

j )
)

ψk
j

s − μ + μψ j

+
�∑

j=1

ηc j
(
1 − A∗(s)G(ω−1

j )
)

ωk
j

((
μ − ϕ p

1−pω j

)
(1 − ω j ) − η

) (
s − η − ϕ p(1−ω j )

1−pω j

) , k ≥ 2.

(34)

Setting s = μ in (10), we have

π11(0) − μπ∗
21(μ) − ηπ∗

10(μ) = 0 (35)

Using (28) and (34) in (35) reduces to

�∑

j=1

d jψ j G(ψ−1
j ) +

�∑

j=1

ηc jω j G(ω−1
j )

(
μ − ϕ p

1−pω j

)
(1 − ω j ) − η

= 0. (36)

Using (14), we have after simplification

�∑

j=1

d jψ j

1 − ψ j
+

�∑

j=1

c j
[
(μ − η)(1 − ω j ) − ϕ + ϕ q

1−pω j

]

((
μ − ϕ p

1−pω j

)
(1 − ω j ) − η

)
(1 − ω j )

= λ. (37)

4.1 Pre-arrival and Arbitrary Epoch Probabilities

Let {π−
k, j }, k ≥ j, j = 0, 1 denote the pre-arrival epoch probability, that is, an arrival sees k

customers in the system and the server is in state j at arrival epoch. Applying Bayes’ theorem,
we have

π−
i, j = lim

t→∞
P[N (t) = k, I (t) = i, V (t) = 0]

P[V (t) = 0] , j = 0, 1.

Further, using (14) in the above expression, we obtain

π−
k, j = 1

λ
πk, j (0), n ≥ j, j = 0, 1. (38)
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We obtain pre-arrival epoch probability from the Eqs. (18), and (28) as

π−
k,i =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
λ

�∑

j=1
c jωk

j , k ≥ 0, for i = 0

1
λ

⎡

⎣
�∑

j=1
d jψ

k
j + η

�∑

j=1

c jωk
j(

μ− ϕ p
1−pω j

)

(1−ω j )−η

⎤

⎦ , k ≥ 1 for i = 1.
(39)

We obtain the probabilities at arbitrary epoch, πk, j , k ≥ j, j = 0, 1 from the corresponding
expressions of π∗

k, j (0). Setting s = 0 in Eqs. (25) and (34), we obtain the arbitrary epoch
probabilities as

πk,i =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�∑

j=1

c j
(
G(ω−1

j )−1
)
ωk
j

η+ϕ− ϕ q
1−pω j

, k ≥ 1, for i = 0

�∑

j=1

d j

(
G(ψ−1

j )−1
)
ψk

j

μ−μψ j
+

�∑

j=1

ηc j
(
G(ω−1

j )−1
)
ωk
j

((

μ− ϕ p
1−pω j

)

(1−ω j )−η

)(

η+ ϕ p(1−ω j )
1−pω j

) , k ≥ 1 for i = 1
(40)

Applying the normalizing condition, we obtain

π0,0 = 1 −
�∑

j=1

d jψ j

(
ψ j G(ψ−1

j )(2 − ψ j ) − 1
)

μ(1 − ψ j )2
−

�∑

j=1

c jω j

(1 − ω j )
(
η + ϕ p(1−ω j )

1−pω j

)

×
⎛

⎝G(ω−1
j ) − 1 +

η
[(

μG(ω−1
j ) − 1

)
−
(
η + ϕ p(1−ω j )

1−pω j

)
G(ω−1

j )(1 − ω j )
]

μ
((

μ − ϕ p
1−pω j

)
(1 − ω j ) − η

)

⎞

⎠

(41)

5 Performance Indices

The probability that the server is in a vacation P{I = 0} and the probability that the server
is in a busy mode P{I = 1} are respectively,

P{I = 0} =
∞∑

k=0

πk,0 = 1 −
�∑

j=1

d jψ j

(
ψ j G(ψ−1

j )(2 − ψ j ) − 1
)

μ(1 − ψ j )2

−
�∑

j=1

ηc jω j

[(
μG(ω−1

j ) − 1
)

−
(
η + ϕ p(1−ω j )

1−pω j

)
G(ω−1

j )(1 − ω j )
]

μ(1 − ω j )
((

μ − ϕ p
1−pω j

)
(1 − ω j ) − η

) (
η + ϕ p(1−ω j )

1−pω j

)

P{I = 1} =
∞∑

k=1

πk,1 =
�∑

j=1

d jψ j

(
ψ j G(ψ−1

j )(2 − ψ j ) − 1
)

μ(1 − ψ j )2

+
�∑

j=1

ηc jω j

[(
μG(ω−1

j ) − 1
)

−
(
η + ϕ p(1−ω j )

1−pω j

)
G(ω−1

j )(1 − ω j )
]

μ(1 − ω j )
((

μ − ϕ p
1−pω j

)
(1 − ω j ) − η

) (
η + ϕ p(1−ω j )

1−pω j

) .
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The mean system length (L) is

L =
�∑

j=1

d jψ j

[
G(ψ−1

j )(ψ3
j − 3ψ2

j + 3ψ j ) − 1
]

μ(1 − ψ j )3
+

�∑

j=1

c jω j

(1 − ω j )2
(
η + ϕ p(1−ω j )

1−pω j

)

×
⎧
⎨

⎩

(
G(ω−1

j ) − 1
)

+
η
[(

μG(ω−1
j ) − 1

)
−
(
η + ϕ p(1−ω j )

1−pω j

)
G(ω−1

j )(1 − ω j )
2
]

μ
((

μ − ϕ p
1−pω j

)
(1 − ω j ) − η

)

⎫
⎬

⎭
.

The mean queue length (Lq ) is

Lq =
�∑

j=1

d jψ
2
j

(
G(ψ−1

j − 1
)

μ(1 − ψ j )3

+
�∑

j=1

c jω2
j

(
G(ω−1

j − 1
) (

μ − ϕ p
1−pω j

)

(1 − ω j )
(
η + ϕ p(1−ω j )

1−pω j

) ((
μ − ϕ p

1−pω j

)
(1 − ω j ) − η

) .

The mean abandonment rate (AR) is

AR = ϕ

∞∑

k=0

∞∑

	=k

qp	−kπk.0 =
�∑

j=1

c jϕ q
(
G(ω−1

j ) − 1
)

(1 − ω j )
[
η(1 − pω j ) + ϕ p(1 − ω j )

] .

The average sojourn time in the system (W ) and in the queue (Wq) using Little’s formula

is given by W = L
λ
and Wq = Lq

λ
, respectively.

6 Particular Cases

In this section, we find some particular cases from our model by assuming set of values for
the parameters �, gi , ϕ, η.

6.1 GI/M/1 +MQueue with Geometric Abandonment andMultiple Vacations

Taking � = 1, g1 = 1 and g j = 0, j ≥ 2, the model reduces to GI/M/1 + M queue with
geometric abandonment and multiple vacations. In this case, the characteristic equations are

z − A∗
(

η + ϕ p(1 − z)

1 − pz

)

= 0 and z − A∗ (μ − μz) = 0,

respectively, and both have only one root inside the unit disk, say ω1 and ψ1. Solving (36)
and (37), we can find the associated arbitrary constants c1 and d1 as

c1 =
λ(1 − ψ1)

[(
μ − ϕ p

1−pω j

)
(1 − ω1) − η

]

(1 − ψ1)
(
μ − η − ϕ p

1−pω j

)
− ηω1

d1 = −c1ηω1

ψ1

{(
μ − ϕ p

1−pω1

)
(1 − ω1) − η

}
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Thus, from (39), we have pre-arrival epoch probabilities as

π−
k,0 = 1

λ
c1ω

k
1, k ≥ 0,

π−
k,1 = 1

λ

⎡

⎣d1ψ
k
1 + c1ηωk

1(
μ − ϕ p

1−pω1

)
(1 − ω1) − η

⎤

⎦ , k ≥ 1.

We obtain the arbitrary epoch probabilities from (40) and (41) as

πk,0 = c1(1 − ω1)ω
k−1
1

η + ϕ p
1−pω1

, k ≥ 1,

πk,1 = c1ηω1
(
μ − ϕ p

1−pω1

)
(1 − ω1) − η

[
(1 − ω1)ω

k−2
1

η + ϕ p
1−pω1

− ψk−2
1

μ

]

, k ≥ 2,

π1,1 = d1η

μ
(
η + ϕ p

1−pω1

) .

6.2 M/M/1 +MQueue with Geometric Abandonment andMultiple Vacations

Assuming � = 1, g1 = 1, g j = 0, j ≥ 2, and exponential inter-arrival time, the model
reduces to M/M/1 + M queue with geometric abandonment and multiple vacations. So,
A∗(s) = λ

λ+s . Therefore, the single root inside the unit disk, say ω1 and ψ1 are

ω1 = λ + λp + η + ϕ p −√
(λ + λp + η + ϕ p)2 − 4λp(λ + η + ϕ)

2λ
and ψ1 = λ

μ
,

respectively. The ω1 matches with the results of Dimou et al. (2011). From (39)–(41), we get

π−
k,0 = πk,0, k ≥ 0, π−

k,1 = πk,1, k ≥ 1.

We may also obtain the above from subsection 6.1 directly.

6.3 GIX/M/1 Queue with Multiple Vacations

Takingϕ = 0, themodel reduces toGIX /M/1 queuewithmultiple vacations but not geometric
abandonment. In this case, (17) reduces to

z� − A∗(η)

�∑

i=1

gi z
�−i = 0.

Thus, ω j , j = 1, 2, . . . , � are the roots of the above characteristic equation. But the roots
ψ j , j = 1, 2, . . . , � remains same. The unknowns c j and d j , j = 1, 2, . . . , � can be found
using (24) and the below � + 1 equations.
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�∑

j=1

d j

ψ	−1
j

+
�∑

j=1

ηc j
[
μ(1 − ω j ) − η

]
ω	−1

j

= 0, 	 = 1, 2, . . . , � − 1,

�∑

j=1

d jψ j G(ψ−1
j ) +

�∑

j=1

ηc jω j G(ω−1
j )

μ(1 − ω j ) − η
= 0.

�∑

j=1

d jψ j

1 − ψ j
+

�∑

j=1

c j (μ − η)

μ(1 − ω j ) − η
= λ.

From (39)–(41), we get pre-arrival and arbitrary epoch probabilities.

6.4 GI/M/1 Queue with Multiple Vacations

Taking ϕ = 0, � = 1, g1 = 1, g j = 0, j ≥ 2, the model reduces to GI/M/1 queue with
multiple vacations. Here the single roots inside the unit disk are ω1 and ψ1.

π−
k,0 = (1 − ψ)(η − μ(1 − ω1))ω

k
1

η − μ(1 − ψ1)
, k ≥ 0,

π−
k,1 = η(1 − ψ)

η − μ(1 − ψ1)

(
ψk
1 − ωk

1

)
, k ≥ 1.

We obtain the arbitrary epoch probabilities from (40) and (41) as

πk,0 = λ(1 − ψ)(1 − ω1)(η − μ(1 − ω1))ω
k−1
1

η(η − μ(1 − ψ1))
, k ≥ 1,

πk,1 = λ(1 − ψ)

μ(η − μ(1 − ψ1))

(
ηψk−1

1 − μ(1 − ω1)ω
k−1
1

)
, k ≥ 1.

The results analytically matches with Tian et al. (1989).

6.5 GIX/M/1 Queue without Vacation and Abandonment

Taking η → ∞, ϕ = 0, the model reduces to GIX /M/1 queue without vacation and aban-
donment. To find expressions among pre-arrival and arbitrary epoch probabilities specified
in Barbhuiya and Gupta (2019), let us assume y1 = 1 and yi = 0 for i ≥ 2. Then, we obtain
the pre-arrival and arbitrary epoch probabilities as

π−
k,1 = 1

λ

�∑

j=1

d jψ
k
j , k ≥ 1,

πk,1 =
�∑

j=1

d j

{∑
�

i=1 giψ
k−i
j − ψk

j

μ(1 − ψ j )

}

k ≥ 1, and

π0,0 = 1 −
�∑

j=1

d jψ j

(
G(ψ−1

j ) − 1
)

μ(1 − ψ j )2
.
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6.6 GI/M/1 Queue without Vacation and Abandonment

Taking g1 = 1, g j = 0, j ≥ 2, η → ∞, ϕ = 0, the model reduces to GI/M/1 queue without
batch arrival, vacation and abandonment. Here, the single root inside the unit disk is ψ1 and
the corresponding constant d1 = λ(1−ψ1). Accordingly, the pre-arrival and arbitrary epoch
probabilities matches exactly with the results available in the literature (Stewart 2009, 548).

7 Numerical Results

In this section, we present the numerical results obtained from analytical calculations per-
formed to evaluate the proposed continuous-timeGIX /M/1+Mqueuewithmultiple vacations
and geometric abandonment. This section outlines the numerical computation setup, present
the key performance metrics, discuss the interpretation of the results, and provide insights
into the practical implications of the findings. We used the following algorithm to compute
the steady state probability distributions using the linear difference techniques and generating
function method.

Heavy-tailed distributions play a significant role in Internet communication and financial
applications. Internet traffic statistics have suggested that many relevant quantities like, file
sizes, packet lengths, interarrival times, connection times, etc., should be modeled with
heavy-tailed distributions. A difficulty in analyzing queues with heavy-tailed distributions
is that many of them do not have a closed-form, analytic Laplace transforms. This makes
analytical methods more complex and intractable. There are several approximation methods
such as transform approximation method (TAM), Padé-Laplace approximation (PLA), etc.,
to resolve this problems.

We consider four probability distributions like Phase-type, Matrix exponential, inverse
Gaussian and Weibull distribution as the customer inter-batch arrival distribution. The com-
putation of the characteristic roots and associated unknown coefficients are tabulated for
each of these four distributions. Also, we present the steady-state queue-length distribution
at prearrival and arbitrary epochs. All the computations are performed on a PC having Intel
core i7 8th Gen CPU@1.8 GHz, 8 GBRAMusingMaple software. All the numerical values
were run with corrected up to 30 decimal places, but are presented up to six decimal places
to reduce space.

Phase-Type (PH) Arrival

A PH distribution is the distribution of the time to absorption for an absorbing finite state
Markov chain in continuous time. One important property of PH distributions is that they can
be used to approximate any kind of distribution. For our numerical experiment, we consider
a continuous PH distribution with representation PH(α, T ), where α := [0.5, 0.2, 0.3], T

=
⎡

⎣
−7 1 2
1 −2 0
1 3 −10

⎤

⎦. Themean arrival rate is λ = 2.5 and themean service rate isμ = 25.The

LST of the inter batch arrival times is A∗(s) = 4s2+53s+120
(s+10.39)(s+6.94)(s+1.66) , and the batch size

distribution is G(z) = 0.3z + 0.15z2 + 0.2z5 + 0.1z6 + 0.15z8 + 0.1z10 with a maximum
batch size of 10. Other queueing parameters are set to p = 0.7, ϕ = 0.1, η = 0.3. The
characteristic roots are presented in Table 1. The steady-state probabilities of system-length
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Algorithm 1 Computation of the steady-state probabilities
Step 1: Find the inside roots of the unit circle of the two characteristic equations

z� − A∗
(

η + ϕ − ϕ q

1 − pz

) �∑

i=1

gi z
�−i = 0 and z� − A∗ (μ − μz)

�∑

i=1

gi z
�−i = 0

Let these roots are ω j and ψ j , j = 1, 2, . . . , �, respectively.
Step 2: Using these roots, solve the following system of 2� linear equations to compute the unknowns c j and
d j , j = 1, 2, . . . , �.

�∑

j=1

c j
ω j

= 0

�∑

j=1

c j

ω2
j

= 0

.

.

.

�∑

j=1

c j

ω�−2
j

= 0

�∑

j=1

c j

ω�−1
j

= 0

0 =
�∑

j=1

d j +
�∑

j=1

ηc j
[(

μ − ϕ p
1−pω j

)
(1 − ω j ) − η

]

0 =
�∑

j=1

d j
ψ j

+
�∑

j=1

ηc j
[(

μ − ϕ p
1−pω j

)
(1 − ω j ) − η

]
ω j

.

.

.

0 =
�∑

j=1

d j

ψ�−3
j

+
�∑

j=1

ηc j
[(

μ − ϕ p
1−pω j

)
(1 − ω j ) − η

]
ω�−3
j

0 =
�∑

j=1

d j

ψ�−2
j

+
�∑

j=1

ηc j
[(

μ − ϕ p
1−pω j

)
(1 − ω j ) − η

]
ω�−2
j

�∑

j=1

d jψ j G(ψ−1
j ) +

�∑

j=1

ηc jω j G(ω−1
j )

(
μ − ϕ p

1−pω j

)
(1 − ω j ) − η

= 0 and

�∑

j=1

d jψ j

1 − ψ j
+

�∑

j=1

c j
[
(μ − η)(1 − ω j ) − ϕ + ϕ q

1−pω j

]

((
μ − ϕ p

1−pω j

)
(1 − ω j ) − η

)
(1 − ω j )

= λ.

Step 3: Putting the values of c j and d j in (39)–(41), we get the prearrival epoch probabilities π−
k,0, π

−
k,1 and

the arbitrary epoch probabilities πk,0, πk,1 of the number of customers in the system.

at prearrival and arbitrary epochs are given inTable 2.The average system-lengths at prearrival
and arbitrary epochs are given in the last row.

Matrix Exponential (ME) Arrival

The ME distribution with representation (α, T , s) is given by P(X ≤ x) = 1+ αeT xT−1s,
with density f (x) = αeT x s. It is a generalization of the PH distribution. ME distributions
have rational Laplace-Stieltjes transforms. Any distribution with a rational Laplace transform
is identical to the ME distribution. We consider an ME distribution (α, T, s) where α := [1,

0, 0], T =
⎡

⎣
0 −4π2 − 1 4π2 + 1
3 2 −6
2 2 −5

⎤

⎦ and s = [0, 1, 1]tr with tr denoting the transpose in

matrix. For this system, the mean rates of arrival and service are λ = 0.952917 and μ = 10
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respectively. The LST of the inter batch arrival times is A∗(s) = 4π2+1
(s+1)(4π2+1+2s+s2)

, and

the PGF of the batch size is G(z) = 0.3z + 0.15z2 + 0.2z5 + 0.1z6 + 0.15z8 + 0.1z10

with a maximum batch size of 10. We tabulate the characteristic roots in Table 3 and the
system-length probabilities in Table 4.

Inverse-Gaussian (IG) Arrival

The inverse Gaussian distribution is a two-parameter family of continuous probability dis-
tributions with infinite support. It is a right-skewed distribution bounded at zero and is a
well-known competitor of the Weibull, gamma and lognormal distributions in modeling

asymmetric data. Its pdf is f (x;α, β) =
√

α
2πx3

e
− α(x−β)2

2β2x for x > 0,whereβ > 0 is themean

and α > 0 is the shape parameter. In our numerical experiment, we consider the parameters

α = 0.5625, β = 0.75. The pdf is a(t) =
√

α
2π t3

e
− α(t−β)2

2β2 t with LST A∗(s) = e0.75(1−
√
1+2s)

and batch size distribution G(z) = 0.3z + 0.15z2 + 0.2z5 + 0.1z6 + 0.15z8 + 0.1z10. Since
A∗(s) is a transcendental function, computation of the roots of the associated characteristic
equations is intractable using Maple program. To resolve this, we approximate A∗(s) by
means of Padé rational approximation, P(s)

Q(s) where P(s) and Q(s) are polynomials of degree
m and n respectively. Using the Padé rational approximation of degree (4, 5) to approximate
A∗(s)

A∗(s) = P(s)

Q(s)
= 1 + 108344

29509 s + 32654
7971 s

2 + 43552
34173 s

3 − 8517
130727 s

4

1 + 28099
6355 s + 18398

2723 s
2 + 66589

15981 s
3 + 23027

25599 s
4 + 4149

127505 s
5
.

Applying Algorithm 1, we compute the characteristic roots, and the steady-state system-
length probabilities. The values are presented in Tables 3 and 4.

Weibull (Wb) Arrival

Weibull distribution plays significant role in modeling insurance problems, where claim sizes
can take on extremely large values. It is a two parameter family of continuous distributions

with infinite support. The Weibull pdf is f (x) = α
β

(
x
β

)α−1
e−(x/β)α , for x ≥ 0, where

α > 0 is the shape parameter and β > 0 is the scale parameter of the distribution. In our
numerical experiments, we consider the distribution parameters as α = 0.5, β = 0.1 with

pdf a(t) = α
β

(
t
β

)α−1
e
−
(

t
β

)α

. The LST of the Weibull distribution does not exist. Using

the moments of all possible orders, we construct the LST A∗(s) =
100∑

i=0
(−1)imi si . Then, we

approximate A∗(s) by means of Padé rational approximation, P(s)
Q(s) where P(s) and Q(s)

are polynomials of degree m and n respectively. Using the Padé rational approximation of
degree (4, 5) to approximate A∗(s)

A∗(s) = 1 + 8.8s + 23.52s2 + 21.12s3 + 4.632s4

1 + 9s + 25.2s2 + 25.2s3 + 7.56s4 + 0.3s5

G(z) = 0.3z + 0.15z2 + 0.2z5 + 0.1z6 + 0.15z8 + 0.1z10 Using this approximated LST in
Algorithm 1, we compute the roots, unknown constants, and the steady-state queue-length
probabilities. The values are presented in Tables 1 and 2.

123

Page 21 of 27 20



Methodology and Computing in Applied Probability (2024) 26:20

Ta
bl
e
3

C
ha
ra
ct
er
is
tic

ro
ot
s
fo
r
IG

an
d
M
E
ar
ri
va
ls
w
ith

pa
ra
m
et
er
s
p

=
0.
7,

ϕ
=

0.
1,

η
:=

0.
3,

g 1
=

0.
3,

g 2
=

0.
15

,
g 5

=
0.
2,

g 6
=

0.
1,

g 8
=

0.
15

,
g 1

0
=

0.
1

IG
X
/M

/1
+
M

w
ith

λ
=

1.
33

,
μ

=
12

M
E
X
/M

/1
+
M

w
ith

λ
=

0.
95

,
μ

=
10

j
ω
j

ψ
j

ω
j

ψ
j

1
0.
95

67
69

0.
84

63
84

0.
94

03
5

0.
78

78
22

2
0.
59

20
02

−
0.
50

37
03

I
0.
44

34
41

−
0.
44

68
75

I
0.
58

59
23

+
0.
49

89
08

I
0.
40

95
46

+
0.
42

35
30

I

3
0.
59

20
02

+
0.
50

37
03

I
0.
44

34
41

+
0.
44

68
75

I
0.
58

59
23

−
0.
49

89
08

I
0.
40

95
46

−
0.
42

35
30

I

4
0.
24

81
27

−
0.
71

70
55

I
0.
09

82
85

1
−

0.
56

80
71

I
0.
24

25
54

+
0.
71

13
83

I
0.
09

14
19

3
+
0.
52

14
65

I

5
0.
24

81
27

+
0.
71

70
55

I
0.
09

82
85

1
+
0.
56

80
71

I
0.
24

25
54

−
0.
71

13
83

I
0.
09

14
19

3
−

0.
52

14
65

I

6
−0

.6
19

57
1

−
0.
53

00
88

I
−0

.4
49

67
8

−
0.
29

21
17

I
−0

.1
73

44
7
+
0.
63

90
31

I
−0

.1
82

91
6
+
0.
46

41
88

I

7
−0

.6
19

57
1
+
0.
53

00
88

I
−0

.4
49

67
8
+
0.
29

21
17

I
−0

.1
73

44
7

−
0.
63

90
31

I
−0

.1
82

91
6

−
0.
46

41
88

I

8
−0

.1
73

48
2

−
0.
64

20
36

I
−0

.2
02

71
9

−
0.
49

69
25

I
−0

.6
13

75
5
+
0.
52

36
57

I
−0

.4
16

66
8
+
0.
29

13
57

I

9
−0

.1
73

48
2
+
0.
64

20
36

I
−0

.2
02

71
9
+
0.
49

69
25

I
−0

.6
13

75
5

−
0.
52

36
57

I
−0

.4
16

66
8

−
0.
29

13
57

I

10
−0

.8
09

57
0

−0
.5
19

19
7

−0
.8
02

27
0

−0
.5
09

10
3

123

20 Page 22 of 27



Methodology and Computing in Applied Probability (2024) 26:20

Ta
bl
e
4

St
ea
dy
-s
ta
te

pr
ob
ab
ili
tie
s
at

pr
ea
rr
iv
al

an
d
ar
bi
tr
ar
y
ep
oc
hs

fo
r
IG

an
d
M
E
ar
ri
va
ls
w
ith

pa
ra
m
et
er
s
p

=
0.
7,

ϕ
=

0.
1,

η
:=

0.
3,

g 1
=

0.
3,

g 2
=

0.
15

,
g 5

=
0.
2,

g 6
=

0.
1,

g 8
=

0.
15

,
g 1

0
=

0.
1

IG
X
/M

/1
+
M

w
ith

λ
=

1.
33

,
μ

=
12

M
E
X
/M

/1
+
M

w
ith

λ
=

0.
95

,
μ

=
10

n
π

− n,
0

π
− n,
1

π
n,
0

π
n,
1

n
π

− n,
0

π
− n,
1

π
n,
0

π
n,
1

0
0.
09

30
03

-
0.
12

86
59

-
0

0.
14

73
35

-
0.
13

91
61

-

1
0.
02

24
46

0.
01

03
62

0.
02

19
01

0.
01

00
44

1
0.
03

25
06

0.
01

46
86

0.
03

33
59

0.
01

35
26

2
0.
01

66
88

0.
01

08
77

0.
01

62
87

0.
01

06
48

2
0.
02

35
22

0.
01

48
11

0.
02

41
29

0.
01

39
25

3
0.
00

70
52

0.
01

13
68

0.
00

69
0.
01

11
04

3
0.
00

93
96

0.
01

50
75

0.
00

95
77

0.
01

41
93

4
0.
00

42
21

0.
01

20
92

0.
00

41
49

0.
01

16
59

4
0.
00

56
47

0.
01

57
0.
00

56
91

0.
01

47
09

5
0.
01

70
17

0.
01

29
1

0.
01

66
14

0.
01

23
39

5
0.
02

42
82

0.
01

63
43

0.
02

48
84

0.
01

53
91

6
0.
01

58
8

0.
01

32
79

0.
01

55
05

0.
01

27
66

6
0.
02

19
06

0.
01

62
51

0.
02

24
48

0.
01

55
38

7
0.
01

06
98

0.
01

35
12

0.
01

04
57

0.
01

29
91

7
0.
01

39
72

0.
01

60
39

0.
01

42
73

0.
01

54
41

8
0.
01

82
72

0.
01

37
93

0.
01

78
32

0.
01

32
17

8
0.
02

49
76

0.
01

59
18

0.
02

56
19

0.
01

54
21

9
0.
00

99
44

0.
01

37
5

0.
00

97
19

0.
01

32
58

9
0.
01

26
85

0.
01

53
14

0.
01

29
62

0.
01

50
5

10
0.
01

72
23

0.
01

37
88

0.
01

68
06

0.
01

32
9

10
0.
02

30
14

0.
01

49
35

0.
02

36
13

0.
01

47
84

50
0.
00

21
13

0.
00

30
19

0.
00

20
63

0.
00

29
48

50
0.
00

13
61

0.
00

14
36

0.
00

13
94

0.
00

14
71

10
0

0.
00

02
32

0.
00

03
32

0.
00

02
26

0.
00

03
24

10
0

0.
00

00
63

0.
00

00
66

0.
00

00
64

0.
00

00
68

15
0

0.
00

00
25

0.
00

00
36

0.
00

00
25

0.
00

00
36

15
0

0.
00

00
03

0.
00

00
03

0.
00

00
03

0.
00

00
03

20
0

0.
00

00
03

0.
00

00
04

0.
00

00
03

0.
00

00
04

20
0

0
0

0
0

24
8

0
0

0
0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

Su
m

0.
50

44
38

0.
49

55
62

0.
53

04
33

0.
48

17
52

Su
m

0.
58

75
27

0.
41

24
73

0.
59

00
39

0.
40

99
61

L
−

=
23

.1
58

36
1

L
=

22
.5
92

43
8

L
−

=
15

.5
53

65
0

L
=

15
.8
55

53
4

123

Page 23 of 27 20



Methodology and Computing in Applied Probability (2024) 26:20

Fig. 3 Effect of μ on the Mean
system length at prearrival and
arbitary epochs for different
arrival processes with λ = 2.5,
ϕ = 0.1, p = 0.7, η = 0.3

In the next set of experiments, we present a comparative study of the different batch
arrival distributions. We conducted a sensitivity analysis to assess the model’s behavior
under varying parameters. The effect of several system parameters on the mean system
length at pre-arrival (L−) and arbitrary arrival (L) epochs is presented for queues with inter-
batch arrival distributions being Deterministic, Phase-type, Matrix exponential, Weibull and
inverse Gaussian. We set the shape and scale parameters of these five distributions in such a
way to get the same inter-batch arrival mean, but different variances. The following system
parameters are fixed for all the experiment: λ = 2.5, μ = 20.0, ϕ = 0.1, η = 0.3, p = 0.7,
q = 0.3, � = 10, and batch size distribution G(z) = 0.3z + 0.15z2 + 0.2z5 + 0.1z6

+ 0.15z8 + 0.1z10. The mean system length is always monotonic decreasing in service rate
(Fig. 3), abandonment rate (Fig. 4), vacation rate (Fig. 5) and probability of abandonment
(Fig. 6).

Fig. 4 Effect of ϕ on the Mean
system length at prearrival and
arbitary epochs for different
arrival processes with λ = 2.5,
μ = 20.0, p = 0.7, η = 0.3
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Fig. 5 Effect of η on the Mean
system length at prearrival and
arbitary epochs for different
arrival processes with λ = 2.5,
μ = 20.0, ϕ = 0.1, p = 0.7

Fig. 6 Effect of p on the Mean
system length at prearrival and
arbitary epochs for different
arrival processes with λ = 2.5,
μ = 20.0, ϕ = 0.1, η = 0.3

8 Conclusion

In this study, we delved into the dynamics of renewal input batch arrival queueing systems
with multiple vacations and geometric abandonment, uncovering its practical applications
in a spectrum of real-time scenarios such as customer service counters, call centers, pub-
lic transportation, online customer support, hospital emergency rooms, internet servers,
telecommunications systems, and retail checkout lines. The model’s analysis emerges as
both straightforward and explicit, readily lending itself to numerical tractability. Leveraging
the potency of the supplementary variable and difference operator methods, we successfully
derived closed-form expressions for system-length distributions at pre-arrival and arbitrary
epochs. Our exploration unearthed several intriguing special cases within the model’s realm.
The inclusion of illustrative numerical examples, showcasing the model’s behavior under
different inter-arrival time distributions, underscored our study’s viability and robustness.
This empirical dimension added depth to our theoretical findings, affirming their relevance
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in practical contexts. As we traverse the contours of future research, an exciting avenue beck-
ons - the extension of our work to encompass batch arrival and bulk services within queueing
models featuring vacations and abandonment. The insights gleaned from this study serve as a
solid foundation to build, promising a richer understanding of intricate queueing phenomena
and their implications for real-world operational dynamics.
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