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Abstract
Two constructions were recently proposed for constructing low-discrepancy point sets on
triangles. One is based on a finite lattice, the other is a triangular van der Corput sequence.
We give a continuation and improvement of these methods. We first provide an extensible
lattice construction for points in the triangle that can be randomized using a simple shift. We
then examine the one-dimensional projections of the deterministic triangular van der Corput
sequence and quantify their sub-optimality compared to the lattice construction. Rather than
using scrambling to address this issue, we show how to use the triangular van der Corput
sequence to construct a stratified sampling scheme. We show how stratified sampling can be
used as a more efficient implementation of nested scrambling, and that nested scrambling is
a way to implement an extensible stratified sampling estimator. We also provide a test suite
of functions and a numerical study for comparing the different constructions.
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1 Introduction

Numerical integration over triangular areas is a subject that has been of interest for many
decades, for example when applying finite element methods; see Cowper (1973) where
Gaussian quadrature formulas for triangles are derived. For sampling on a two-dimensional
triangle with applications in computer graphics, see Pharr (2019), Basu and Owen (2015).
Rather than mapping points from the unit cube to the triangle as done in, e.g., Heitz (2019),
Pillards and Cools (2005), Fang and Wang (1993), Arvo (1995), instead Basu and Owen
(2015) proposed two low-discrepancy constructions that construct points directly on the
triangle. The first is based on a finite lattice, which attains a parallelogram discrepancy of
O(log(n)/n), the best possible rate. Brandolini et al. (2013) and work prior to this have only
indicated that such a discrepancy was possible, without providing a construction. The lattice
construction in Basu and Owen (2015) is not extensible in the sample sizes n, i.e., if n1
points are sampled, but n2 > n1 points are needed, the entire lattice with n2 points needs
to be constructed rather than adding n2 − n1 points to the existing lattice. The second is a
triangular van der Corput (vdC) sequence based on the one-dimensional vdC sequence in
base 4 that places points in a two-dimensional triangle by recursively subdividing the triangle.

In this paper, we extend the work of Basu and Owen (2015) and explore the use of ran-
domized quasi-Monte Carlo methods on triangles and their success in practice. Required
background is reviewed in Section 2. Here, we first introduce the triangular lattice and vdC
sequence of Basu and Owen (2015). In Section 2.5, we then show that the vdC sequence has
poor projection properties: The one-dimensional projections of the non-randomized triangu-
lar vdC sequence contain only 2

√
n < n points, which can lead to poorer integration results

for functions with low effective dimension. This is different from rank-1 lattices, which can
be made fully projection regular.

We then provide an extensible lattice construction for points in the triangle that can be
randomized with a digital shift in Section 3, making this method more applicable in practice.
In Section 4, we address the issue of the poor projection properties of the triangular vdC
sequence by proposing a stratified sampling scheme using the sub-triangles constructed in
the vdC sequence as strata.We also show that, in general over the unit interval and not only on
triangles, the stratified sampling scheme has the same distribution as the nested scrambling
of the vdC sequence, while being more efficient to implement. This connection between
stratified sampling and nested scrambling allows us to have the benefits of nested scrambling
without the expensive computational costs. This connection also allows us to show that nested
scrambling provides a way to implement an extensible stratified estimator.

Finally, although various constructions and mappings for sampling on the triangle exist,
there is little, if any, work done comparing these different methods on numerical integration
examples. This motivates the inclusion of Section 5, a numerical study on a suite of test
functions on the triangle that allow us to differentiate between the performance of these
constructions. Section 6 concludes this paper.

2 Background

In this section, we review quasi-Monte Carlo methods, some definitions and properties of
triangles, and show how one can uniformly sample within a triangle.
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2.1 Monte Carlo and Quasi-Monte Carlo Methods

TheMonte Carlo (MC) method for numerical integration uses repeated random sampling to
obtain numerical results for integrals that either do not have a closed form or are difficult to
integrate theoretically. Quantities of interest are integrals over the s-dimensional hypercube
[0, 1)s , which can be written as

μ = I ( f ) =
∫

[0,1)s
f (u) du,

where f : [0, 1)s → R is integrable. TheMC estimator of I ( f ) based on a sample of size n is

μ̂mc = 1

n

n∑
i=1

f (ui ),

where {u1, . . . , un} are independent and identically distributed (iid) samples from the uni-
form distribution over [0, 1)s . From the Central Limit Theorem, the integration error is
asymptotically normal with

√
n(I ( f ) − μ̂mc)

D−→ N(0, σ 2),

where
D−→ denotes convergence in distribution and σ 2 = I ( f 2)− I ( f )2 is the variance of f ,

which can be estimated by the sample variance of f (u1), . . . , f (un). The MC integration
error is Op(

1√
n
), meaning that k2-many samples are needed to decrease the error by a factor

of k. This is one of the drawbacks of the MC method, improving the accuracy of an estimate
can be computationally expensive.

A way to improve the error of the estimator of our quantity of interest is to use quasi-
MonteCarlo (QMC)methods instead of theMCmethod.Thesemethods replace the randomly
sampled point set of anMCestimatorwith a deterministic point set that is chosen to fill the unit
hypercube as homogeneously as possible. Such sets are known as low-discrepancy sequences
or low-discrepancy point sets, as the sequences cover the area over the unit hypercube more
evenly than those of a pseudo-randomly generated sequence of Uniform ([0, 1)s) random
variables and thereby minimize the discrepancy of the point set. There are two main kinds of
low-discrepancy point sets: integration lattices (Sloan and Joe 1994) such as the Kronecker
lattice of Korobov (1959), and digital nets and sequences (Dick and Pillichshammer 2010)
such as the vdC sequence of van der Corput (1935). Using QMCmethods allows the error of
the estimator to decrease at a faster rate than O( 1√

n
), which makes it superior for the purpose

of estimation; see Owen (1997).
Quasi-random point sets can be randomized in practice to be able to estimate the variance

of the randomized Quasi-Monte Carlo (RQMC) estimator. This randomization produces a
new point set P̃n = {ũ1, . . . , ũn} which satisfies that each point ũi ∼ Uniform([0, 1)s) for
all i while preserving the low-discrepancy of Pn . Note that after applying the randomization
function to quasi-random numbers, the generated points ũi are not independent across dif-
ferent i . Thus, any parts of the Monte Carlo methodology that depends on the assumption of
independence will need to be adjusted when using the RQMC method.

In particular, with the MC estimator, one uses the fact that {u1, . . . , un} are iid sam-
ples to estimate the standard error of our estimator. This cannot be done in the same way
when using RQMC to estimate I ( f ) because in that case the sample points in P̃n are not
independent. Instead, as per Lemieux (2009, Chapter 6.2), we create a random sample of
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v quasi-random estimators, which are each based on a randomized point set of size n. Let
P̃n,l = {ũ1,l , . . . , ũn,l}, where P̃n,1, . . . , P̃n,v are v independent copies of P̃n . Define the lth

RQMC estimator

μ̂rqmc,l = 1

n

n∑
i=1

f (ũi,l) for l = 1, . . . , v,

which has expectation

E(μ̂rqmc,l) = 1

n

n∑
i=1

E( f (ũi,l)) = 1

n

n∑
i=1

∫
[0,1)s

f (ũi,l) dũi,l = I ( f )

as each ũi,l ∼ Uniform([0, 1)s). Thus, μ̂rqmc,l is an unbiased estimator of I ( f ). The overall
RQMC estimator of I ( f ), based on these v iid estimators, is

μ̂rqmc = 1

v

v∑
l=1

μ̂rqmc,l , (1)

with variance estimator

σ̂ 2
rqmc = 1

v

(
1

v − 1

) v∑
l=1

(μ̂rqmc,l − μ̂rqmc)
2. (2)

The empirical variance in Eq. (2) can then be compared with that of the regular MC estimator
with a sample size nv.

2.2 Point Sets on the Triangle

In the general case, let points A, B,C lie on a hyperplane in R
d , forming a non-degenerate

triangle, i.e., not lying on the same line. Define the triangle with corners A, B and C as the
convex combination

�(A, B,C) =
{
λ1A + λ2B + λ3C

∣∣∣ min
j

{λ j } ≥ 0,
3∑
j=1

λ j = 1

}
.

Without loss of generality, we can consider A, B,C ∈ R
2. We often construct point sets on

special triangles, such as the equilateral triangle, �E = �
(
(0, 0), (1, 0), (1/2,

√
3/2)

)
, or

the right-angle triangle, �R = � ((0, 0), (0, 1), (1, 0)) , as it is simpler than constructing
point sets on an arbitrary triangle. It is thus useful to be able to map a point set constructed
on one triangle to any other arbitrary triangle. Indeed, we can use an affine transformation
which preserves the ratios of the lengths of parallel line segments and ratios of distances
between points lying on a straight line.

Let � = �(A, B,C) and �′ = �(A′, B ′,C ′) be two arbitrary triangles. Algorithm 1
from Tymchyshyn and Khlevniuk (2019) explains how to transform a point x = (x, y) ∈ �
to x′ = (x ′, y′) ∈ �′. This transformation can be applied to every point within � to create a
sampling scheme on �′. When �′ is non-degenerate, this transformation is one-to-one. The
algorithm can be extended to higher dimensions, for example, to map between simplexes.

123

15 Page 4 of 31



Methodology and Computing in Applied Probability (2024) 26:15

Algorithm 1 (Transforming a point from � to �′). Given � = �(A, B,C), �′ = �(A′,
B ′,C ′), and a point x = (x, y) ∈ �:

1. Define the matrices

M(�) =
⎛
⎝a1 b1 c1
a2 b2 c2
1 1 1

⎞
⎠ and M(�′) =

⎛
⎝a

′
1 b′

1 c′
1

a′
2 b′

2 c′
2

1 1 1

⎞
⎠ ,

where A = (a1, a2), B = (b1, b2), C = (c1, c2), A′ = (a′
1, a

′
2), B

′ = (b′
1, b

′
2), and

C ′ = (c′
1, c

′
2).

2. Let M(�,�′) = M(�′)M(�)−1 be our affine transformation matrix.
3. Return the point x′ = (x ′, y′) consisting of the first two components of the matrix–

vector product

(x ′, y′, z′) = M(�,�′)

⎛
⎝x
y
1

⎞
⎠ . (3)

We illustrate the affine transformation in Fig. 1. The first four points of the scrambled
triangular vdC sequence are generated on the equilateral triangle�E , and then mapped using
Algorithm 1 to the right-angle triangle �R . Clearly, the ratios of distances between points
are preserved, as are the low-discrepancy properties of the point set.

2.3 Transforming a Low-discrepancy Point Set from the Unit Square to a Triangle

The end goal of creating point sets over some domain � is often to estimate an integral over
said domain, say,

∫
�

f (x) dx, where f : � → R is integrable. If constructing point sets on
� directly is difficult or not possible, a natural and popular approach is to sample points from
the unit hypercube [0, 1)d and to formulate this integral as

μ =
∫

�

f (x) dx = λ(�)

∫
[0,1)d

f (φ(u)) du,
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Fig. 1 Four points generated on the equilateral triangle and mapped to the right-angle triangle using Algo-
rithm 1
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where φ : [0, 1)d → � for some d ∈ N is a mapping such that φ(U) ∼ Uniform(�) for
U ∼ Uniform

(
(0, 1)d

)
. That is, we can estimate expectations by sampling points uniformly

from the domain � if we can find such a mapping φ.
For the right-angle triangle � = � with 0 ≤ x1 ≤ x2 ≤ 1 (which is � = �((0, 0),

(0, 1), (1, 1))), Pillards and Cools (2005) give six possible transformations φ to map points
from Uniform

([0, 1)2) to a uniform distribution over �. Note that this right-angle triangle
� is not the same as �R , but as mentioned earlier, transforming points generated on one
triangle to another triangle is straightforward.

1. Method Drop. Points are accepted if they are within � and rejected otherwise. In higher
dimensions, many points get lost – only 1 in every s! points are kept when working in
s dimensions.

2. Method Sort. Points rejected by the drop method are recovered by reordering the coordi-
nates of a point in the unit square such that x1 ≤ x2 to be within �. This transformation
is fast and continuous.

3. Method Mirror. We accept the points that are already in � and reflect the other ones at
(1/2, 1/2). The resulting transformation is fast, but discontinuous.

4. MethodOrigami. Here, the sortmethod is recursively usedwithin the unit square. Starting
by subdividing the unit square into b2m subsquares, where b andm are user-chosen integer
values, with each iteration increasing the side length of the subsquare by a factor of b,
until it matches the unit square. This transformation is discontinuous.

5. Method Root. This method is based on Fang and Wang (1993) and given by

φ(u1, u2) = (u1
√
u2,

√
u2).

This transformation is continuous and smooth, but the two sharp corners of the triangle
are treated in different ways.

6. Method Shift. This method treats the two sharp corners of the triangle the same way, in
contrast with the root method. A line is drawn with slope -1 through each point, and each
point is then moved halfway towards the nearest axis along this line. This transformation
is fast, but is not generalisable to higher dimensions.

The “drop” method is of acceptance-rejection type in that it only keeps the points in
the triangle and discards the other ones. The other methods, except “root” and “shift”, can
be thought of as improved variants of “drop”. The method “root” is originally from Fang
and Wang (1993) and is an application of the inverse Rosenblatt transform; see Rosenblatt
(1952).Othermethods, such as introduced inHeitz (2019), have been introduced for computer
graphics applications, that transform points from the unit square to �R with lower distortion
than the “root” method, similarly to the “shift” method. Although the concept of “low-
distortion” is not consistently defined (Shirley and Chiu 1997), such transformations aim to
preserve correlation between points.

In our numerical experiments of Section 5, we use the method “root” on the bivariate
Sobol’ sequence as well as on pseudo-randomly generated numbers. We use this method
as it is smooth, continuous, fast and can be extended to go from higher-dimensional cubes
to simplexes.
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2.4 The Triangular Rank-2 Lattice

In this section, we describe lattice constructions in general, and then the triangular lattice of
Basu and Owen (2015). First, we define a lattice point set.

Pn =
{(

i1z1
n1

+ i2z2
n2

+ ... + ir zr
nr

)
mod 1, 0 ≤ il < nl , l = 1, ...r

}
,

where the basis vectors z1, ..., zr ∈ R
s . A lattice rule is of rank t if it can be expressed in

this form with r = t , but not r < t . In particular, for rank-1 lattices, we can write

Pn =
{(

i z1
n

,
i z2
n

, . . . ,
i zs
n

)
mod 1, 0 ≤ il < nl , l = 1, ...r

}
,

based on a single generating vector z = (z1, ..., zs). Rank-1 lattices have an advantage over
higher-order lattices, as they can be made fully projection regular, i.e., each one-dimensional
projection has n points. One way of constructing higher rank lattices is to employ the copy
rules of Disney and Sloan (1992); that is, we can take a rank-1 lattice, scale it, and copy it
into each of the 2s subcubes obtained by partitioning the unit cube into two parts on each
side, and obtain a rank-s lattice. Thus, rank-1 lattices are more often used. There is extensive
work on choices of rank-1 lattices, both theoretical and computer searches for good lattices
are available; see for example, Dick et al. (2022) and Goda and L’Ecuyer (2022).

Basu and Owen (2015) give a lattice construction for points on the triangle with optimal
discrepancy: let α ∈ (0, 2π) be such that tan(α) is a quadratic irrational number, i.e., tan(α)

= (a + b
√
c)/d for b, d 
= 0 and c > 0 not a perfect square. The point set Pn obtained

by rotating the lattice (2n)−1/2
Z
2 counterclockwise by α and intersecting with � satisfies

DP
n (Pn,�R) ≤ C log n/n. The following algorithm produces such point sets.

Algorithm 2 (Lattice construction of Basu andOwen (2015)). Given the target sample size n,
α such that tan(α) is badly approximable in the sense of Basu andOwen (2015,Definition 4.1)
(e.g., α = 3π/8), a random vector U ∼ Uniform

(
(0, 1)2

)
(for an optional shift), an integer

N, sample n points in �R as follows:

1. Let P = {0, 1, . . . , N − 1}2 and set x ← (x + U)/N for x ∈ P.
2. Map x ← 2x − 1 ∈ [−1, 1]2 for all x ∈ P.

3. Set x ←
(
cos(α) − sin(α)

sin(α) cos(α)

)
x for all x ∈ P.

4. Set Pn = P ∩ �R.
5. If |Pn | 
= n, add or remove |Pn | − n points in �R to Pn.
6. Return Pn.

The randomization transforms the otherwise deterministic points so that x ∼ Uniform(�)

for all x ∈ P , which follows readily by observing that the density of each x is constant if a ran-
domization is performed. In Step 5, we can choose arbitrarily which points to add or remove.
We remark that the algorithm presented in Basu and Owen (2016, p. 757) differs slightly
from Algorithm 2 in that their version uses N = √2n� + 1 and the lattice {−N , . . . , N }2.

2.5 The Triangular vdC Sequence

Wenowdescribe the triangular vdC sequence ofBasu andOwen (2015), which is based on the
one-dimensional vdC sequence in base 4. The i th point of the one-dimensional vdC sequence
in base b is given by ui = φb(i − 1) where the radical inverse function φb is defined as
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φb(i) =
∑
k≥0

dkb
−k−1, i =

∑
k≥0

dkb
k ∈ {0, 1, . . . }.

With this formula, the vdC sequence places points at the left-most boundaries of each of the
intervals [b−m, b−m+1). Similarly, the triangular vdC sequence, based on the vdC sequence
in base 4, replaces the intervals with bm = 4m congruent sub-triangles and places the points
in the centre of each terminal sub-triangle. Let T = �(A, B,C) denote the specific tri-
angle which we wish to generate points on. Define the sub-triangle of T with index d for
d ∈ {0, 1, 2, 3} as

T (d) =

⎧⎪⎪⎨
⎪⎪⎩

� ( B+C
2 , A+C

2 , A+B
2

)
, d = 0,

� (A, A+B
2 , A+C

2

)
, d = 1,

� ( B+A
2 , B, B+C

2

)
, d = 2,

� (C+A
2 , C+B

2 ,C
)
, d = 3.

(4)

For the i th point in the sequence, write the base 4 representation of i ≥ 0 as i = ∑
k≥0 dk4

k .
This representation has at most Ki = log4(i) + 1� non-zero digits, which means that the
expansion is finite, and we do not have to infinitely divide the triangle into sub-triangles.
The original construction for the triangular vdC sequence obtains the i th triangular point by
mapping the integer i to the midpoint of the triangle T (d0, . . . , dKi ), which is recursively
defined by T (dk, dk+1) = (T (dk))(dk+1), as detailed in Algorithm 3. For example, if we
have T = �R = � ((0, 0), (0, 1), (1, 0)), then T (2, 3) = (T (2))(3), where T (2) = �
((0, 0.5), (0, 1), (0.5, 0.5)). Then, (T (2))(3) = �((0.25, 0.5), (0.25, 0.75), (0.5, 0.5)).

Algorithm 3 (Triangular vdC sequence).Given the desired sample size n and a target triangle
�(A, B,C), the first n points, outputted in an n × 2 array x, are generated as follows:

1. For i = 1, . . . , n:

(a) Compute (d0, . . . , dKi ) such that i − 1 = ∑Ki
k=0 dk4

k .
(b) Initialize T = �(A, B,C).
(c) For j = 0, . . . , Ki .

Update T = T (d j ) using (4).
(d) Set the i th coordinate x[i] of x as x[i] = mdpt(T ), where the midpoint function is

mdpt(�(A, B,C)) = (A + B + C)/3 component-wise.

2. Return x = (x1, . . . , xn).

In other words, Algorithm 3 generates a vdC sequence in base 4, and each digit of the
base 4 expansion denotes which sub-triangle the point lies in. Advantages of this method
include that since it is based on the vdC sequence, it is extensible, balanced, can be modified
to be randomized, and it is easily implemented. However, when implementing the algorithm
as originally described, once the terminal sub-triangles are identified, placing the sampling
points at the centre of each results in points that suffer from poor projection properties, as
shown in Proposition 1. That is, the one-dimensional projections have non-unique points,
which will lead to poorer integration results, especially for functions with low effective
dimension where the majority of the variance of the function is captured by one-dimensional
projections onto these axes.

Proposition 1 (Non-unique one-dimensional projections for the triangular vdC sequence)
Let T = �R, such as in Fig.2, and denote by Pn the point set consisting of the first n points
produced by Algorithm 3 for n = 4k and k > 2. Then the projections of Pn onto the x- and
y-axis contain 2

√
n = 2k+1 < n points.
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Fig. 2 The first 1000 points of the triangular vdC sequence of Basu and Owen (2015)

Proof Since n = 4k , each of the 4k subtriangles contains one point, and there are 2k rows of
subtriangles. In each row j , the midpoints of all upright triangles have the same y coordinate,
say y j1. Similarly, the midpoints of all inverted triangles in the same row have the same y
coordinate, say y j2. Since there are only these two cases, the point set projects on {y ji : j = 1,
. . . , 2k; i = 1, 2}, which has 2 · 2k = 2k+1 elements. The x-axis case follows similarly. ��

This behaviour where the one-dimensional projections contain non-unique points can also
be observed in the equilateral triangle, as seen in Fig. 6.

As a continuationof thiswork,Goda et al. (2017) generalize the triangular vdCsequenceby
replacing the support {0, 1, 2, 3} of the transformation in (4) by {(0, 0), (1, 0), (0, 1), (1, 1)}
= F

2
2, where the input strings (from F

m
2 for some m or F∞

2 ) come from a digital net. They
prove that their construction gives worst case error inO((log n)3/n) for functions in C2(�).
Furthermore, they show that their construction includes the vdC sequence of Basu and Owen
(2015); see Goda et al. (2017, p. 369).
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3 Extensible Triangular Lattice Constructions

Wenow describe our extensible triangular rank-1 and rank-2 constructions, as an extension of
the triangular lattice construction. The construction in Algorithm 2 is non-extensible. In this
section,we propose an extensible scheme, forwhichwemake use of the one-dimensional vdC
sequence. Recall that the i th point of an extensible rank-1 lattice sequence with generating
vector z ∈ Z

d is defined as
ui = φb(i)z mod 1 ∈ [0, 1]d ,

where φb(i) is the i th term of the vdC sequence in base b, and the modulus 1 operation is
applied component-wise; see Hickernell and Hong (1997) and Hickernell et al. (2001).

If we want to use this idea to define a triangular Kronecker lattice sequence, then we need
to introduce a more general idea extending the rank-1 case. In particular, the grid that needs
to be generated, given by

P =
{
−N

N
,−N − 1

N
, . . . ,− 1

N
, 0,

1

N
, . . . ,

N

N

}2
,

is a rank-2 lattice rather than a rank-1 lattice. We also note that the only reason why Basu and
Owen (2015) use a grid over [−1, 1]2 instead of [0, 1)2 seems to be that when they rotate the
points from the grid, they can just take the intersection with �R without having to perform
any modulo 1 operation. However, with our proposed approach to generate an extensible
grid, we will focus on generating points in [0, 1)2; we can then either make use of modulo 1
operations or extend the grid to [−1, 1]2.

First, we must choose the base b in which the grid will be constructed. The choice of the
base b is such that whenever n is of the form b2k for some k ≥ 1, the point set Pn obtained
with this method will be exactly the same as if we had proceeded with the fixed-size approach
based on N = bk ; see Proposition 2 below. We then make use of the base b decomposition
of i as i = ∑

j≥0 d jb j to define the point

ui = (ui,1, ui,2) = d0
b

(1, 1) + d1
b

(0, 1) + d2
b2

(1, 1) + d3
b2

(0, 1) + . . . mod 1. (5)

Note that the modulo 1 operation is only necessary for the second coordinate, as we have
the bound

d0
b

+ d2
b2

+ d4
b3

+ . . . ≤
∑
j≥1

d j

bk
≤
∑
j≥1

(1
b

)k = 1

1 − 1/b
− 1 ≤ 1.

Figure 3 shows the first 9, 50, and 81 points obtained with this method when b = 3.
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Fig. 3 First 9 (left), 50 (middle) and 81 points when using b = 3
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The points ui lie in [0, 1)2. Next, we rotate the points by α and can then proceed as in
Algorithm 2.

Algorithm 4 (Extensible Kronecker Lattice). Given α, n, b, a random vector U ∼ Uniform(
(0, 1)2

)
(for the optional shift) and a skip s ≥ 0, sample n points in �R as follows:

1. Set Pn = {} and k = 0.
2. While |Pn | < n,

(a) Compute digits d j such that k + s = ∑
j≥0 d jb j and compute u in (5).

(b) Set k ← k + 1, u ← 2((u + U) mod 1) − 1 ∈ [−1, 1]2.
(c) Set u ←

(
cos(α) − sin(α)

sin(α) cos(α)

)
u.

(d) If u ∈ �R, set Pn = Pn ∪ {u}.
3. Return Pn.

Proposition 2 (Equivalence of Algorithms 2 and 4). Let n = b2k , k > 0 and s = 0. The sets
Pn of points obtained by Algorithm 2 with N = bk and Algorithm 4 coincide.

Proof Assume without loss of generality that U = 0. Consider the set Q = {ui : i = 0, . . . ,
n − 1} where the ui are as in (5). Then Q is a rank-2 lattice and can be written as
Q = {(i/bk, j/bk) : 0 ≤ i, j < bk}. This is exactly the rectangular grid in Step 1 of
Algorithm 2. Since the remaining operations (intersection and rotation) are identical in both
algorithms, the result follows. ��

Algorithm 4 is based on a rank-2 lattice with generating vectors z1 = (1, 1) and z2 = (0,
1). In our numerical experiments, we also consider a rank-1 lattice with generating vector
z = (1, 182667); see Cools et al. (2006, p. 26). The lattice construction allows for an easy
randomization by shifting the underlying grid by a uniform vector, as originally proposed by
Cranley and Patterson (1976). Figure4 displays five independently randomized copies of the
lattice points, each having a different colour.

4 Stratified Sampling Based on the Triangular vdC Sequence

As previously mentioned, placing the sampling points at the centre of each terminal sub-
triangle for the triangular vdC sequence results in points beingmapped to the same coordinate
on the x or y axis. Since the triangular vdC sequence is based on the one-dimensional vdC
sequence over the unit interval, a natural randomization to “repair” the poor projection quality
is scrambling.

In this section, we explain the equivalency between stratified sampling and the nested
scrambling of Owen (1995) for any (0,m, 1)-net or (0, 1)-sequence. This equivalency is not
limited to the vdC sequence, but will hold in general for all (0, 1)-sequences, including, for
example, one-dimensional projections of the Sobol’ sequence. This will allow us to then pro-
pose an efficient implementation of nested scrambling via a stratified estimator.We also show
that nested scrambling is a way to implement an extensible stratified estimator. Finally, since
the triangular vdC sequence is essentially amapping from the one-dimensional vdC sequence
to the two-dimensional space, it is easy to transform our proposed scrambling implementation
in one dimension into a randomization method for the triangular vdC sequence.
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Fig. 4 Five independently randomized triangular Kronecker lattice point sets with 26 points each

4.1 Stratified Sampling

A simple way to reduce the variance of an estimator for the integral of a function f over the
unit interval [0, 1) is to stratify [0, 1) into M subintervals of length p j and allocate n j points
to the j th subinterval (with n1 + . . . + nM = n), thus resulting in the estimator

μ̂strat =
M∑
j=1

p j
1

n j

n j∑
i=1

f (uij ),

where the uij are iid uniforms in the j th subinterval, and independent from u�
k for k 
= j ,

� = 1, . . . , nk . If we allocate a number of points proportional to the length of each subinterval
(i.e., n j = np j which is assumed to be an integer), then this is stratified sampling with
proportional allocation. This method is guaranteed to have a lower variance than regular
Monte Carlo; see Lemieux (2009, p. 126). Furthermore, if n = bm and we set M = bm then
one point u1j = u j is allocated to the j th stratum, and we get μ̂strat = ∑n

j=1 f (u j )/n where
each u j is uniformly distributed in the j th stratum.

The variance of this estimator is Var(μ̂strat ) = 1
n2
∑n

j=1 σ 2
j , where σ 2

j is the variance of

f within the j th subinterval.
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In the context of this section, since the number of points is not necessarily an integer
power of b, we refer to a base b stratified sampling scheme as a sampling scheme where
for any number of points n, if we subdivide the unit interval into subintervals with length
b−m for any positive integer m, the number of points within each subinterval is different by
at most one from the number of points within any other subinterval. That is, |n j − n�| ≤ 1
for all j, � = 1, . . . , bm . Stratified sampling with this property can yield a more efficient
implementation of nested scrambling, which we explain in the next section.

4.2 Nested Uniform Scrambling

The nested uniform scrambling method of Owen (1995), sometimes referred to as “Owen’s
scrambling” or “nested scrambling”, scrambles a point set Pn ⊆ [0, 1)s by applying random
permutations to the digits ui, j,l that stem from the base b expansion of ui, j (we write ui, j
= ∑∞

l=1 ui, j,lb
−l ). Permutations π are randomly uniformly distributed over all b! permuta-

tions of [0, 1, . . . , b − 1]. The permutation of each digit depends on all the digits that came
before it, and a new set of permutations is used for each coordinate. That is, the permutation
used for ui, j,1 is π j , the permutation used for ui, j,2 is π j,ui, j,1 (the permutation applied to
the second digit ui, j,2 depends on the first digit ui, j,1), the permutation used for ui, j,3 is
π j,ui, j,1ui, j,2 , and so on. That is, to randomize the kth digit of a given coordinate j , up to bk−1

different permutations may be needed.
Nested scrambling is costly to implement, both in terms of time and memory. It requires

a dictionary or other lookup data structure to store all the permutations generated, and, in
addition to the time to go through all the coordinates of every point, the lookup time for
each permutation needs to be paid. However, despite being costly to implement, nested
scrambling is often used because it has the potential to reduce the variance of the RQMC
estimator in Eq. (1) to O(n−3 log(n)s−1) ≈ O(n−3+ε) for sufficiently smooth functions as
shown in Owen (1997). Use of nested scrambling is further justified by the fact that nested
scrambling in base b also preserves equidistribution in base b as defined below, and satisfies
the requirement of being a base b-digital scramble as defined in Hickernell (1996), Hong and
Hickernell (2003), Owen (2003) and Wiart et al. (2021), which is also given below.

Definition 1 (Equidistribution). We say that Pn with n of the form bm with m ≥ 0 for
a single-base b construction, is (k1, . . . , ks)-equidistributed in base b if every elementary
(k1, . . . , ks)-interval of the form

Ik(a) =
s∏

�=1

[
a�

bk�
,
a� + 1

bk�

)

for 0 ≤ a� < bk� contains exactly nb−k1
1 · · · b−ks

s points from Pn , assuming k is such that

n ≥ bk11 . . . bkss .

Definition 2 ((t,m, s)-nets). We say that a point set Pn in base b has a quality parameter t
if Pn is (k1, . . . , ks)-equidistributed for all s-dimensional vectors of non-negative integers
k = (k1, . . . , ks) such that k1+. . .+ks ≤ m−t .We then refer to Pn as a (t,m, s)-net in base b.

Definition 3 ((t, s)-sequences). We say a sequence is a (t, s)-sequence in base b if for every
integerm ≥ 0, every point set of the form u j , . . . , u j+bm−1, where j is of the form j = vbm

+ 1 for some v ≥ 0, is a (t,m, s)-net.
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Definition 4 (Base b-digital scramble). A randomization S is a base b-digital scrambling if
the following two properties hold: Let Ui,� = ∑∞

r=1Ui,�,r b−r , that is, Ui,�,r represents the
r th digit in the base b expansion of the �th coordinate of the i th point ui in the scrambled
point set P̃n . Then we must have:

1. Each ui ∼ Uniform([0, 1)s);
2. For two distinct points ui = S(vi ), u j = S(v j ) and for each coordinate � = 1, . . . , s, if

the two deterministic points Vi,�, Vj,� have the same first r digits in base b and differ on
the (r + 1)th digit, then:

(a) the scrambled points (Ui,�,Uj,�) also have the same first r digits in base b;
(b) the pair (Ui,�,r+1,Uj,�,r+1) is uniformly distributed over {(k1, k2), 0 ≤ k1 
= k2

< b};
(c) the pairs (Ui,�,v,Uj,�,v) for v > r + 1 are mutually independent and uniformly

distributed over {(k1, k2), 0 ≤ k1, k2 < b}.

4.3 Nested Scrambling as Stratified Sampling

We now show that we can implement a nested scrambled vdC sequence via a base b stratified
sampling scheme on the unit interval, as the two methods produce point sets with the same
joint distribution. First, we show that the scrambled vdC sequence in base b is a (0, 1)-
sequence in base b. Since scrambling in the constructing base does not change the t parameter,
it is sufficient to show that the deterministic vdC sequence is a (0, 1)-sequence.

Lemma 1 (A consecutive subset of the vdC sequence is a (0,m, 1)-net). Any point set Pn
that is made up of n = bm consecutive points from the vdC sequence constructed in base b
is a (0,m, 1)-net in base b.

Proof If we consider the first m digits in the base b expansion of each point ui ∈ Pn , there is
exactly one point with each of the unique bm combinations of digits; see Dong and Lemieux
(2022, Section 5). That is, there is exactly one point in each of them-elementary intervals and
thus, by definition, a (0,m, 1)-net in base b, and thus Pn , is m-equidistributed in base b. ��
Lemma 2 (A consecutive subset of a vdC sequence has the same properties as the initial
portion of a (0, 1)-sequence). Any point set Pn that is made up of n consecutive points from
a vdC sequence in base b has the same equidistribution properties as the first n points of a
(0, 1)-sequence in base b.

Proof The result follows by observing that every point set Pk made up of k = bm consecutive
points from the vdC sequence in base b is a (0,m, 1)-net in base b (by Lemma 1). ��
Lemma 3 (Equivalence of the scrambled vdC sequence and stratified sampling for n = bm).
Let μ̂scr ,n = 1

n

∑n
i=1 f (ũi ) where ũi , i = 1 . . . n, are the first n points of a scrambled vdC

sequence in base b. If n = bm for some positive integer m, then μ̂scr ,n corresponds to the
estimator that uses stratified sampling with proportional allocation.

Proof Since the first bm points of the scrambled vdC sequence in base b is a (0,m, 1)-net in
base b (by Lemma 1), its equidistribution properties mean that there is exactly one point in
each of the bm subintervals, and the scrambling as defined in Definition 4 has the point placed
independently and uniformly within each of the bm subintervals. This is exactly stratified
sampling with proportional allocation. ��
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However, in general, n is not a power of b. In this case, we argue that the equidistribution
properties of the (0, 1)-sequence are such that the scrambled vdC estimator (by Lemma 2)
places a number of points in the intervals [ jb−l , ( j +1)b−l) that are different by at most one
from each other for l ≤ m for m = �logb n�.

To explain how to implement this estimator using our base b stratified sampling algorithm,
we introduce the following notation. Write n = λbm + r , with the quotient λ = �n/bm� and
remainder r satisfying 0 ≤ r < bm . Further, break down r as r = kb+ j , where 0 ≤ j < b.
We also define M to be the smallest integer power of b greater than or equal to n. That is,
M = bq , where q = logb n�.

In Proposition 3 we will prove that we can implement μ̂scr ,n for any sample size n
as a base b stratified sampling estimator over strata of the form [ jb−l , ( j + 1)b−l) for
l = 1, . . . ,m. This is done by using the vector [N1, . . . , NM ], where N j is the number of
points in [ jb−q , ( j + 1)b−q) (either 0 or 1). That is, N j counts the number of points in the
smallest meaningful stratum: strata of size b−q or smaller can have at most 1 point, thus there
is no reason to subdivide further.

The scrambled vdC estimator satisfies the following properties:

1. N j ∈ {0, 1}, j = 1, . . . , M ,
∑M

j=1 N j = n, and
2. The N j ’s have the same marginal distribution.

To define the scrambled estimator, we simply need to generate the vector of N j ’s with the
properties listed above. Rather than obtaining these N j via scrambling, we propose a more
efficient procedure for sampling a vector of N j ’s given a base b and a number of points n in
Algorithm 5 (the latter samples N1, . . . , NM for computing μ̂scr ,n).

Algorithm 5 (Sampling N1, . . . , NM for computing μ̂scr ,n). Given input n ∈ N and b ≥ 2,
sample N1, . . . , NM as follows:

1. Initialize n and b. Calculate the constants q,m, M, λ, r , k, j as summarized in Table 1.
2. If M = n, return N j = 1 for j = 1, . . . , M.
3. If m = 0, then n = λ, and M = b. Randomly choose λ of the b N j s to be 1 and b − λ of

the N j ’s to be 0, and return N j for j = 1, . . . , M.
4. If m > 0, we recursively generate the N j ’s in each of the b sub-intervals of the form

[ jb, ( j + 1)b), j = 0, . . . , b − 1 as follows:

(a) Generate a vector of ni ’s of length b that sums to n with b − r entries of λbm−1 and
r entries of λbm−1 + 1:
(i) Randomly choose a subset I of indices j from {1, . . . , b}.
(ii) If i ∈ I , then ni = λbm−1 + k + 1.
(iii) Otherwise, ni = λbm−1 + k.

(b) For each i = 1, . . . , b, we generate N(i−1)bm+1, . . . , Nibm by restarting at Step 1
with the same base b but with n = ni , and q = m. At this step, we have b recursive
calls to the function.

5. Return N1, . . . , NM.

Note that in Step 4b, when we return to Step 1, if ni is a power of b, q is not guaranteed
to be equal to logb n�, as it can also take on the value logb n� + 1. For example, this case
may arise when sampling n = 10 points in base 3. We would need to allocate these 10 points
into 27 strata, so we will need to put 3 points into 9 strata. So even though 3 = 31, we would
want q = 2 as 9 = 32: q is counting how many times we need to subdivide the unit interval.

123

Page 15 of 31 15



Methodology and Computing in Applied Probability (2024) 26:15

Table 1 Constants used in
Algorithm 5

Constant Definition

n Number of points to generate (input)

b Base (input)

q q = logb n�
m m = �logb n�
M M = bq

λ �n/bm�
r r = n − λbm

k k = �logb r�
j j = r − kb

After acquiring the N j ’s using Algorithm 5, wemust generate the point set. This process is
straightforward. To generate the point set based on the N j , for every j = 1 . . . M , if N j = 1,
generate a point uniformly in the interval [ jb−q , ( j + 1)b−q). If N j = 0, do not generate a
point in the interval.

Proposition 3 (Equivalence of stratified sampling and the one-dimensional vdC sequence).
The point set created using Algorithm 5 to define the N j ’s is such that pairs of distinct points
have the same joint distribution as those coming from a scrambled vdC point set and thus
the corresponding estimators have the same first two moments.

Proof Wemust derive the joint pdf of pairs of randomly chosen distinct points from the point
set created usingAlgorithm 5, and show that it is the same as the joint pdf of pairs of randomly
chosen distinct points from a one-dimensional scrambled vdC point set. To do so, we need
the following definitions taken from Wiart et al. (2021) and Dong and Lemieux (2022):

Definition 5 (γb(x, y)). For x, y ∈ [0, 1), let γb(x, y) ≥ 0 be the exact number of initial
digits shared by x and y in their base b expansion, i.e. the smallest number i ≥ 0 such that
�bi x� = �bi y� but �bi+1x� 
= �bi+1y�. If x = y then we let γb(x, y) = ∞.

Definition 6 (Counting numbers Nb(i; Pn) and Mb(k; Pn)). Let Pn = {U1, . . . ,Un} be a
point set in [0, 1) and b, i, k ∈ N, b ≥ 2. Then,

1. Nb(i; Pn) is the number of ordered pairs of distinct points (Ul ,Uj ) in Pn such that
γ b(Ul ,Uj ) = i ,

2. Mb(k; Pn) is the number of ordered pairs of distinct points (Ul ,Uj ) in Pn such that
γ b(Ul ,Uj ) ≥ k, and

3. Nb(k; Pn,Ul) = ∑
e∈{0,1}(−1)|e|Mb(k + e; Pn,Ul).

(Proof, continued.) The joint pdf of a one-dimensional scrambled vdC is

ψ(x, y) =
{

Nb(i;Pn)
n(n−1)

b1+i

(b−1) , if i < ∞,

0, if i = ∞,

where Pn refers to the first n points of the deterministic vdC sequence.
We now show that the scrambled vdC point set and the point set constructed using the

proposed base b stratified sampling method from Algorithm 5 yield the same Mb(k; Pn) as
defined in Definition 6. This means that Nb(i; Pn) and thus the joint pdf ψ(x, y) for all pairs
of points (x, y) are then the same for both methods.
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Since the base b vdC sequence is equivalent to a one-dimensional Halton sequence, we
know from Dong and Lemieux (2022) that in this case Mb(k; Pn) is given by:

vdCMb(k; Pn) =
⌊
n − 1

bk

⌋(
2n −

⌊
n − 1

bk

⌋
bk − bk

)
. (6)

For any k, we can write n = qbk + r , where q =
⌊

n
bk

⌋
and 0 ≤ r < bk . By construction

of the base b stratified sampling estimator, we divide the unit interval into bk segments and
any pairs of points in the same segment will share at least k initial common digits. There are
bk − r of these segments with q points, and r segments with q + 1 points. Thus, the number
of ordered pairs of points that are in the same segment is (bk − r)q(q − 1) + r(q + 1)q .
Substituting r = n − qbk , we have SSMb(k; Pn) = 2nq − q2bk − qbk for the point set

created via base b stratified sampling. Now, we substitute q =
⌊

n
bk

⌋
and simplify to get

SSMb(k; Pn) = 2n
⌊ n

bk

⌋
−
⌊ n

bk

⌋2
bk −

⌊ n

bk

⌋
bk =

⌊ n

bk

⌋ (
2n −

⌊ n

bk

⌋
bk − bk

)
.

This is very similar to (6), except with � n−1
bk

� rather than � n
bk

�. We show that SSMb(k; Pn)
= vdCMb(k; Pn) by considering the following two cases:

1.
⌊

n
bk

⌋
=
⌊
n−1
bk

⌋
. This case occurs when r 
= 0. If this is the case, then we conclude

SSMb(k; Pn) =
⌊
n−1
bk

⌋ (
2n −

⌊
n−1
bk

⌋
bk − bk

)
= vdCMb(k; Pn) and we are done.

2.
⌊

n
bk

⌋

=
⌊
n−1
bk

⌋
. In this case, r = 0 and

⌊
n
bk

⌋
= n

bk
= q , as well as

⌊
n−1
bk

⌋
= n

bk
− 1

= q − 1. Then, we can write SSMb(k; Pn) as

SSMb(k; Pn) = n

bk

(
2n − n

bk
bk − bk

)
= n

bk
(2n − n − bk) = n2

bk
− n.

Similarly, we can write vdCMb(k; Pn) as:

vdCMb(k; Pn) =
( n

bk
− 1

)(
2n −

( n

bk
− 1

)
bk − bk

)

=
( n

bk
− 1

)
n = n2

bk
− n.

Thus, SSMb(k; Pn) = vdCMb(k; Pn), as needed.
Hence, we find that SSMb(k; Pn) = vdCMb(k; Pn) and thus that SSNb(k; Pn) = vdC Nb

(k; Pn) for all k. This implies that SSψ(x, y) = vdCψ(x, y) for all (x, y) ∈ [0, 1)2. Thus, the
estimator implemented using the base b stratified sampling has the same first two moments
as the scrambled vdC estimator. ��

Since n is not necessarily an integer power of b, our estimator does not inherit properties of
stratified samplingwith proportional allocation.However, its connection to nested scrambling
implies we can apply results about the variance of scrambled estimators for (0, 1)-sequences
as found, e.g., in Gerber (2015). That is, even though the variance is not guaranteed to be
no higher than for Monte Carlo for any function (as a purely stratified sampling estimator
based on proportional allocation would), the superior asymptotic bounds for the variance of
a scrambled estimator apply. Also, since we know the scrambled vdC estimator produces
an unbiased estimator (Dong and Lemieux 2022) this means Algorithm 5 also produces an
unbiased estimator.
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4.4 Comparative Efficiency Analysis for Fixed n

Using the above connection between scrambling and base b stratified sampling, for fixed nwe
can implement scrambling by sampling the N j ’s as in Algorithm 5 and once those intervals
where a point will be placed have been identified, we simply place a point uniformly in
that interval. This approach is computationally more efficient than proceeding via recursive
permutations, as is required when implementing nested scrambling.

The recursive Algorithm 5 for base b stratified sampling has logb(n)� layers, and each
call to the function has b sub-calls. Thus, in total, there are b+ b2 + . . . + blogb(n)� = O(n)

operations. For nested scrambling of the vdC sequence, we need to scramble the first
�logb(n − 1)� + 1 digits for each of the n points. This means that the number of operations
needed is O(n log(n)). In addition, permutations have to be stored in a lookup dictionary.
There are b combinations of 1 digit, b2 combinations of 2 digits, and so on. Thus, the amount
of storage needed for nested scrambling is b+2b2 + . . .+ (�logb(n−1)�+1)b�logb(n−1)�+1

= O(n log(n)). Another advantage of the base b stratified sampling algorithm is that it
does not require any additional storage for a lookup dictionary, as the nested scrambling
algorithm does.

Figure 5 shows the runtime needed to generate n = 2000, 4000, . . . , 200 000 points
from the scrambled base 4 vdC sequence needed to construct point sets on the triangle. Our
base b stratified sampling implementation is compared with nested scrambling and shown
to be more computationally efficient. Furthermore, an increase in runtime occurs only at

Fig. 5 Runtime comparison for generating a scrambled vdC sequence in base 4 using Owen’s Scrambling vs
Stratified Sampling. Estimated growth rate for the runtimes are in parentheses in the legends
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integer powers of 4. We also report, in the legend, a growth rate of the runtime α, such
that the runtime is proportional to nα . This is estimated by the regression coefficient α of
log(runtime) = αlog(n) + c. α is estimated to be 1.07 for stratified sampling and 1.21
for nested scrambling, showing that, indeed, stratified sampling has close to linear time
complexity while nested scrambling has a higher time complexity.

4.5 From the One-dimensional vdC Sequence to the Triangular vdC Sequence

It is now straightforward to use the ideas presented thus far for the one-dimensional vdC
sequence to construct a scheme to sample n points on an arbitrary triangle. The M “strata”
are now the sub-triangles, and we can use Algorithm 5 to sample the number of points in
each sub-triangle, say N1, . . . , NM . Then, sample N j (either 0 or 1) points uniformly in each
sub-triangle for j = 1, . . . , M , for example, using one of the methods described in Section
2.3. This estimator can also be extended using the method described in Appendix.

An algorithm similar to Algorithm 3 can be used to sample in the triangle – the steps are
described in Algorithm 6. Again, the sampling scheme subdivides the triangle into a finer
and finer partition of triangles until each sub-triangle gets at most one point. The differences
are that we now fill the sub-triangles in a non-deterministic order (that still satisfies the
equidistribution properties), and as well, the points within each sub-triangle are uniformly
placed rather than put in the centre.

Algorithm 6 (Mapping the stratified sampling estimator to the triangle). Given input n ≥ 1
and target triangle �(A, B,C), generate the first n points, outputted in an n × 2 array x,
as follows:

1. Generate a vector of indexes I1, . . . , In using Algorithm 5 with base b = 4. Each of the
indexes 0 ≤ Ii ≤ 4log4 n� −1, so we know that the base 4 representation is finite for each
index. The representation has at most Ki = log4(i) + 1� digits, which means that the
expansion is finite, and we do not have to infinitely divide the triangle into sub-triangles.

2. For i = 1, . . . , n:

(a) Compute (d0, . . . , dKi ) such that Ii = ∑Ki
k=0 dk4

k;
(b) Initialize T = �(A, B,C);
(c) For j = 0, . . . , Ki ,

Update T = T (d j ) using (4);
(d) Set the i th point x[i] to be a random uniformly sampled point within T . In our

implementation, we use the “root” method as described in Section 2.3;

3. Return x.

This avoids the poor projection properties of the original triangular vdC sequence as seen
in Fig. 6, and it provides a way to randomize the point set to allow for error estimation.

We note that this method of mapping points from the one-dimensional vdC sequence to
the two-dimensional triangle can be done in other bases – for any base b such that b is a
perfect square, we can map a scrambled vdC sequence in base b to the triangle, which is
simply divided into b sub-triangles of equal size. The enumeration of the sub-triangles does
not matter – after scrambling, (or, equivalently, stratified sampling), the points are uniformly
distributed between the sub-triangles.

Proposition 4 (Unbiasedness of μ̂scr ,n). The estimator μ̂scr ,n is unbiased.
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Fig. 6 Examples of the triangular vdC points generated on �E , with n = 10 (top) and n = 16 (bottom). The
images on the left have each point at the centre of the terminal sub-triangle, while the images on the right have
the points scrambled. For the n = 10 case, the sub-triangles with points are selected via stratified sampling

Proof The statement is equivalent to showing that each point is marginally uniformly dis-
tributed over the triangle. Without loss of generality, the marginal pdf f for the point
u = (u1, u2) uniformly distributed over �E is:

f (u) =

⎧⎪⎨
⎪⎩

2
sin(π/3) , if 0 ≤ u1 ≤ 1/2 and u2 ≤ u1 tan(π/3)

or 1/2 ≤ u1 ≤ 1 and (1 − u1) tan(π/3),

0, otherwise.

For the stratified sampling estimator with given n ≥ 1, we subdivide the triangle into
4q sub-triangles each with area 2

sin(π/3)4q . Since each sub-triangle is chosen with equal
probability (as the N j share the samemarginal distribution), and we uniformly sample within
each of the n sub-triangles, the value of the pdf f within the sub-triangle is equal to the
reciprocal of its area, sin(π/3)4q

2 . Then, a point sampled using the stratified sampling algorithm
has marginal pdf g(u) given by
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g(u) =
{

sin(π/3)4q

2×# sub-triangles , if u = (u1, u2) ∈ �E ,

0, otherwise,

=
{

2
sin(π/3) , if u = (u1, u2) ∈ �E ,

0, otherwise.

Thus, since g(u) = f (u), the stratified sampling algorithm samples uniformly over the
triangle and thus the resulting estimator is unbiased. ��

5 Numerical Experiments

Now that we have described our proposed lattice and randomized triangular vdC construc-
tions for a point set on the triangle, we compare their performance on numerical integration
problems with existing constructions. There are very few, if any, numerical experiments on
the triangle that compare RQMC integration variances, so we hope that these experiments
give insight towards the performance of the various methods.

To test the performance of the different triangular constructions, we consider the following
2-dimensional test functions over the right-angle triangle �R with corners at (0, 0), (0, 1),
(1, 0):

1. f1(x, y) = ((|x − β| + y)d + (|y − β| + x)d)/2. This function has two singularities, so
we anticipate this function to be harder to integrate than the others. This function is based
on f (x, y) = (|x − β| + y)d from Pillards and Cools (2005). The integral evaluates to

1
(d+1)(d+2)

(
(d + 1/2)(1 − β)d+2 + (β + 1)d+2/2 − βd+2

)
over �R .

2. f2(x, y) = cos(2πβ + α1x + α2y), from Pillards and Cools (2005). This is a smooth
oscillatory function. The integral evaluates to 1

α2
( 1
α1−α2

(cos(2πβ + α2) − cos(2πβ

+ α1)) + 1
α1

(cos(2πβ + α1) − cos(2πβ))) over �R .
3. f3(x, y) = xα3 + yα3 . Since this is the sum of univariate functions, it will help us

determine if poor one-dimensional projections affect the integration power of the point
set. The integral evaluates to 2

(α3+1)(α3+2) over �R .

We useβ = 0.4, d = −0.9,α1 = e3,α2 = e2,α3 = 2.5 and estimateμ j = ∫
�R

f j (x) dx,
whose theoretical values are known for j = 1, 2, 3. Figure7 displays fk for k = 1, 2, 3 with
these parameter settings. Although the figures show the functions over the unit square, we
integrate over the right-angle triangle �R only.
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Fig. 7 Test functions f1 (left), f2 (middle) and f3 (right) used in the numerical study
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We also estimate the value at time 0 of a European basket call option with maturity T = 1
based on two underlying assets that follow a lognormal distribution each. Formally, the value
of the option is

C0 = E

⎡
⎣max

⎛
⎝0, e−rT

⎛
⎝1

2

2∑
j=1

S j (T ) − K

⎞
⎠
⎞
⎠
⎤
⎦ ,

where S j (T ) is the price of the asset j at maturity T = 1. The lognormal model means

we can write S j (T ) = S j (0)e(r−σ 2/2)T+σ
√
T Z , where Z ∼ N(0, 1) is a standard normal

random variable.
For our applications, we use the following parameters: the strike price K is either 45, 50, or

55 (to account for out-of-the-money, at-the-money, and in-the-money); the asset price at time
0 S0 = 50; the risk-free rate r = 0.05; the volatility σ = 0.3, and the maturity T = 1 year.

We consider two types of dependence structures between the two lognormal assets
in the basket. Each dependence structure is the copula implied by the uniform distri-
bution on a triangle. We start with the following two triangles: � ((0, 0), (0, 1)(1, 0))
and � ((1, 1), (0, 1)(1, 0)). For each triangle, we generate point sets on that triangle and
transform them to marginally standard uniform distributions with their marginal CDFs,
F(xi ) = 1 − (1 − xi )2 for i = 1, 2 for � ((0, 0), (0, 1), (1, 0)) and F(xi ) = 1 − x2i
for i = 1, 2 for � ((1, 1), (0, 1), (1, 0)) to obtain samples from the corresponding copula.
Figure8 shows such copula samples, where the underlying triangles were generated using the
rSobol’ + root method as detailed in the following section. The triangle-implied-copulas are
used to model scenarios in which the asset prices are not simultaneously high (first triangle)
or not simultaneously low (second triangle).

We compare the following randomized methods to estimate μ j .

1. PRNG + root: This is equivalent to the MC method; we generate pseudo-random points
in the unit square and then apply the “root” method from Pillards and Cools (2005).

2. rSobol’ + root: Here, the Sobol sequence randomized with a digital shift is generated,
and then the “root” method from Pillards and Cools (2005) is applied.
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Fig. 8 Samples from the copulas based on� ((0, 0), (0, 1)(1, 0)) (left) and� ((1, 1), (0, 1)(1, 0)) (right) used
in the basket option pricing example
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3. rLattice1: This refers to using Algorithm 4 with the rank-1 lattice of Cools et al. (2006)
and α = 3π/8, randomized with a shift.

4. rLattice2: This refers to the rank-2 lattice of Basu and Owen (2015), randomized with a
shift. This method is not extensible, so a new point set must be generated every time n
is changed.

5. rvdC: This refers to our randomized triangular vdC sequence based on stratified sampling.

If necessary, Algorithm 1 is then used to transform the points to the desired triangle. The first
n = 1000 points from these constructions are shown in Fig. 9.

For each method and each sample size n ∈ 24, 25, . . . 217, v = 25 randomizations were
used. The estimates are obtained as the sample average of the realizations, while the variance
is estimated as the sample variance of the v independent draws. Figure10 displays the results
for the two-dimensional test functions. We also report the convergence speed (as measured
by the regression coefficient α of log(V̂ar) = αlog(n) + c displayed in the legend). We
can see from the results that the bivariate Sobol’ sequence mapped to the triangle using
the “root” method is typically the best performing method on these test functions. It does
particularly well on function f2, which can be explained by the parameters chosen for this
function, in conjunctionwith how the root transformation is applied tomap to the triangle�R .
Indeed, since we use the mapping (1 − √

u1,
√
u1u2), it means the corresponding function

on [0, 1)2 is smoother than f2, i.e., it oscillates with a lower frequency. This is unlike what
is happening for function f3, where the methods sampling directly on the triangle deal with
a sum of univariate functions, while the corresponding function on [0, 1)2 based on the root
transformation is truly two-dimensional.

Our stratified sampling method is approximately equal in performance to the lattice-based
methods, except for f3 where it does better and is in fact essentially as good as theSobol’ + root
method. The variance reduction of stratified sampling ismore pronounced for functionswhere
thewithin-strata variance is small and the between-strata variance is larger.Nested scrambling
also has been shown to have significant variance reductions for smooth functions. Thus, it is
unsurprising that for the function f3, the stratified sampling scheme has the best performance
out of the three test functions, as it is the smoothest function with the most between-strata
variance.

Figures 11 and 12 display the results for the basket option pricing problem. Again, we
also report the convergence speed in the legend. For all strike prices, the results are based
on the same v = 25 randomized point sets. As was the case for the two-dimensional test
functions,we can see from the results that the bivariate Sobol’ sequencemapped to the triangle
using the “root” method is typically the best performing method on these test functions. Our
stratified sampling-based estimator tends to outperform the lattice-based methods. These
results suggest that point sets directly constructed to have a low discrepancy in the integration
space of interest may be outperformed by point sets obtained by applying a well-chosen
transformation to a low-discrepancy point set constructed over the unit cube. Gaining a
better understanding of when and why this happens is something that we plan to investigate
in the near future.
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Fig. 9 First n = 1000 points of the point sets used in our experiments
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Fig. 10 Estimates (left) and estimated variances (right) when integrating f1 (top), f2 (middle) or f3 (right).
For each n, v = 25 randomizations were used. Regression coefficients for the estimated variance are in
parentheses in the legends
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Fig. 11 Estimates when integrating the basket option pricing problem. For each n, v = 25 randomizations
were used
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Fig. 12 Estimated variances when integrating the basket option pricing problem. For each n, v = 25 random-
izations were used. Regression coefficients are in parentheses in the legends
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6 Conclusion

In this paper, we provided an extensible rank-1 lattice construction for points in the triangle
that can be randomized with a shift. We also examined the projection qualities of the trian-
gular vdC sequence, and we improved upon the triangular vdC sequence of Basu and Owen
(2015) by proposing a sampling scheme that uses their idea of recursively subdividing the
triangle, but with superior one-dimensional projections. We also showed that the scrambled
sequence can be efficiently implemented using stratified sampling, giving the benefits of the
reduced variance without the additional computational costs. This connection between strati-
fied sampling and scrambling also gives an extensible stratified estimator. We give a test suite
of functions and include a numerical study to compare the different sampling constructions
over a triangular region.

Future work in this area includes extending similar stratified sampling schemes onto other
surfaces, such as those of spheres and simplexes. We would also like to explore constructions
and applications that require sampling on multiple triangles, such as surfaces constructed
with a mesh of triangles.

Appendix. Extending a Stratified Estimator

The approach described in Section 4, where we used the connection between stratified sam-
pling and nested scrambling to give a faster implementation of nested scrambling, works
well when n is fixed. Now, we use the connection between base b stratified sampling and
nested scrambling to show how to extend a stratified estimator. Typically, stratified sampling
is applied for fixed n and if a larger point set is needed, a new one is generated from scratch
instead of only generating the additional points. Here, we argue that the nested permuta-
tions used for scrambling can be thought of as a way to allow for a stratified estimator to be
extended easily, i.e., for points to be added without having to restart with a completely new
stratified estimator. This works by recursively choosing a stratum at each level that has the
least number of points, as explained in Algorithm 7. For simplicity, we deal directly with
the stratum sample sizes N1,..., NM as generated by Algorithm 5 instead of the point set Pn ,
since after generating the strata sample sizes, it is simply a matter of placing a point uni-
formly within each stratum j with corresponding N j = 1. This algorithm essentially works
by recursively subdividing the interval into b subintervals, and randomly choosing one with
the least points to add the next point into.

If we are working directly with the point set and not the strata, then we must modify
Algorithm 7 by changing Step 2a so that we first determine which bq strata are equivalent
to 1, and set the rest to 0. Then in the following step, when putting 2 points within the same
interval of size b−q , since one of the N j would already be set to 1 based on the point that
is already there, we only select the second subinterval of size b−q+1 without replacement.
Likewise, before Step 3a, we must first populate N1,..., NM based on the existing point set.

Algorithm 7 (Extending a stratified estimator). Given N1,..., NM and a base b, we sample
one additional point as follows.

1. Set n = ∑M
j=1 N j .

2. If n = M, then we have to increase the number of strata from M = bq to M = bq+1.

(a) Initialize N1, . . . , Nbq+1 = 0.
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(b) Randomly select an interval of size b−q to contain two points. Subdivide this interval
into b intervals, and randomly select two of these subintervals to have a point, i.e.,
N j = 1.

(c) Subdivide the other intervals of size b−q into b intervals, and randomly select one of
these intervals to have a point, i.e., Ni = 1.

(d) Return N1, . . . , Nbq+1 .

3. If n 
= M, we do not need to increase the number of strata. We work with N1, .., NM.

(a) Divide the unit interval into b subintervals such that each of these subintervals is
represented by M/b strata.

(b) Let L j = ∑M/b
i=1 N(M/b)( j−1)+i for j = 1, . . . , b.

(c) The L j will differ by at most one. Randomly pick a j from the L j that have the
minimum number of points.

(d) If L j = 0, randomly choose one of the M/b strata to place a point in.
(e) If L j > 0, repeat this algorithm from Step 2 on the j th subinterval.
(f) Return N1, . . . , NM.

We now illustrate Algorithm 7 with an example showing how to extend a scrambled
estimator from n = 7 to n = 10 when working in base 3. Let P7 be the original point set with
7 points. Denote by Ql the number of points in [(l−1)/3, l/3) for l = 1, 2, 3 within P7. That
is, Q1 = N1 + N2 + N3, Q2 = N4 + N5 + N6, and Q3 = N7 + N8 + N9. That is, Ql and N j

both enumerate strata, just of different sizes. Given that 7 = 2×3+1, when constructing the
estimator for n = 7 we would have had to sample N1, . . . , N9 such that one of Q1, Q2, Q3

is equal to 3 and the other two are equal to 2. Say we have Q1 = Q2 = 2, Q3 = 3. Then
N7 = N8 = N9 = 1 and we also need to choose two indices in each of {1, 2, 3} and {4, 5, 6}
whose corresponding N j will be set to 1. Say we choose 1, 3, 4, 5.

If we then want to add 3 points to go to n = 10 = 1×9+1, it means we are now working
with a stratified estimator over strata of size 1/27 instead of 1/9. In this case, we have that
Q� now represents the total number of points in each interval of size 1/9, and only one of
them will be equal to 2 with the other 8 being equal to 1.

Rather than jumping directly to n = 10, let us explain how each point is added.

1. (n = 8) Choose which of the two intervals of size 1/9 with no point will have a point
uniformly sampled in it.

2. (n = 9) Sample a point uniformly in the last interval of size 1/9 that has no point.
3. (n = 10) Choose one of the 9 intervals of size 1/9 which will have a second point placed

in it (i.e., for which Q1, . . . , Q9 will be equal to 2, as they are currently all equal to 1);
determine in which of the intervals of size 1/27 the point lies that is already placed in
this interval of size 1/9; randomly choose one of the two empty intervals of size 1/27 to
place the second point and then place a point uniformly in it.

Since intervals are always chosen without replacement within the group of b intervals
of size b−q we are currently working with, it is clear that if we initially generate a random
permutation of [1, . . . , b], we are simply deciding beforehand in which order points will be
added within this group of sub-intervals.
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