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Abstract
Let X1, X2, ... be the digits in the base-q expansion of a random variable X defined on
[0, 1) where q ≥ 2 is an integer. For n = 1, 2, ..., we study the probability distribution Pn
of the (scaled) remainder T n(X) = ∑∞

k=n+1 Xkqn−k : If X has an absolutely continuous
CDF then Pn converges in the total variation metric to the Lebesgue measure μ on the unit
interval. Under weak smoothness conditions we establish first a coupling between X and a
non-negative integer valued random variable N so that T N (X) follows μ and is independent
of (X1, ..., XN ), and second exponentially fast convergence of Pn and its PDF fn . We discuss
how many digits are needed and show examples of our results.

Keywords Asymptotic distribution · Coupling · Exponential convergence rate · Extended
Newcomb-Benford law · Remainder of a digit expansion · Total variation distance

Mathematics Subject Classification 60F25 · 62E17 · 37A50

1 Introduction

Let X be a random variable so that 0 ≤ X < 1, and for x ∈ R, let F(x) = P(X ≤ x) be
the cumulative distribution function (CDF) of X . For a given integer q ≥ 2, we consider the
base-q transformation T : [0, 1) �→ [0, 1) given by

T (x) = xq − �xq	 (1)
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where �·	 is the floor function (so �xq	 is the integer part of xq). For n = 1, 2, ..., let
T n = T ◦ · · · ◦ T denote the composition of T with itself n times and define

Xn = �T n−1(X)q	 (2)

where T 0(X) = X . Then

X =
∞∑

n=1

Xnq
−n (3)

is the base-q expansion of X with digits X1, X2, .... Note that X is in a one-to-one correspon-
dence to the first n digits (X1, ..., Xn) together with T n(X) = ∑∞

k=n+1 Xkqn−k , which is
the remainder multiplied by qn . Letμ denote Lebesgue measure on [0, 1), Pn the probability
distribution of T n(X) and Fn its CDF, so X follows P0 and has CDF F0 = F . The following
facts are well-known (see Cornean et al. 2022 and the references therein):

(a) P0 = P1 (i.e., invariance in distribution under T ) is equivalent to stationarity of the
process X1, X2, ....

(b) P0 = P1 and F is absolutely continuous if and only if P0 = μ.
(c) P0 = μ if and only if X1, X2, ... are independent and uniformly distributed on

{0, 1, ..., q − 1}.
Items (a)–(c) together with the fact that T is ergodic with respect to μ are used in metric
number theory (see Dajani and Kalle 2021; Schweiger 1995 and the references therein) to
establish properties such as ‘for Lebesgue almost all numbers between 0 and 1, the relative
frequency of any finite combination of digits of a given length n and which occurs among
the first m > n digits converges to q−n as m → ∞’ (which is basically the definition of a
normal number in base-q , cf. Borel (1909)). To the best of our knowledge, less (or perhaps
no) attention has been paid to the asymptotic behaviour of the (scaled) remainder T n(X) as
n → ∞. This paper fills this gap.

Assuming F is absolutely continuous with a probability density function (PDF) f we
establish the following. We start in Section 2 to consider a special case of f where T n(X)

follows exactlyμwhen n is sufficiently large. Then in Section 3, under a weak assumption on
f , we specify an interesting coupling construction involving a non-negative integer-valued
random variable N so that T N (X) follows exactly μ and is independent of (X1, ..., XN ).
Moreover, in Section 4,we show that limn→∞ dTV(Pn, μ) = 0wheredTV is the total variation
metric (as given later in (12)). Because of these results, if in an experiment a realization of
X is observed and the first n digits are kept, and if (so far) the only model assumption
is absolute continuity of F , then the remainder rescaled by qn is at least approximately
uniformly distributed when n is large. Since we interpret the uniform distribution as the
case of complete randomness, no essential information about the distribution is lost. On the
other hand, if the distribution of the remainder is far from uniform, this may indicate that the
distribution one is trying to find has finer structure that one is missing by looking only at the
first n digits. We return to this issue in Section 5 when discussing sufficiency and ancillarity.
Furthermore, in Section 4 we study the convergence rate of dTV(Pn, μ) and other related
properties. In Section 5, we illustrate our results from Sections 3 and 4 when F follows the
extended Newcomb-Benford law (Example 1).

The present paper is a shorter version of Herbst et al. (2023) to which we refer for further
results, comments, and examples. In particular, Herbst et al. (2023) gives an extension of our
convergence results in Section 4 to the case where X is a multivariate random variable with
values in the k-dimensional unit cube [0, 1)k and each of the k coordinates of X is transformed
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by T . We plan in a future paper to study the asymptotic behaviour of the remainder in other
expansions, including a certain base-β expansion of a random variable, namely when q is
replaced by β = (1 + √

5)/2 (the golden ratio) in all places above.

2 Preliminaries

Let again the situation be as in (1)–(3). The following lemma is true in general (i.e., without
assuming F is absolutely continuous). As in Cornean et al. (2022), we define a base-q fraction
in [0, 1) to be a number of the form

∑n
k=1 jkq−k with ( j1, ..., jn) ∈ {0, 1, ..., q − 1}n and

n ∈ N.

Lemma 2.1 If F has no jump at any base-q fraction in [0, 1) then for every x ∈ [0, 1],

Fn(x) =
qn−1∑

j=0

F(q−n( j + x)) − F(q−n j). (4)

Proof Clearly, (4) holds for x = 1, so let 0 ≤ x < 1. For j1, ..., jn ∈ {0, 1, ..., q − 1} and
j = ∑n

i=1 ji qn−i , the event that X1 = j1, ..., Xn = jn , and T n(X) ≤ x is the same as the
event that q−n j ≤ X < q−n( j + 1) and X ≤ q−n( j + x). Hence, since 0 ≤ x < 1,

Fn(x) =
qn−1∑

j=0

P(q−n j ≤ X ≤ q−n( j + x))

whereby (4) follows since F(x) has no jumps at the base-q fractions. �

The property that F has no jump at any base-q fraction is of course satisfied when F is
continuous.

For the remainder of this section and the following Sections 3, 4 and 5 we assume that
X has a probability density function (PDF) f concentrated on (0, 1), meaning that F is
absolutely continuous with F(x) = ∫ x

−∞ f (t) dt for all x ∈ R. Then, by (4), Fn is absolutely
continuous with PDF

fn(x) = q−n
qn−1∑

j=0

f (q−n( j + x)) (5)

for 0 < x < 1.
In the following special case of f , convergence of Pn is obtained within a finite number

of steps.

Proposition 2.2 Let m ≥ 1 be an integer. Then Pm = μ (and hence Pn = μ for n = m,

m + 1, ...) if and only if for all k ∈ {0, 1, ..., qm − 1} and Lebesgue almost every u ∈ [0, 1),

f ((k + u)q−m) = qmP

(
m∑

i=1

Xiq
m−i = k

∣
∣
∣
∣ T

m(X) = u

)

fm(u). (6)

In particular, if f is constant Lebesgue almost everywhere on each of the intervals
[ jq−m, ( j + 1)q−m), j = 0, 1, ..., qm − 1, then for n = m,m + 1, ..., Pn = μ and
(X1, ..., Xn) is independent of T n(X).
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Proof If Pm = μ then by invariance of μ under T , Pn = μ for n = m,m + 1, .... Let
K = ∑m

i=1 Xiqm−i and U = Tm(X), so X = (K + U )q−m . For Lebesgue almost every
t ∈ [0, 1),

f (t) = qmP(K = �qmt	 |U = qmt − �qmt	) fm(qmt − �qmt	)
since

F(t) = P((K +U )q−m ≤ t)

= F(q−m�qmt	) +
∫ qmt−�qmt	

0
P(K = �qmt	 |U = u) fm(u) du.

Thereby the first assertion follows.
Suppose that c j is a constant and f = c j Lebesgue almost everywhere on [ jq−m, ( j +1)

q−m) for j = 0, 1, ..., qm − 1. Then

qm−1∑

j=0

c jq
−m =

qm−1∑

j=0

∫ ( j+1)q−m

jq−m
c j =

∫ 1

0
f = 1,

and so for Lebesgue almost all x ∈ [0, 1), (5) gives that fm(x) = 1. Therefore, Pm = μ, and
hence Pn = μ for n = m,m + 1, .... Consequently, the last assertion follows from (6), using
that

∑m
i=1 Xiqm−i and (X1, ..., Xm) are in a one-to-one correspondence. �

3 Couplings

Let f be a PDF on [0, 1). We introduce the following notation. Let I∅ = I1;0 = [0, 1)
and c∅ = c1;0 = inf I∅ f . For n = 1, 2, ... and x1, x2, ... ∈ {0, 1, ..., q − 1}, let k = 1
+ ∑n

i=1 xiq
n−i and

Ix1,...,xn = Ik;n = [(k − 1)q−n, kq−n)

and
cx1,...,xn = ck;n = inf

Ix1,...,xn

f − inf
Ix1,...,xn−1

f .

Recall that f is lower semi-continuous at a point x if for any sequence yn → x , it holds
that lim infn f (yn) ≥ f (x). Note that if x = ∑∞

n=1 xnq
−n ∈ [0, 1) is not a base-q fraction,

then lower semi-continuity at x is equivalent to

f (x) = lim
n→∞ inf

y∈Ix1,...,xn

f (y). (7)

Commonly used PDFs are lower semi-continuous almost everywhere. For an example where
this condition does not hold, see Remark 1 in Herbst et al. (2023).

Write U ∼ μ if U is a uniformly distributed random variable on [0, 1).
Theorem 3.1 Suppose f is lower semi-continuous at Lebesgue almost all points in [0, 1).
Then there is a coupling between X ∼ f and a non-negative integer-valued random variable
N such that T N (X) ∼ μ is independent of (X1, ..., XN ).

Proof For Lebesgue almost all x = ∑∞
n=1 xnq

−n ∈ [0, 1) with xn = �T n−1(x)q	, assuming
x is not a base-q fraction (recalling that the set of base-q fractions is a Lebesgue nullset),
(7) gives
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f (x) = inf
I∅

f +
(

inf
Ix1

f − inf
I∅

f

)

+
(

inf
Ix1,x2

f − inf
Ix1

f

)

+ ...

=
∞∑

n=0

cx1,...,xn .

(8)

Let N be a random variable such that for f (x) > 0, conditionally on X = x ,

P(N = n | X = x) = cx1,...,xn/ f (x), n = 0, 1, ...

By (8) and since cx1,...,xn ≥ 0, this is a well-defined conditional distribution.
By Bayes theorem, conditioned on N = n with P(N = n) > 0, X follows an absolutely

continuous distribution with PDF

f (x | n) = cx1,...,xn/P(N = n).

Therefore, since f (x |n) is constant on each of the intervals Ik;n , conditioned on N = n
we immediately see that (X1, ..., Xn) (interpreted as nothing if n = 0) and T n(X) are
independent and that T n(X) ∼ μ. The latter implies that T N (X) ∼ μ is independent of N .
Consequently, if we do not condition on N , we have that (X1, ..., XN ) and T N (X) ∼ μ are
independent. �

Corollary 3.2 For the coupling construction in the proof of Theorem 3.1, conditioned on
X = x with f (x) > 0, we have

P(N ≤ n | X = x) =
n∑

k=0

cx1,...,xk/ f (x), n = 0, 1, ..., (9)

where xk = �T k−1(x)q	 for 1 ≤ k ≤ n. Moreover,

P(N ≤ n) = q−n
qn∑

k=1

inf
Ik;n

f , n = 0, 1, ... (10)

Remark 1 Corollary 3.2 is used in Section 5 to quantify how many digits are needed to make
the remainder uniformly distributed with sufficiently high probability. By (10), in order to
make N as small as possible, we prefer a version of f which is as large as possible, cf. Herbst
et al. (2023).

Proof The proof of Theorem 3.1 gives immediately (9). Thus, for n = 0, 1, ...,

P(N ≤ n) =
∫ 1

0
P(N ≤ n | X = x) f (x) dx =

n∑

k=0

qk∑

j=1

c j;kq−k .
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So P(N = 0) = c∅ in agreement with (10). For n = 1, 2, ..., we have

n∑

k=0

qk∑

j=1

c j;kq−k = c∅ +
n∑

k=1

∑

(x1,...,xk )∈{0,1,...,q−1}k
cx1,...,xk q

−k

= inf
I∅

f +
∑

x1∈{0,1,...,q−1}

(

inf
Ix1

f − inf
I∅

f

)

q−1 + ...

+
∑

(x1,...,xn)∈{0,1,...,q−1}n

(

inf
Ix1,...,xn

f − inf
Ix1,...,xn−1

)

q−n

= q−n
∑

(x1,...,xn)∈{0,1,...,q−1}n
inf

Ix1,...,xn

f

= q−n
qn∑

j=1

inf
I j;n

f .

Thereby (10) follows. �
Corollary 3.3 Let the situation be as in Theorem 3.1. The output of the following simulation
algorithm is distributed as X ∼ f :

(a) Draw N from (10).
(b) Conditionally on N, generate a discrete random variable K with

P(K = k − 1 | N = n) ∝ ck;n, k = 1, ..., qn, n = 0, 1, ... (11)

(c) Independently of (N , K ) pick a random variable U ∼ μ.
(d) Output (K +U )q−N .

Proof Let an = ∑qn

k=1 ck;n be the normalizing constant in (11). Conditioned on N = n with
P(N = n) > 0, steps (b) and (c) give that U ∼ μ and K are independent, so the conditional
distribution of (K +U )q−N is absolutely continuous with a conditional PDF given by

f (x | n) = qnck;n/an if x ∈ Ik;n .

Moreover, we get from (10) that P(N = 0) = c∅ and

P(N = n) = P(N ≤ n) − P(N < n) = anq
−n, n = 1, 2, ...

Therefore, the (unconditional) distribution of (K + U )q−N is absolutely continuous with a
PDF which at each point x = ∑∞

n=1 xnq
n ∈ [0, 1) with xn = �T n−1(x)q	 is given by

∞∑

n=0

f (x | n)P(N = n) =
∞∑

n=0

qn
(
cx1,...,xn/an

)
anq

−n =
∞∑

n=0

cx1,...,xn .

This PDF agrees with (8), so (K +U )q−N ∼ f . �
Denote by B the class of Borel subsets of [0, 1). The total variation distance between two

probability measures ν1 and ν2 defined on B and with PDFs g1 and g2, respectively, is given
by

dTV(ν1, ν2) = sup
A∈B

|ν1(A) − ν2(A)| = 1

2
‖g1 − g2‖1, (12)

(see Tsybakov 2009, Lemma 2.1). Then Theorem 3.1 shows the following.
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Corollary 3.4 Let the situation be as in Theorem 3.1. Then

dTV(Pn, μ) ≤ P(N > n), n = 0, 1, ... (13)

Remark 2 In general the coupling inequality (13) is sharp, see Herbst et al. (2023). It follows
from Corollary 3.2 and 3.4 that (7) implies limn→∞ dTV(Pn, μ) = 0. In Theorem 4.1 below
we show that (7) is not needed for this convergence result.

Proof Using Corollary 3.3, let X = (K + U )q−N . For n = 0, 1, ..., if Qn denotes the
probability distribution of T n(U ), then Qn = μ, and so

dTV(Pn, μ) = dTV(Pn, Qn) ≤ P(T n(X) �= T n(U )) ≤ P(N > n),

where the first inequality is the standard coupling inequality for the coupled random variables
T n(X) and T n(U ), and the last inequality follows since N ≤ n implies T n(X) = T n(U ).
Thereby (13) is verified. �
Remark 3 By the Kantorovich-Rubinstein theorem, the Wasserstein distance between two
probability measures ν1 and ν2 on [0, 1] is given by

W1(ν1, ν2) = inf
γ∈�(ν1,ν2)

{E|Y1 − Y2| | (Y1, Y2) ∼ γ },

where �(ν1, ν2) consists of all couplings of ν1 and ν2. By (Gibbs and Su 2002, Thm 4),

W1(ν1, ν2) ≤ dTV(ν1, ν2),

so by Remark 2, Corollary 3.4 implies

W1(Pn, μ) ≤ P(N > n) → 0.

The latter bound can be improved by using the coupling between T n(X) and T N (X) ∼ μ to
obtain

W1(Pn, μ) ≤ E|(T n(X) − T N (X))1N>n |

≤
∫ 1

0
max{|x |, |x − 1|}dx P(N > n)

= 3

4
P(N > n).

See also Gibbs and Su (2002) for an overview of the relation between the total variation
distance and other measures of distance between probability measures.

4 Asymptotic Results

We need some notation for the following theorem. For a real, measurable function g
defined on (0, 1), denote its L1- and supremum-norm by ‖g‖1 = ∫ 1

0 |g(t)| dt and ‖g‖∞
= supx∈(0,1) |g(x)|, respectively, and denote the corresponding L1-space by L1(0, 1)
= {g | ‖g‖1 < ∞} (here, ‖g‖∞ may be infinite when there are no further assumptions
on g). Let L̄1(0, 1) = {g | ∫ 1

0 g(t)dt = 1, ‖g‖1 < ∞} be the subset of functions with finite
L1-norm and integral over [0, 1] equal one, and L̄ ′

1(0, 1) ⊂ L̄1(0, 1) its subset of differen-
tiable functions g such that ‖g′‖∞ < ∞. For g ∈ L̄ ′

1(0, 1), n ∈ N, j = 0, 1, ..., qn − 1, and
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0 < x < 1, define g′
n, j (x) = g′(x) if q−n j < x < q−n( j + 1) and g′

n, j (x) = 0 otherwise,
and define

gn(x) = q−n
qn−1∑

j=0

g(q−n( j + x)). (14)

Henceforth, we also think of f as an element of L̄1(0, 1).

Theorem 4.1 If f ∈ L̄1(0, 1) then for every g ∈ L̄ ′
1(0, 1),

dTV(Pn, μ) ≤ 1

2
‖ f − g‖1 + 1

6
q−2n

qn−1∑

j=0

‖g′
n, j‖∞ ≤ 1

2
‖ f − g‖1 + 1

6
q−n‖g′‖∞. (15)

In particular,
lim
n→∞ dTV(Pn, μ) = 0 (16)

and we have the following sharper convergence results. If f ∈ L̄ ′
1(0, 1) then Pn converges

exponentially fast:

dTV(Pn, μ) ≤ 1

6
q−2n

qn−1∑

j=0

‖ f ′
n, j‖∞ ≤ 1

6
q−n‖ f ′‖∞. (17)

If ‖ f ‖∞ < ∞ and f is continuous except for finitely many points, then

| fn(x) − 1| → 0 uniformly for x ∈ (0, 1). (18)

If f is twice differentiable with ‖ f ′′‖∞ < ∞ then we have the following improvement
of (17):

dTV(Pn, μ) = 1

8
q−2n

∣
∣
∣
∣
∣
∣

qn−1∑

j=0

f ′(ξnj )

∣
∣
∣
∣
∣
∣
+ O(‖ f ′′‖∞q−2n)

≤ 1

8
q−n‖ f ′‖∞ + O(‖ f ′′‖∞q−2n)

(19)

where ξn, j ∈ (q−n j, q−n( j + 1)) is arbitrary.

Before proving this theorem we need the following lemma.

Lemma 4.2 Let f ∈ L̄1(0, 1), g ∈ L̄ ′
1(0, 1). For every x ∈ (0, 1),

|gn(x) − 1| ≤ q−2n
(

x2 − x + 1

2

) qn−1∑

j=0

‖g′
n, j‖∞ ≤ 1

2
q−n‖g′‖∞, (20)

and ∫ 1

0
| fn(x) − gn(x)| dx ≤ ‖ f − g‖1. (21)

If g is twice differentiable on (0, 1) with ‖g′′‖∞ < ∞ then for every x ∈ (0, 1),

gn(x) − 1 = q−2n
(

x − 1

2

) qn−1∑

j=0

g′(ξn, j ) + O(‖g′′‖∞q−2n), (22)

where each ξn, j ∈ (q−n j, q−n( j + 1)) is arbitrary.
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Proof Let x ∈ (0, 1). From (14) we have

gn(x) − 1 =
qn−1∑

j=0

∫ q−n( j+1)

q−n j
[g(q−n( j + x)) − g(t)] dt

=
qn−1∑

j=0

∫ 1

0
q−n[g(q−n( j + x)) − g(q−n( j + y))] dy.

(23)

If g is differentiable on (0, 1) with ‖g′‖∞ < ∞, we get by the mean value theorem,

|g(q−n( j + x)) − g(q−n( j + y))| ≤ ‖g′
n, j‖∞q−n |x − y|,

which yields the bound

|gn(x) − 1| ≤ q−2n
∫ 1

0
|x − y| dy

qn−1∑

j=0

‖g′
n, j‖∞ = q−2n

(

x2 − x + 1

2

) qn−1∑

j=0

‖g′
n, j‖∞.

(24)
Thereby (20) follows. Moreover,

∫ 1

0
| fn(x) − gn(x)| dx ≤

qn−1∑

j=0

∫ 1

0
q−n | f (q−n( j + x)) − g(q−n( j + x))| dx

= ‖ f − g‖1
(25)

whereby (21) follows. If g is twice differentiable on (0, 1)with ‖g′′‖∞ < ∞, the mean value
theorem gives

g(q−n( j + x)) − g(q−n( j + y)) = g′(ξx,y)q−n(x − y)

= g′(ξn, j )q
−n(x − y) + O(‖g′′‖∞q−2n),

where ξx,y ∈ (q−n j, q−n( j + 1)) depends on x and y and ξn, j ∈ (q−n j, q−n( j + 1)) is
arbitrary. The second equality was obtained by applying the mean value theorem to g′(ξx,y)
− g′(ξn, j ). Inserting this into (23) yields

gn(x) − 1 = q−2n
qn−1∑

j=0

g′(ξn, j )

∫ 1

0
(x − y) dy + O(‖g′′‖∞q−2n),

which reduces to (22). �
We are now ready for the proof of Theorem 4.1.

Proof We have

dTV(Pn, μ) = 1

2

∫ 1

0
| fn(x) − 1| dx

≤ 1

2

∫ 1

0
| fn(x) − gn(x)| dx + 1

2

∫ 1

0
|gn(x) − 1| dx

≤ 1

2
‖ f − g‖1 + 1

6
q−2n

qn−1∑

j=0

‖g′
nj‖∞

≤ 1

2
‖ f − g‖1 + 1

6
q−n‖g′‖∞

(26)
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where we get the equality from (12) and the second inequality from (20), (21), and since
∫ 1
0

(
x2 − x + 1/2

)
dx = 1/3. Thereby (15) is verified. Taking n → ∞ in (15) and using

that L̄ ′
1(0, 1) is dense in L̄1(0, 1), we get (16). Equation (17) follows from (15) by setting

g = f .
For the proof of (18) we suppose f is continuous except at x1, . . . , xm ∈ (0, 1) and set

x0 = 0 and xm+1 = 1. Let δ > 0 and

In = { j ∈ {0, 1, . . . , qn − 1} | ∃i ∈ {0, 1, . . . ,m + 1} : |q−n j − xi | < δ},
Jn = {0, 1, . . . , qn − 1}\In .

By (23),

fn(x) − 1 =
∑

j∈In

∫ q−n( j+1)

q−n j
( f (q−n( j + x)) − f (t)) dt

+
∑

j∈Jn

∫ q−n( j+1)

q−n j
( f (q−n( j + x)) − f (t)) dt .

(27)

Given ε > 0, we choose δ so that δ < ε/(6(m + 2)‖ f ‖∞). Then, since the cardinality of In
is at most (m + 2)(2qnδ + 1), the first sum in (27) is bounded by

(
2qnε

6‖ f ‖∞
+ m + 2

)

q−n‖ f ‖∞ = ε

3
+ (m + 2)q−n‖ f ‖∞ <

ε

2

for n sufficiently large. Moreover, for n large enough, the second sum in (27) is bounded by
ε/2 since f is uniformly continuous on (0, 1)\ ⋃m+1

i=0 (xi − δ/2, xi + δ/2), which is a closed
set. Thus, for large enough n, | fn(x) − 1| < ε which gives (18) since ε > 0 is arbitrary.

To prove (19) we use (22) with g replaced by f . Then, for every A ∈ B,
∫

A
( fn(t) − 1) dt = q−2n

∫

A

(

t − 1

2

)

dt
qn−1∑

j=0

f ′(ξnj ) + O(‖ f ′′‖∞q−2n).

We have

sup
A∈B

∣
∣
∣
∣

∫

A

(

t − 1

2

)

dt

∣
∣
∣
∣ = 1

2
sup
A∈B

∣
∣
∣
∣

∫

A
(2t − 1) dt

∣
∣
∣
∣ = 1

4

∫ 1

0
|2t − 1| dt = 1

8

where the second identity follows from (12). This gives (19). �
Remark 4 In continuation of Remark 2, by Theorem 4.1, dTV(Pn ,μ) → 0 and under weak
conditions the convergence is exponentially fast. Lemma 4.2 provides estimates of gn(x)−1.

5 So HowMany Digits are Needed?

This section starts with some theoretical statistical considerations and continues then with
Example 1 (Example 2 in Herbst et al. (2023) illustrates how the convergence rate in Theorem
4.1 depends on the smoothness of f ). For another paper it would be interesting to study the
practical applications of our results, including how to apply a missing data approach which
treats N as a hidden variable, cf. Herbst et al. (2023).
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Consider a parametric model for the probability distribution of X given by a paramet-
ric class of lower semi-continuous densities fθ where θ is an unknown parameter. By
Theorem 3.1 this specifies a parametric model for (X1, ..., XN ) which is independent of
T N (X) ∼ μ. In practice we cannot expect N to be observable, but let us imagine it is.
Then, according to general statistical principles (see e.g. Barndorff-Nielsen 1978), statistical
inference for θ should be based on the sufficient statistic (X1, ..., XN ), whilst T N (X) is an
ancillary statistic and hence contains no information about θ . Moreover, Theorem 4.1 ensures
(without assuming that the densities are lower semi-continuous) that T n(X) is approximately
uniformly distributed. Hence, if n is ‘large enough’, nearly all information about θ is con-
tained in (X1, ..., Xn).

The following Example 1 demonstrates how the results in Sections 3 and 4 can be
used to quantify the number n of digits needed in order that N > n (conditioned or not
on X = x) with a small probability or that dTV(Pn, μ) is small. See also Example 2 in
Herbst et al. (2023).

Example 1 Any number y �= 0 can uniquely be written as y = sqk(y0 + y f )where s = s(y)
∈ {±1} is the sign of y, k = k(y) ∈ Z determines the decimal point of y in base-q ,
y0 = y0(y) ∈ {1, ..., q − 1} is the leading digit of y in base-q , and y0 + y f is the so-
called significand of y in base-q , where y f = y f (y) ∈ [0, 1) is the fractional part of
y0 + y f in base-q . Correspondingly, consider any real-valued random variable Y �= 0 (or
just P(Y = 0) = 0), so (almost surely) Y = SqK (X0 + X) where S = s(Y ), K = k(Y ),
X0 = y0(Y ), and X = y f (Y ) are random variables. Let X1, X2, ... be the digits of X in
the base-q expansion, cf. (3). We call X0, X1, X2, ... the significant digits of Y in base-q .
Now, suppose Y satisfies the extended Newcomb-Benford law, that is, the log-significand
of Y in base-q , logq(X0 + X), is uniformly distributed on [0, 1) (Berger and Hill 2015,
Theorem 4.2):

F(x) =
q−1∑

j=1

(
logq( j + x) − logq j

)
, f (x) =

q−1∑

j=1

1

ln q

1

j + x
, (28)

for 0 ≤ x ≤ 1. This law applies to a wide variety of real datasets and a number of appealing
properties are then satisfiedbyY , seeHill (1998) andBerger andHill (2015) and the references
therein.

Combining (10) and (28) gives for n = 0, 1, ... that

P(N ≤ n) = q−n

ln q

q−1∑

j=1

qn∑

k=1

1

j + kq−n
.

The tail probabilities P(N > n) decrease quickly as n and q increase, see the left panel
in Fig. 1 for plots of P(N > n) against n for q = 2, 3, 5, 10. The middle panel of Fig. 1
shows P(N > 1 | X = x) as a function of x for q = 10. We see large fluctuations, with
probabilities dropping to zero when approaching the right limit of the intervals Ik;1, where
inf Ik;1 f is attained. To avoid these fluctuations, the right panel of Fig. 1 shows an upper
bound on P(N > n | X = x) as a function of x for q = 10 and n = 0, 1, 2, 3. The upper
bound is found by noting that on each Ik;n , P(N > n | X = x) is convex decreasing towards
zero. Hence an upper bound is given by evaluating at the left end points and interpolating
linearly. The plot shows that P(N > n | X = x) is very close to zero for all x already
for n = 2.
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Fig. 1 Left panel: P(N > n) as a function of n for q = 2, 3, 5, 10. Middle panel: P(N > 1 | X = x) as
a function of x for q = 10. Right panel: An upper bound for P(N > n | X = x) as a function of x for
n = 0, 1, 2, 3 and q = 10

This is also in accordance with Theorem 4.1 stating that T n(X) converges to a uniform
distribution on [0, 1) and hence the first digit Xn of T n(X) is approximately uniformly
distributed on {0, 1, ..., q − 1} when n is large. For n = 1, 2, ... and xn ∈ {0, 1, ..., q − 1},
we have

P(Xn = xn) = logq

⎛

⎝
q−1∏

j=1

qn−1
∏

i=1

(

1 + 1

jqn + (i − 1)q + xn

)
⎞

⎠

where P(Xn = xn) is a decreasing function of xn . The left part of Fig. 2 shows plots of
P(Xn = 0) − P(Xn = q − 1) versus n for q = 2, 3, 5, 10 indicating fast convergence
to uniformity and that the convergence speed increases with q . The right part of Fig. 2
illustrates the stronger statement in (18) that the PDF fn of T n(X) converges uniformly to the
uniform PDF.

Remark 5 In conclusion, Example 1 demonstrates that the answer to the title of our paper
(‘How many digits are needed?’) of course depends much on q (the higher q is, the fewer
digits are needed). Example 2 in Herbst et al. (2023) shows how the answer depends on
how much f deviates from the uniform PDF on [0, 1) (the more skew f is, the more digits
are needed).

Fig. 2 Left panel: P(Xn = 0) − P(Xn = q − 1) as a function of n for various values of q when f is as in
(28). Right panel: fn when q = 2 and n = 0, . . . , 5

123

5 Page 12 of 13



Methodology and Computing in Applied Probability (2024) 26:5

Acknowledgements The authors thank the anonymous reviewers for their thorough reading and their useful
comments and suggestions.

Author Contributions All authors contributed to all parts of this paper and reviewed the final version.

Funding Open access funding provided by Aalborg University Supported by The Danish Council for Inde-
pendent Research – Natural Sciences, grant DFF – 10.46540/2032-00005B.

Availability of Data and Material Not applicable.

Declarations

Competing Interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Barndorff-Nielsen OE (1978) Information and exponential families in statistical theory. Wiley, Chichester
Berger A, Hill TP (2015) An introduction to Benford’s Law. Princeton University Press, Princeton, NJ
Borel E (1909) Les probabilités dénombrables et leurs applications arithmétiques. Rendiconti del Circolo

Matematico di Palermo 27:247–271
Cornean H, Herbst I, Møller J, Støttrup BB, Studsgaard KS (2022) Characterization of random variables with

stationary digits. J Appl Prob 59:931–947
Dajani K, Kalle C (2021) A first course in Ergodic theory. Chapman and Hall/CRC
Gibbs AL, Su FE (2002) On choosing and bounding probability metrics. Int Stat Rev 70:419–435
Herbst I, Møller J, Svane AM (2023) Howmany digits are needed? Preprint at http://arxiv.org/abs/2307.06685
Hill TP (1998) The first digit phenomenon. American Scientist 86:358–363
Schweiger F (1995) Ergodic theory of fibered systems and metric number theory. Clarendon Press, Oxford
Tsybakov AB (2009) Introduction to nonparametric estimation. Springer Series in Statistics, Springer - Verlag,

New York

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

Page 13 of 13 5

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2307.06685

	How Many Digits are Needed?
	Abstract
	1 Introduction
	2 Preliminaries
	3 Couplings
	4 Asymptotic Results
	5 So How Many Digits are Needed?
	Acknowledgements
	References


