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Abstract
In this work, we derive the exact distribution of a random sum of the form S = U + X

1
+…+ XM , 

where the Xj ’s are independent and identically distributed positive integer-valued random vari-
ables, independent of the non-negative integer-valued random variables M and U (which are also 
independent). Efficient recurrence relations are established for the probability mass function, 
cumulative distribution function and survival function of S as well as for the respective factorial 
moments of it. These results are exploited for deriving new recursive schemes for the distribution 
of the waiting time for the rth appearance of run of length k, under the non-overlapping, at least 
and overlapping scheme, defined on a sequence of identically distributed binary trials which are 
either independent or exhibit a k-step dependence.

Keywords  Runs · Multiple run occurrences · Probability generating functions · Recursive 
schemes · Markov chain imbedding technique · Collective risk model · Claims distribution

MSC Classification  60E05 · 62P05 · 62P25 · 62P30

1  Introduction

There is an extensive list of real-life problems where the stochastic nature of the phe-
nomena under investigation can be modeled by the aid of a sum of a random number of 
random variables. In collective risk theory, for example, letting M denote the number of 
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claims (or losses) in a specific time period and Xj the amount of the jth claim (or loss), for 
j = 1, 2,… ,M , the sum X1 + X2 +…+ XM corresponds to the aggregate amount of claims 
(or losses) of the insurance portfolio in that period (e.g., Klugman et al. 2019). In epidemi-
ology, if M denotes the number of susceptibles at a specific time (e.g., Brauer 2008), then 
the number of infected individuals may be expressed as X1 + X2 +…+ XM , where Xj indi-
cates whether the jth susceptible got infected ( Xj = 1 ) or not ( Xj = 0).

In general, let X1,X2,… be a sequence of stochastically independent and identically 
distributed random variables (r.v.) and M a non-negative integer-valued r.v., independent 
of the Xj’s. The random variable

(convention: SM = 0 if M = 0 ) is usually referred to as random sum model. Note also that, 
in queueing theory, the equilibrium waiting time distribution in the G/G/1 model follows a 
distribution related to the random sum model (1); moreover, in ruin theory, several quan-
tities (e.g., ruin probabilities, Laplace transform of ruin time, surplus before ruin and, 
density at ruin) of the celebrated Sparre Andersen risk model (e.g., Asmussen and Albre-
cher 2010) can be studied by the aid of the tail probability of the random sum model with 
M having a suitable geometric distribution.

When Xj ’s follow a discrete distribution, (1) is usually referred to as discrete random sum 
model and its distribution as discrete compound distribution. In the collective risk theory, the 
discrete sum model can also be applied when the severity distribution, i.e., the distribution of 
Xj , is defined on 0, 1,… , xmax with its values representing multiples of some monetary unit. 
In this case, xmax will stand for the largest possible payment and could be finite or infinite. 
If M belongs to the well known Panjer class of counting distributions, Panjer (1981), Sundt 
(1982), and Waldmann (1996) derived very efficient recursive schemes for the probability 
mass function, cumulative distribution function and tail probabilities of SM.

However, considering, for example, an insurance company, it is reasonable to assume 
that besides the losses suffered due to the M claims, it also has an operational cost, say 
U; hence, its total expenses (operational costs and aggregate claims) will be given by

The main aim of the present article is the study of the extended random sum  (2), 
when U and M belong to the Panjer class, Xj ’s are i.i.d. positive integer-valued random 
variables and all random variables appearing in (2) are assumed to be independent. A 
sum of similar nature was discussed in Kalashnikov (1997) (Example 3.4), in terms of 
the time needed by a pedestrian to cross an one-way road.

Another motivation for looking at the aforementioned model stems from the fact that a num-
ber of waiting times distributions for runs defined on a sequence of binary trials can be expressed 
as extended random sums, and therefore, their exact distribution can be deduced as a special  
case of the distribution of (2). Note that the notion of run (also referred to as “spells” or “epi-
sodes” in social sciences; e.g., Cornwell 2015, Ch. 4) which can be defined as an interrupted 
sequence of identical events, plays a prominent role in many real-life applications (e.g., Fu and 
Lou 2003). For example, researchers are typically interested in studying the sequence of status 
(defective or not) of the inspected items from a production line, the number of consecutive days 
a worker spent in unemployment, and the number of consecutive insurance claims exceeding 

(1)SM =

M∑
j=1

Xj

(2)S = U + SM = U +

M∑
j=1

Xj.
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a predetermined limit, among others. Similar frameworks may be encountered in a plethora of 
different disciplines such as quality control, actuarial science, reliability theory, molecular biol-
ogy, epidemiology, medicine, criminology, and experimental psychology, to mention a few  
(e.g., Lou  1996; Godbole et  al.  1997; Glaz et  al.  2001; Balakrishnan and Koutras  2002;  
Eryilmaz 2008; Glaz et al. 2009; Glaz and Balakrishnan 2012; Balakrishnan et al. 2021).

In the literature, several schemes of counting the number of runs in a (ordered) 
sequence of events have been employed; among them, the most popular are probably the 
non-overlapping, at least and overlapping scheme. According to these schemes, once a 
(pre-specified) number of consecutive identical events, say k, shows up, a run is counted 
and (a) the enumeration immediately starts from scratch, under the non-overlapping 
scheme, (b) the enumeration re-starts only after the current run is interrupted by a dif-
ferent type of event, under the at least scheme, whereas (c) we keep counting the occur-
rence of runs, as far as the same event is still occurring, under the overlapping scheme. 
For example, in the sequence of binary outcomes 0000111001000, we observe 4, 3 
and 6 runs of zeros of length k = 2 under the non-overlapping, at least and overlapping 
scheme, respectively. The corresponding waiting time distributions for the rth appear-
ance of a run of length k, which have been named as negative binomial distributions of 
order k, is then of special theoretical and applied interest; for example, in the previous 
binary sequence the waiting times for the appearance of r = 3 runs of zeros of length 
k = 2 equals 9, 12 and 4, under the non-overlapping, at least and overlapping scheme, 
respectively. Needless to say, for k = 1 , the three waiting time distributions reduce to the 
well-known negative binomial distribution.

Probability mass functions, probability generating functions or recursive formulas of the 
three waiting time distributions mentioned above can be found in the literature, assum-
ing, for example, that the sequence of binary trials consist of independent and identically 
distributed binary trials or Markov dependent trials (e.g., Koutras  1997; Balakrishnan 
and Koutras 2002, Ch. 4); however, for some of these methods the calculations needed to 
obtain the exact distribution turn out to be computationally intractable, especially, for large 
values of k and/or r. The present work also focuses to the derivation of computationally 
efficient recursive relations for the probability mass function, the cumulative distribution 
function and the tail probabilities of the negative binomial distributions of order k.

The rest of this paper is organized as follows. In Section 2, we study the relation between 
the negative binomial distributions of order k and the distribution of the extended discrete 
random sum. In Section 3, we derive efficient recurrence relations for the probability mass 
function, cumulative distribution function and survival function of S, along with recursive 
formulas for its factorial moments. The general results of Section 3 are subsequently used 
in Section 4 for studying the negative binomial distributions of order k, taking advantage 
of the relations established in Section 2. Some practical and numerical aspects of the new 
results are considered in Section 5, in terms of their application to the total expenses (oper-
ational costs and aggregate claims) of an insurance company.

2 � Random sum representations for the negative binomial 
distributions of order k

In this section, we illustrate how the waiting times for multiple run occurrences can be 
represented as properly defined random sums. The approach taken here departs from 
the techniques used so far, which exploit representations as sums of fixed number of 
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random variables; e.g., Hirano et  al. (1991), Koutras (1997) or Balakrishnan and 
Koutras (2002).

To start with, consider a sequence Z1, Z2,… of i.i.d. binary trials with Zj =1 (success) 
or 0 (failure), for j = 1, 2,… and P(Zj = 1) = p ∈ (0, 1) , P(Zj = 0) = q = 1 − p . Let us 
also denote by T (N)

r,k
 , T (A)

r,k
 and T (O)

r,k
 , the waiting time for the rth appearance of a success 

run of length k, under the the non-overlapping, at least and overlapping scheme, respec-
tively; although the waiting times T (N)

r,k
 , T (A)

r,k
 , T (O)

r,k
 , are also denoted as T (I)

r,k
 , T (II)

r,k
 , T (III)

r,k
 , in 

the relevant literature (e.g., Balakrishnan and Koutras 2002), here we adopted the first 
notation as it may help the reader to more easily recall which scheme is being referred 
to.

Apparently, for r = 1 , all three variables describe the waiting time for the first occur-
rence of a success run of length k; hence, T (N)

1,k
= T

(A)

1,k
= T

(O)

1,k
= Tk where Tk is a random 

variable following the geometric distribution of order k. The notations that will be used in 
the sequel are:

•	 f
(i)

r,k
(x) = P(T

(i)

r,k
= x) , i=N, A, O for the probability mass function of the negative bino-

mial distributions of order k.
•	 fk(x) = P(Tk = x) for the probability mass function of the geometric distribution of 

order k; moreover, we shall write Tk ∼ Gk(p).

The proof of the main result of this section, Theorem  1, makes use of some useful 
results, concerning the probability generating functions of the waiting times T (N)

r,k
 , T (A)

r,k
 and 

T
(O)

r,k
 . Using the formulas provided in Balakrishnan and Koutras (2002) (Ch. 4.2.2), one may 

easily conclude that the probability generating functions of T (N)

r,k
 , T (A)

r,k
 and T (O)

r,k
 take on the 

forms

where

Considering the special case r = 1 , for any of (3)–(5), we readily obtain the probability 
generating function of Tk ∼ Gk(p) as

(3)E

[
u
T
(N)

r,k

]
=

(pu)rk

Qk(u)
r
,

(4)E

[
u
T
(A)

r,k

]
=

[
qu

1 − pu

]r−1[
(pu)k

Qk(u)

]r
,

(5)E

[
u
T
(O)

r,k

]
=

(pu)k

Qk(u)

[
pu + qu

(pu)k

Qk(u)

]r−1
,

Qk(u) = 1 −
q[1 − (pu)k]u

1 − pu
.

(6)E
[
uTk

]
=

(pu)k

Qk(u)
= PT (u).
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From (3) and k = 1 , we may deduce the next well known probability generating function 
of the negative binomial distribution with parameters r and p, symb. Nb(r, p),

Obviously, Nb(1, p) leads to the standard geometric distribution with support {0, 1,…} , 
to be denoted hereafter by G(p), whereas the shifted geometric distribution with support 
{1, 2,…} , will be denoted by Gsh(p).

Moreover, if B follows the typical binomial distribution with parameters r (number of 
trials) and p (success probability), symb. B ∼ b(r, p) , its probability generating function 
reads

Suppose now that Y follows the truncated geometric distribution with support 1, 2,… , k , 
symb. Y ∼ Gk

tr
(p) ; then, the probability mass function of Y is given by

whereas its probability generating function by

One may easily verify that Gk
tr
(p) is a conditional geometric distribution, namely, 

Y
d
=T|T ≤ k where T ∼ Gsh(p).

We are now ready to state the next theorem, expressing the distributions of the negative 
binomial distributions of order k, as the distributions of properly defined random sums.

Theorem 1  Suppose that the waiting times T (N)

r,k
 , T (A)

r,k
 and T (O)

r,k
 are defined on a sequence of 

independent and identically distributed binary trials, with success probability p. Then,

where 

(a)	 for i = N, we have 

(b)	 for i = A, we have 

(7)E

[
u
T
(N)

r,1

]
=

(
pu

1 − qu

)r

.

(8)E
[
uB
]
= (pu + q)r.

(9)fY (y) = q
py−1

1 − pk
, y = 1, 2,… , k,

(10)E
[
uY
]
=

qu[1 − (pu)k]

(1 − pk)(1 − pu)
.

(11)T
(i)

r,k
− c

d
=U +

M∑
j=1

Xj

c = kr,U = 0,M ∼ Nb(r, pk), and X1,X2,… ∼ Gk
tr
(p),

c = r(k + 1) − 1,U ∼ Nb(r − 1, q),M ∼ Nb(r, pk), and X1,X2,… ∼ Gk
tr
(p),
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(c)	 for i = O, we have 

and all variables involved in the RHS of (11) (i.e., U, M and X1,X2,… ) are independent.
Proof  (a) It is well known that, for the random sum SM = X1 + X2 +…+ XM , we have

Since, M ∼ Nb(r, pk) we may write, by recalling (7), that

The probability generating function of PX(u) , when Xi ∼ Gk
tr
(p) , is given by (10) and 

after simple algebraic calculations we get

which, in view of (3), yields

This completes the proof.
(b) Combining (4) and (12) we get

and upon observing that the first term in the RHS can be viewed as the probability generating  
function of U ∼ Nb(r − 1, q) (c.f. (7)) we may write

and therefore,

The result follows immediately by taking into account that U is independent of SM.
(c) By virtue of (5) we get

and if B ∼ b(r − 1, q) and Tk ∼ Gk(p) we may write the RHS as follows (c.f. (6) and (8))

where SB = X
1
+ X

2
+…+ XB , with Xi ∼ Gk(p) . Making use of the independence of the 

random variables involved in the above expressions, we conclude that

c = k + r − 1,U + k ∼ Gk(p),M ∼ b(r − 1, q), and X1,X2,… ∼ Gk(p),

PSM
(u) = PM(PX(u)).

PSM
(u) = PM(PX(u)) =

[
pk

1 − (1 − pk)PX(u)

]r
.

(12)PSM
(u) =

[
pk

Qk(u)

]r
= u−kr

(pu)rk

Qk(u)
r

PSM
(u) = u−krE

[
u
T
(N)

r,k

]
= E

[
u
T
(N)

r,k
−kr

]
.

u−[r(k+1)−1]E

[
u
T
(A)

r,k

]
=

(
1 − p

1 − pu

)r−1

PSM
(u)

T
(A)

r,k
− r(k + 1) + 1

d
=U + SM ,

E

[
u
T
(A)

r,k
−r(k+1)+1

]
= E[uU]E[uSM ].

E

[
u
T
(O)

r,k
−(k+r−1)

]
=

pk

Qk(u)

[
p + q

(pu)k

Qk(u)

]r−1
,

E
[
uTk−k

]
E[uSB ]
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and this completes the proof.

3 � Recursive formulas for extended random sums

According to Theorem  1 a shifted version of the three negative binomial distributions of 
order k admits a random sum representation of the form U +

∑M

j=1
Xj , where X1,X2,… , is a 

properly defined sequence of independent and identically distributed positive integer-valued 
random variables, independent of the non-negative integer-valued random variable M.

A common feature in the three representations provided in Theorem 1 is that the random 
variable M belongs to the Panjer class of counting distributions. Moreover, the random vari-
able U is either degenerate ( U = 0 ) or it belongs to the same class (with different parameters). 
Before proceeding with the main results of this section, let us recall that a discrete random var-
iable M belongs to the Panjer class of non-negative integer-valued random variables (symb., 
M ∈ R(a, b, 0) ) if its probability mass function satisfies the recurrence relation

for some constants a and b; e.g., Panjer (1981). For this class of counting distributions, 
we always have a < 1 , and the only non-degenerate members of this family are the Pois-
son, the binomial and the negative binomial distribution. It can be verified that b(r, p) and 
Nb(r,  p) obey the recurrence scheme (13) with a = −p(1 − p) , b = (r + 1)p∕(1 − p) and 
a = p , b = (r − 1)p , respectively.

The next theorem provides efficient recursive schemes for the evaluation of the prob-
ability mass function and cumulative distribution function of U + SM ; subsequently, an 
analogous recursion is given for its tail probabilities.

Theorem 2  Let X1,X2,… be a sequence of independent and identically distributed positive 
integer-valued random variables, with probability mass function and cumulative distribu-
tion function f(x) and F(x), respectively. Let S = U + X

1
+…+ XM , where M ∈ R(a, b, 0) , 

U ∈ R(a1, b1, 0) are independent random variables which are independent of Xj ’s as well. 
Then, the probability mass function fS(x) = P(S = x) and cumulative distribution function 
FS(x) = P(S ≤ x) of S obey the following recurrence relations:

with initial values fS(0) = FS(0) = P(U = 0)P(M = 0) , and

T
(O)

r,k
− (k + r − 1)

d
=Tk − k +

B∑
j=1

Xj,

(13)P(M = m) =
(
a +

b

m

)
P(M = m − 1), m = 1, 2,… ,

(14)(a) fS(x) =

x∑
i=1

�i(x)fS(x − i),

(15)(b) FS(x) =

x∑
i=1

(�i(x) + �i(x))FS(x − i),
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where c1 = 0 , ci = a
∑i−1

m=1
f (m)ai−m−1

1
, i = 2, 3,… .

Proof  (a) Let us denote by PS(u) = E[uS], PSM
(u) = E[uSM ] , P(u) = E[uX] the probability 

generating functions of S, SM and Xj’s, respectively. The conditions set in Theorem 2 imply 
that U and SM are independent random variables, and therefore, the probability generating 
function of S takes on the form

and differentiating with respect to u we get

Differentiating next the formula PSM
(u) = PM(P(u)) with respect to u and taking into 

account that the probability generating function of M, PM(u) = E[uM] , satisfies the differ-
ential equation,

we obtain

Substituting the last expression into the right-hand side of (17), and reusing (16), and 
(18), we may write

Let us next multiply both sides of (19) by u(1 − aP(u)) , to obtain

and observe that

Replacing PS(u) and P(u) by their series expansions and then picking up the coefficients 
of ux , x ≥ 1 , we obtain that

�i(x) =
(
a +

bi

x

)
f (i) +

1

x
(a1 + b1)(a

i−1
1

− ci), �i(x) =
1

x
(1 − aF(i − 1))

(16)PS(u) = PU(u)PSM
(u)

(17)P�
S
(u) =

P�
U
(u)

PU(u)
PS(u) + PU(u)P

�
SM
(u).

(18)P�
M
(u) =

a + b

1 − au
PM(u),

P�
SM
(u) = P�(u)P�

M
(P(u)) =

(a + b)P�(u)

1 − aP(u)
PSM

(u).

(19)P�
S
(u) =

[
a1 + b1

1 − a1u
+

(a + b)P�(u)

1 − aP(u)

]
PS(u).

(20)u(1 − aP(u))P�
S
(u) = (a + b)uPS(u)P

�(u) +
a1 + b1

1 − a1u
(1 − aP(u))uPS(u),

u

1 − a1u
(1 − aP(u)) =

∞∑
x=1

(
ax−1
1

− a

x−1∑
m=1

f (m)ax−m−1
1

)
ux.

fS(1) =

[
(a1 + b1) + (a + b)f (1)

]
fS(0),
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and for x = 2, 3,…

Since the last relation reproduces the previous one for x = 1 , we may state that it holds 
true for all x = 1, 2, 3,… . The proof is easily completed by extending the last summation in 
the range i = 1, 2,… , x (by convention c1 = 0 ) and dividing both sides by x.

(b) Let P̂S(u) =
∑∞

x=0
FS(x)u

x be the generating function of FS(x), x = 0, 1,… 
and P̂1,S(u) =

∑∞

x=0
F1,S(x)u

x the generating function of the auxiliary quantities 
F1,S(x) =

∑x

i=0
FS(i) , for each x = 0, 1,… . Then, it can be easily verified that

Dividing both sides of (20) by 1 − u and taking into account (21), we get the following 
differential equation for P̂S(u),

which yields for x ≥ 1,

Observe next that, for x = 1, 2,… , we have

xfS(x) = a

x−1∑
i=1

(x − i)f (i)fS(x − i) + (a + b)

x∑
i=1

if (i)fS(x − i)

+ (a1 + b1)

[
x∑

i=1

ax−i
1

fS(x − i) −

x∑
i=2

cifS(x − i)

]

=

x∑
i=1

(ax + bi)f (i)fS(x − i)

+ (a1 + b1)

[
x∑

i=1

ai−1
1

fS(x − i) −

x∑
i=2

cifS(x − i)

]
.

(21)P̂S(u) =
PS(u)

1 − u
and P̂1,S(u) =

P̂S(u)

1 − u
.

uP̂�
S
(u) =uP̂�

1,S
(u) + aP(u)[uP̂�

S
(u) − uP̂�

1,S
(u)]

+
a1 + b1

1 − a1u
P̂S(u) − a

a1 + b1

1 − a1u
P(u)P̂S(u),

(22)

xFS(x)

= F1,S(x − 1) + a

x−1∑
i=1

(x − i)f (i)FS(x − i) − a

x−1∑
i=1

f (i)F1,S(x − i − 1)

+ (a1 + b1)

[
x∑

i=1

ax−1
1

FS(x − i) −

x∑
i=2

ciFS(x − i)

]
+ (a + b)

x∑
i=1

if (i)FS(x − i)

=

x∑
i=1

[
(ax + bi)f (i) + (a1 + b1)(a

i−1
1

− ci)
]
FS(x − i) + F1,S(x − 1)

− a

x−1∑
i=1

f (i)F1,S(x − i − 1).
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and since F1,S(x − 1) =
∑x

i=1
FS(x − i) and FY (0) = 0 , we may write

Substituting (23) into (22), recursion (15) follows.

Theorem 2 provides simple recurrences for the probability mass function and the cumula-
tive distribution function of the random sum S which make use the parameters a, b, a1, b1 of 
the Panjer families involved in the distributions of U and M, and the probability mass function 
f(x) of Xj’s. One can easily establish an analogous recurrence relation for the tail probabili-
ties FS(x) = P(S > x) of S. This can be accomplished by following a procedure analogous to 
the one used for proving part (b) of Theorem 2 or by simply replacing FS(x) = 1 − FS(x) in 
(15) and carrying our some simple algebraic calculations in the resulting equality. Hence, the 
deduced recurrence takes on the form

where

with initial condition FS(0) = 1 − P(U = 0)P(M = 0).
It is of interest to note that, the recurrences of Theorem 2 may be restated in the form

where Ai = af (i) , Bi = bif (i) + (a1 + b1)(a
i−1
1

− ci) and B�
i
= Bi + (1 − aF(i − 1)) . The last 

expressions have an apparent resemblance to the Panjer recursions, as well as to the recur-
rences obeyed by the generalization of Panjer’s counting distributions class considered by 
Sundt (1982).

Manifestly, the recurrences developed in this section will reduce to the recurrences for the 
classical random sum SM =

∑M

j=1
Xj (see Panjer 1981) if we set a1 = b1 = 0 in which case the 

random variable U becomes degenerate with its mass concentrated at 0.
Closing this section, we provide some hints for the calculation of the moments of 

S = U + SM . The mean and the variance of S can be easily obtained by noting that, by virtue 
of the independence of U and SM,

On the other hand, a well known result for the random sum SM =
∑M

j=1
Xj states that

x−1∑
i=1

f (i)F1,S(x − i − 1) =

x∑
i=2

F(i − 1)FS(x − i),

(23)F1,S(x − 1) − a

x−1∑
i=1

f (i)F1,S(x − i − 1) =

x∑
i=1

(1 − aF(i − 1))FS(x − i).

(24)FS(x) =

x∑
i=1

(
�i(x) + �i(x)

)
FS(x − i) + �(x), x = 1, 2…

�(x) =
1

x
(a1 + b1)

(
x∑

i=1

ci −
1 − ax

1

1 − a1

)
−

a + b

x

x∑
i=1

if (i), x ≥ 1,

(25)fS(x) =

x∑
i=1

(
Ai +

Bi

x

)
fS(x − i),FS(x) =

x∑
i=1

(
Ai +

B�
i

x

)
FS(x − i),

E[S] = E[U] + E[SM] and V[S] = V[U] + V[SM].

E[SM] = E[M]E[X],V[SM] = E[M]V[X] + V[M]E[X]2,
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and taking into account that M ∈ R(a, b, 0) , and U ∈ R(a1, b1, 0) , we have (Panjer 1981)

Then, we easily arrive at the following expressions

We provide next a recurrence scheme for the evaluation of the factorial moments of S 
under the same conditions on M, U and Xj , as in Theorem 2.

Theorem 3  Let

for n = 1, 2,… be the factorial moments of order n ≥ 1 of S and X, respectively (conven-
tion: m0 = �0 = 1 ). Then, the following recurrence holds true

where

Proof  Multiplying both sides of (19) by 1 − aP(u) we get

with R(u) = 1

1−a1u
 . Application of Leibnitz’s formula for obtaining the derivative of order n 

in both sides of the above equation, gives

with M(u) = R(u)P(u) . Now, since

E[M] =
a + b

1 − a
, E[U] =

a1 + b1

1 − a1
, V[M] =

a + b

(1 − a)2
, V[U] =

a1 + b1

(1 − a1)
2
.

E[S] =
a
1
+ b

1

1 − a
1

+
a + b

1 − a
E[X],

V[S] =
a
1
+ b

1

(1 − a
1
)2

+
a + b

1 − a
V[X] +

a + b

(1 − a)2
E[X]2.

mn = E[S(S − 1)⋯ (S − n + 1)]

�n = E[X(X − 1)⋯ (X − n + 1)]

mn =
1

1 − a

n∑
i=1

(
n − 1

i − 1

)
�imn−i

�i =
(
na

i
+ b

)
�i + (i − 1)!

a1 + b1

a1

((
a1

1 − a1

)i

− a

i∑
m=1

1

(i − m)!

(
a1

1 − a1

)m

�i−m+1

)

(1 − aP(u))P�
S
(u) =

[
(a + b)P�(u) + (1 − aP(u))(a1 + b1)R(u)

]
PS(u)

(26)

(1 − a)P
(n+1)

S
(u) = a

n∑
i=1

(
n

i

)
P(i)(u)P

(n+1−i)

S
(u)

+ (a + b)

n∑
i=0

(
n

i

)
P(i+1)(u)P

(n−i)

S
(u)

+

n∑
i=0

(
n

i

)
(a1 + b1)[R

(i)(u) − aM(i)(u)]P
(n−i)

S
(u)
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relation (26) can equivalently be written as

or

The proof is completed by noting that

and

4 � Recursions for the negative binomial distributions of order k

In this section, we are going to take advantage of the results of Sections 2 and 3 in order to 
derive recursive formulas for the distributions of T (N)

r,k
 , T (A)

r,k
 and T (O)

r,k
 . We start with the sim-

plest case where the waiting times T (N)

r,k
 , T (A)

r,k
 and T (O)

r,k
 are defined on a sequence Z1, Z2,… of 

i.i.d. trials (Section 4.1) and apply Theorem 2 to establish recurrences for the probability 
mass function, cumulative distribution function, tail probabilities and moments in a unified 
way; it is worth stressing out that some of the results given in this section have also been 
obtained in the past by exploiting different techniques adjusted to the special nature of each 
waiting time variable.

Next, in Section 4.2, we derive new results under a more general set up for Z1, Z2,… . 
More specifically, we assume that Z1, Z2,… is a sequence of binary random variables of 
order k (Aki 1985). This case is also treated in a uniform way by considering first a slight 
generalization of Theorem 2 and then deriving all the desired results by a direct application 
of that.

4.1 � Independent and identically distributed binary variables

The next proposition provides recurrences for the probability mass function, the cumulative 
distribution function and the tail probabilities of T (N)

r,k
 , as well as for its factorial moments. 

In the statements and the proofs that follow we shall be using the next notations

n∑
i=1

(
n

i

)
P(i)(u)P

(n+1−i)

S
(u) =

n∑
i=0

(
n

i

)
n − i

i + 1
P(i+1)(u)P

(n−i)

S
(u)

(1 − a)P
(n+1)

S
(u)

=

n∑
i=1

(
n

i

){(
n + 1

i + 1
a + b

)
P(i+1)(u) + (a1 + b1)[R

(i)(u) − aM(i)(u)]

}
P
(n−i)

S
(u)

(1 − a)P
(n)

S
(u)

=

n∑
i=1

(
n − 1

i − 1

){(
n

i
a + b

)
P(i)(u)(a1 + b1)[R

(i−1)(u) − aM(i−1)(u)]

}
P
(n−i)

S
(u).

R(i)(u) =
i!ai

1

(1 − a1u)
i+1

M(i)(u) =

i∑
m=0

(
i

m

)
R(m)(u)P(i−m)(u) =

i∑
m=0

(
i

m

)
m!am

1

(1 − a1u)
m+1

P(i−m)(u).
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and �i = �i(x, k, r) = 1 + (r − 1)i� , �i = �i(x + 1, k + 1, r) , �i(p) = pi−1 − qpi−2 min{i − 1, k} , 
i = 1, 2,… . We also set �i(p) = 1 and �i(p) = 0 , for i = 0 and i ≥ k + 1 , respectively.

Proposition 4  For the probability mass function, the cumulative distribution function, the 
tail probabilities and the factorial moments (m(N)

n
) of T (N)

r,k
 , the following recursions hold 

true:

with initial conditions f (N)
r,k

(kr) = F
(N)

r,k
(kr) = 1 − F

(N)

r,k
(kr) = pkr.

Proof  (i) According to Theorem 1a, T (N)

r,k
− kr has the same distribution with S = X

1
+ X

2
+…

+X
M

 , where M ∈ R(a, b, 0) with a = 1 − pk , b = (r − 1)(1 − pk) and Xj ∼ G
(k)
tr (p) . Therefore, 

S satisfies the conditions of Theorem 2, with a1 = b1 = 0 , and f (x) = q

1−pk
px−1 , x = 1, 2,… , k . 

A direct application of Theorem 2i yields that the probability mass function of S satisfies the 
recursion

�i(p) =

i∑
j=1

jipj−1,

�1(x) =

{
1−xqpx−1−px

q
, x ≤ k + 1

1−(1+kq)pk

q
+ kpk−1(1 − px−k), x ≥ k + 1,

� = �(x, k, r) =
1

x − kr
, � = �(x + 1, k + 1, r)

(i) f
(N)

r,k
(x) =

min{x−kr,k}∑
i=1

�iqp
i−1f

(N)

r,k
(x − i), x ≥ kr + 1,

(ii) F
(N)

r,k
(x) =

x−kr∑
i=1

(� + q�i)p
i−1F

(N)

r,k
(x − i), kr + 1 ≤ x ≤ k(r + 1),

F
(N)

r,k
(x) =

k∑
i=1

(� + q�i)p
i−1F

(N)

r,k
(x − i) + pk�

x−kr∑
i=k+1

F
(N)

r,k
(x − i),

x ≥ k(r + 1) + 1,

(iii) F
(N)

r,k
(x) =

x−kr∑
i=1

(� + q�i)p
i−1F

(N)

r,k
(x − i) − r

[
�

q
−

(
�

q
+ 1

)
px−kr

]
,

kr + 1 ≤ x ≤ k(r + 1),

F
(N)

r,k
(x) =

k∑
i=1

(� + q�i)p
i−1F

(N)

r,k
(x − i) + pk�

x−kr∑
i=k+1

F
(N)

r,k
(x − i)

− r�

[
1

q
−

(
1

q
+ k

)
pk
]
, x ≥ k(r + 1) + 1,

(iv) m(N)
n

=
1

pk

n∑
i=1

(
n − 1

i − 1

)[(
n

i
+ r − 1

)
�i(p) + (−1)i−1rk(i − 1)!

−rk

i∑
m=1

(−1)m−1
(

i − 1

n − 1

)
(m − 1)!�i−m(p)

]
m

(N)

n−i
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The proof of this part is easily completed on observing that fS(x) = f
(N)

r,k
(x + kr) , for 

x = 0, 1,….
(ii) The cumulative distribution function of X ∼ G

(k)
tr (p) is given by (see (9))

and the sum 
∑x

i=1
�i(x)FS(x − i) appearing in the RHS of (15) takes on the form

Hence, (15) reduces to

and the proof is completed by taking into account that FS(x) = F
(N)

r,k
(x + kr) , for x = 0, 1,….

(iii) Comparing (15) and (24), it is clear that FS(x) and FS(x) obey the same recurrence scheme 
with the exception of the extra term �(x) appearing in FS(x) . The proof is easily established by 
noting that in our case ( a1 = b1 = 0 ) we have x�(x) = (a + b)

∑x

i=1
if (i) = r

∑min{x,k}

i=1
ipi−1q , 

for x = 0, 1,… and use of FS(x) = F
(N)

r,k
(x + kr) , for x = 0, 1,….

(iv) Taking into account the form of �i(p) and (9), we may write

where m(Y)

i
 denotes the ith factorial moment of the random variable Y. Furthermore, from 

Theorem 1 we know that T (i)

r,k
− kr

d
=
∑M

j=1
Xj , M ∼ Nb(r, pk) , and X1,X2,… ∼ Gk

tr
(p) . Then, 

using Theorem 3 with a = 1 − pk, b = (r − 1)(1 − pk), a1 = b1 = 0 and the above form of 
�i(p) , the proof is readily completed.

The recursive formula provided above for f (N)
r,k

(x) has also been given by Philippou  
and Georghiou (1989) while a similar recurrence is mentioned by Charalambides 
(1986). The techniques for deriving these results are entirely different from the one used 
here: the first authors exploited Fibonacci-type polynomials, the latter made use of trun-
cated Bell polynomials. It is also noteworthy that, for f (N)

r,k
(x) there exists also closed for-

mulae involving single and multiple summations with binomial or multinomial coeffi-
cients respectively; see Chapter 4 in Balakrishnan and Koutras (2002) for more details. 
The recursive schemes for F(N)

r,k
(x) and F

(N)

r,k
(x) given in part (ii) and (iii) of Proposition 4, 

to the best of our knowledge, have not appeared in the literature up to now.

fS(x) = P(S = x) =

�∑min{x,k}

i=1

�
1 +

(r−1)i

x

�
qpi−1fS(x − i), x = 1, 2,…

pkr, x = 0.

(27)F(x) =

⎧⎪⎨⎪⎩

0, x = 0
1−px

1−pk
, 1 ≤ x ≤ k − 1

1, x ≥ k

(28)

x�
i=1

FS(x − i) − a

x�
i=1

F(x − i)FS(x − i)

=

�∑x

i=1
pi−1FS(x − i), 1 ≤ x ≤ k∑k

i=1
pi−1FS(x − i) + pk

∑x

i=k+1
FS(x − i), x ≥ k + 1.

FS(x) =

⎧
⎪⎪⎨⎪⎪⎩

∑min{x,k}

i=1

�
1 +

(r−1)i

x

�
pi−1qFS(x − i) +

1

x

∑x

i=1
pi−1FS(x − i), 1 ≤ x ≤ k

∑min{x,k}

i=1

�
1 +

(r−1)i

x

�
pi−1qFS(x − i) +

1

x

∑k

i=1
pi−1FS(x − i)

+
1

x
pk

∑x

i=k+1
FS(x − i), x ≥ k + 1,

�i(p) = (1 − pk)m
(Y)

i
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The following result may be proved in much the same way as Proposition 4, and 
therefore, the proof is omitted.

Proposition 5  For the probability mass function, the cumulative distribution function, the 
tail probabilities and the factorial moments (m(A)

n
) of T (A)

r,k
 , the following recursions hold 

true:

with initial conditions
 f (A)
r,k

(
(k + 1)r − 1

)
= F

(A)

r,k

(
(k + 1)r − 1

)
= 1 − F

(A)

r,k

(
(k + 1)r − 1

)
= qr−1pkr.

As far as we know, no recurrence relations have appeared in the literature for the 
probability mass function, the cumulative distribution function, the tail probabilities 
and the factorial moments of T (A)

r,k
 . Muselli (1996) developed the following exact formula 

for the evaluation of f (A)
r,k

(x)

(i) f
(A)

r,k
(x) = q

min{1∕�,k}∑
i=1

�ip
i−1f

(A)

r,k
(x − i) + (r − 1)�p

1∕�∑
i=1

�i(p)f
(A)

r,k
(x − i),

x ≥ (k + 1)r;

(ii) F
(A)

r,k
(x) =

1∕�∑
i=1

{
(� + �iq)p

i−1 + p��i(p)

}
F
(A)

r,k
(x − i),

(k + 1)r ≤ x ≤ (k + 1)r + k − 1;

F
(A)

r,k
(x) =

k∑
i=1

(� + �iq)p
i−1F

(A)

r,k
(x − i) + (r − 1)p�

1∕�∑
i=1

�i(p)F
(A)

r,k
(x − i)

+ pk�

1∕�∑
i=k+1

F
(A)

r,k
(x − i), x ≥ (k + 1)r + k.

(iii) F
(A)

r,k
(x) =

1∕�∑
i=1

{
(� + �iq)p

i−1 + (r − 1)p��i(p)

}
F
(A)

r,k
(x − i)

+ (r − 1)p�
[
�1

(
1∕�

)
−

1 − p1∕�

q

]
−

�r

q

{
1 − [1 + (q∕�)]p1∕�

}
,

(k + 1)r ≤ x ≤ (k + 1)r + k − 1;

F
(A)

r,k
(x) =

k∑
i=1

(� + �iq)p
i−1F

(A)

r,k
(x − i) + (r − 1)p�

1∕�∑
i=1

�i(p)F
(A)

r,k
(x − i)

+ pk�

1∕�∑
i=k+1

�i(p)F
(A)

r,k
(x − i) + (r − 1)p�

[
�1

(
1∕�

)
−

1 − p1∕�

q

]

− r�[1 − (1 + kq)pk], x ≥ (k + 1)r + k,

(iv) m(A)
n

=
1

pk

n∑
i=1

(
n − 1

i − 1

){(
n

i
+ r − 1

)
�i(p)

+(−1)i−1[r(k + 1) − 1](i − 1)! − [r(k + 1) − 1]

i∑
m=1

(
i − 1

m − 1

)
(m − 1)!pm−1

qm
�i+1−m(p)

+(r − 1)p

[
(i − 1)!pi

qi
−

i∑
m=1

(−1)m−1
(

i − 1

m − 1

)
(m − 1)!pm−1

qm
�i+1−m(p)

]}
m

(A)

n−i
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The results of this section are completed by providing formulae for computing the distri-
bution of the waiting time corresponding to the overlapping scheme. More specifically, in 
the next Proposition the distribution of T (O)

r,k
 is expressed in terms of the distribution of T (N)

r,k
.

Proposition 6  For the probability mass function of T (O)

r,k
 , the following formula hold true, 

for x ≥ k + r − 1:

The same formula remains valid if we replace the probability mass functions f by the 
cumulative distribution functions F and the tail probabilities F.

Proof  Following similar steps with those of proving Theorem  1c, we can see that 
T
(O)

r,k
− (r − 1) is distributed as S = X

1
+ X

2
+…+ XB+1 , with B ∼ b(r − 1, q) and 

Xi ∼ Gk(p) . Applying the total probability theorem we may write

where

and f ∗
i
(x) = P(X1 +…+ Xi = x) . Note next that Xi ∼ Gk(p) implies that f ∗

i
(x) = f

(N)

i,k
(x) , 

for x = 0, 1,… , and thus

Formula (i) is readily deduced by taking into account that fS(x) = f
(O)

r,k
(x + r − 1) , for 

x ≥ r − 1 , and thus f (N)
i,k

(x − r + 1) > 0 for x ≥ ki + r − 1 . Arguing in a similar way, we 
may easily obtain (ii) and (iii).

Ling (1989) proved the formula given in Proposition 6, by carrying out mathematical 
induction on r. He also established the following recursive scheme which makes use of 
the probability mass function of Gk(p)

The computational efficiency of the above recursive schemes (Propositions 4-6), in 
terms of the time needed for computing the probability mass function (until its 90th 
percentile), is indicatively considered in Table 1. Specifically, the computational time of 
the recursive schemes of the negative binomial distributions of order k, as provided by 

f
(A)

r,k
(x) =

[
x+1

k+1

]
∑
j=r

(−1)j−r
(

j − 1

r − 1

)
pjkqj−1 ×

{(
x − jk − 1

j − 2

)
+ q

(
x − jk − 1

j − 1

)}
.

f
(O)

r,k
(x) =

r∑
i=1

(
r − 1

i − 1

)
qi−1pr−if

(N)

i,k
(x − r + 1).

fS(x) =

r∑
i=1

P(B + 1 = i)f ∗
i
(x), x ≥ 0,

P(B + 1 = i) =

(
r − 1

i − 1

)
qi−1pr−i, i = 1, 2,… , r,

fS(x) =

r∑
i=1

P(B + 1 = i)f
(N)

i,k
(x), x ≥ 0.

(29)f
(O)

r,k
(x) = pf

(O)

r−1,k
(x − 1) + q

x−k−1∑
j=k+r−2

f
(O)

r−1,k
(j)f (x − j − 1).
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Propositions 4-6 (i.e., the three different counting schemes), is demonstrated and further 
compared to the recursive schemes deduced by the Markov chain imbedding technique 
(e.g., Section 4.2.1, in Balakrishnan and Koutras 2002). For the overlapping scheme, we 
also provide the computational times of (29). As can be seen in Table 1, the suggested 
recursive schemes have the best computational times, in most of the cases. A notable 
exception to that is the case of the overlapping counting where for small values of k, the 
recursive scheme deduced by the Markov chain imbedding technique (MCI) exhibit the 
smallest computing times.

4.2 � The case of binary sequence of order k

Let us recall that X0,X1,… , with Xj ∈ {0, 1} for all j = 1, 2,… , is said to be a binary 
sequence of order k (Aki  1985), if there exist a positive integer k and real numbers 
0 < p1,… , pk < 1 such that P(Xn = 1|X0 = x0,X1 = x1,… ,Xn−1 = xn−1) = pj , for any n 
with j = n0 − [(n0 − 1)∕k]k , and n0 being the smallest positive integer with xn−n0 = 0 
([a] stands for the largest integer not exceeding a; convention: P(X0 = 0) = 1 ). Note that 
if pj = p , for all j, then the sequence is i.i.d.

Under this type of dependence, it is known that the probability generating function of 
T
(N)

r,k
 is given by (Aki 1985)

Table 1   Computational times (in seconds), for the evaluation of the probability mass function (until the 
90th percentile) using recursive schemes (MCI: the recursive scheme deduced by the Markov chain imbed-
ding technique)

All the computations were carried out in Mathematica 12.0

 Non-overlapping At least Overlapping

Prop. 4 MCI Prop. 5 MCI Prop. 6 Eq. (29) MCI

p = 0.75 r
k = 10 20 0.190 1.396 0.793 1.599 4.632 16.28 0.311

40 0.271 8.798 2.329 9.475 15.77 43.88 1.492
k = 20 10 4.078 171.9 93.91 74.35 95.90 2485.8 15.69

20 9.551 786.6 547.1 1029.1 282.2 5401.5 51.89
p = 0.85

k = 10 20 0.135 0.369 0.149 0.407 0.328 1.107 0.039
40 0.153 1.646 0.396 2.421 1.796 3.736 0.211

k = 20 10 0.246 1.656 1.252 1.618 2.057 23.90 0.261
20 0.443 9.001 4.279 10.31 7.963 46.10 0.827

p = 0.95

k = 10 20 0.079 0.067 0.132 0.416 0.213 0.491 0.024
40 0.111 0.382 0.414 2.210 0.366 0.347 0.048

k = 20 20 0.109 0.515 0.298 0.983 0.244 0.546 0.046
40 0.139 3.761 0.912 6.161 1.127 1.374 0.141

p = 0.995

k = 100 5 0.183 0.702 1.011 5.758 0.095 0.028 0.170
10 0.294 3.264 3.192 26.46 0.215 0.048 0.322

k = 500 5 50.68 538.5 149.1 681.0 33.62 659.2 108.1
10 55.29 1678.2 469.2 1875.3 89.74 737.9 219.7
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where

with �0 = 1 and qi = 1 − pi . Employing the Markov chain imbedding technique (e.g., Fu 1986; 
Fu and Koutras  1994; Koutras and Alexandrou  1997; Koutras  1997; Chadjiconstantinidis 
et al. 2000; Fu and Lou 2003), the next theorem can be proved.

Theorem  7  The probability generating functions of T (A)

r,k
 and T (O)

r,k
 , defined on a binary 

sequence of order k, with probabilities p1, p2,… , pk , are given by

Proof  In order to prove (30) and (31) we employ the Markov chain imbedding technique. 
Roughly speaking, consider a process Yt which both keeps track of the current success run 
length and also of the number of success runs met until time t, under the at least scheme; 
i.e., Yt = (i, r) if and only if the last i outcomes of the sequence are all successes (1) and  
the previous a failure (0), and r success runs with at least length k have already been met.  
Then, this process is a Markov chain embeddable variable of binomial type (e.g., Koutras  
1997), wherein the only non-zero elements of the (k + 1) × (k + 1) transition matrices 
A = [aij] and B = [bij] , are given by

Let �i = eiB1
� , i = 1, 2,… , k + 1 , where 1′ represents the (k + 1) × 1 column vectors 

with all its entries being 1, and ei is the 1 × (k + 1) row vector having 1 in the ith position 
and 0 elsewhere. Then �i = 0 for i = 1, 2,… , k − 1, k + 1 and �k = pk . Thus, if

we get by Theorem 3.1 in Koutras (1997) that

where I is the identity matrix of order k + 1 and e′
i
 is the transpose vector of ei ; hence it is 

straightforward to see after some routine calculations that

E

[
u
T
(N)

r,k

]
=

[
p1 ⋯ pku

k

R(u)

]r
=

[
�ku

k

R(u)

]r
,

�i =p1 ⋯ pi, i = 1, 2,… ,

R(u) =1 −

k∑
i=1

�i−1qiu
i
,

(30)E

[
u
T
(A)

r,k

]
=

(
qku

1 − pku

)r−1[
�ku

k

R(u)

]r
,

(31)E

[
u
T
(O)

r,k

]
=

�ku
k

R(u)

[
pku + qku

�ku
k

R(u)

]r−1
.

ai1 =

{
qi, i = 1, 2,… , k

qk, i = k + 1
,

ai,i+1 = pi, i = 1, 2,… , k − 1; ak+1,k+1 = bk,k+1 = pk.

H1(u,w) =

∞∑
r=0

E

[
u
Z
(A)

r,k

]
wr,

H1(u,w) = wupke1[I − u(A + wB)]−1e�
k
,
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Expanding the latter in a Taylor series around w = 0 and considering the coefficient of 
wr , we get

and so (30) follows.
In order to prove (31), a similar process is introduced with the (k + 1) × (k + 1) transition 

matrices A = [aij] and B = [bij] having non-zero elements given by

hence

Therefore, if H2(u,w) =
∑∞

r=0
E

�
u
Z
(O)

r,k

�
wr , then again by Theorem 3.1 in Koutras (1997) 

we have that

and so expanding the latter into a Taylor series around w = 0 and considering the coeffi-
cient of wr , we get

which proves (31).

To state analogue results to Theorem 1, under the binary sequence of order k, we need 
the auxiliary i.i.d. positive integer-valued random variables Y1, Y2,… with probability mass 
function

and the random variable W following Nb(r,�k) , r = 1, 2,… independent of Yj’s, having 
probability mass function

Moreover, let W1,W2,… stand for a sequence of independent and identically distributed 
positive integer-valued random variables, with Wj following the extended geometric 

H1(u,w) =
w�k(1 − pku)u

k

(1 − pku)R(u) − w�kqku
k+1

.

E

[
u
T
(A)

r,k

]
=

�k(1 − pku)(�kqku
k+1)r−1uk

(1 − pku)
rRr(u)

,

ai1 =

{
qi, i = 1, 2,… , k

qk, i = k + 1
ai,i+1 = pi, i = 1, 2,… , k − 1, bk,k+1 = bk+1,k+1 = pk;

�i = eiB1
� =

{
0, i = 1, 2,… , k − 1

pk, i = k, k + 1.

H2(u,w) =wupke1[I − u(A + wB)]−1(e�
k
+ e

�
k+1

)

=
w�ku

k

(1 − wpku)R(u) − w�kqku
k+1

=
w�ku

k

R(u) − w[pkuR(u) + �kqku
k+1]

,

E

[
u
T
(O)

r,k

]
=

�ku
k[pkuR(u) + �kqku

k+1]r−1

Rr(u)
,

fY (i) = P(Y = i) =
�i−1qi
1 − �k

, i = 1, 2,… , k, p0 = 1

P(W = n) =

(
r + n − 1

n

)
�r
k
(1 − �k)

n, n = 0, 1,… .
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distribution of order k (Aki  1985), i.e., their probability generating function is given by 
E

[
u
T
(N)

1,k

]
 . We are now ready to state the following theorem, through which the shifted distri-

butions of T (N)

r,k
 , T (A)

r,k
 and T (O)

r,k
 , defined on the binary sequence of order k, are expressed as 

properly defined random sums, similar to that of Theorem 1 (the proofs of the results of 
this section are omitted, because the steps are quite similar to the ones used for the 
i.i.d. case).

Theorem  8  Suppose that the waiting times T (N)

r,k
 , T (A)

r,k
 and T (O)

r,k
 are defined on a binary 

sequence of order k, with probabilities p1, p2,… , pk . Assume also that all the random vari-
ables W, B, and U are independent random variables, being also independent of the previ-
ously defined Yj ’s and Wj’s. Then, each of the following results hold:

Based on the previous result and Theorem 2, the next corollary results.

Corollary 4.1  For the probability mass function, the cumulative distribution function and 
the tail probabilities of T (N)

r,k
 , defined on a binary sequence of order k, with probabilities 

p1, p2,… , pk , the following recursions hold true:

with f (N)
r,k

(kr) = F
(N)

r,k
(kr) = 1 − F

(N)

r,k
(kr) = �r

k
.

Note that the formulae of Corollary 4.1 are analogues to the ones provided in Proposi-
tion 4 (replace � + q�i and pi−1 in Proposition 4, by � + qi�i and �i−1 , respectively).

Similarly, due to Theorems 8 and 2, the next results for the distribution of T (A)

r,k
 can be 

deduced.

(a) T
(N)

r,k
− kr

d
=

W∑
i=1

Yi, with W ∼ Nb(r,�k),

(b) T
(A)

r,k
− r(k + 1) + 1

d
=U +

W∑
i=1

Yi, with U ∼ Nb(r − 1, 1 − pk),

(c) T
(O)

r,k
− (k + r − 1)

d
=U +

B∑
i=1

Wi, with U + k ∼ Wi,B ∼ B(r − 1, 1 − pk).

(i) f
(N)

r,k
(x) =

min{x−kr,k}∑
i=1

�i�i−1qif
(N)

r,k
(x − i), x ≥ kr + 1,

(ii) F
(N)

r,k
(x) =

x−kr∑
i=1

(� + �iqi)�i−1F
(N)

r,k
(x − i), kr + 1 ≤ x ≤ k(r + 1),

F
(N)

r,k
(x) =

k∑
i=1

(� + �iqi)�i−1F
(N)

r,k
(x − i) + �k�

x−kr∑
i=k+1

F
(N)

r,k
(x − i), x ≥ k(r + 1) + 1,

(iii) F
(N)

r,k
(x) =

x−kr∑
i=1

(� + �iqi)�i−1F
(N)

r,k
(x − i) − r�

x−kr∑
i=1

i�i−1qi, kr + 1 ≤ x ≤ k(r + 1),

F
(N)

r,k
(x) =

k∑
i=1

(� + �iqi)�i−1F
(N)

r,k
(x − i) + �k�

x−kr∑
i=k+1

F
(N)

r,k
(x − i) − r�

k∑
i=1

i�i−1qi,

x ≥ k(r + 1) + 1,
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Corollary 4.2  For the probability mass function, the cumulative distribution function and 
the tail probabilities of T (A)

r,k
 , defined on a binary sequence of order k, with probabilities 

p1, p2,… , pk , the following recursions hold true:

with

and initial conditions f (A)
r,k

((k + 1)r − 1) = F
(A)

r,k
((k + 1)r − 1) = 1 − F

(A)

r,k
((k + 1)r − 1) = 1 − qr−1

k
�r
k
.

The next recursion refers to the waiting time corresponding to the overlapping 
scheme; please note that in the following relations the corresponding formulas for the 

(i) f
(A)

r,k
(x) =

min{1∕�,k}∑
i=1

�i�i−1qif
(A)

r,k
(x − i)

+ (r − 1)pk�

1∕�∑
i=1

[pi−1
k

− d1(i)]f
(A)

r,k
(x − i), x ≥ (k + 1)r,

(ii) F
(A)

r,k
(x) =

1∕�∑
i=1

{
(�iqi + �)�i−1

+ (r − 1)pk�[p
i−1
k

− d1(i)]
}
F
(A)

r,k
(x − i), (k + 1)r ≤ x ≤ (k + 1)r + k − 1,

F
(A)

r,k
(x) =

k∑
i=1

(�iqi + �)�i−1F
(A)

r,k
(x − i) + (r − 1)ipk�

1∕�∑
i=1

[pi−1
k

− d1(i)]F
(A)

r,k
(x − i)

+ �k�

1∕�∑
i=k+1

F
(A)

r,k
(x), x ≥ (k + 1)r + k,

(iii) F
(A)

r,k
(x) =

1∕�∑
i=1

{
(�iqi + �)�i−1 + (r − 1)pk�[p

i−1
k

− d1(i)]

}
F
(A)

r,k
(x − i)

+ (r − 1)pk�
[
c1
(
1∕�

)
−

1 − p
1∕�

k

qk

]
− r�

1∕�∑
i=1

i�i−1qi,

(k + 1)r ≤ x ≤ (k + 1)r + k − 1,

F
(A)

r,k
(x) =

k∑
i=1

{
(�iqi + �)�i−1F

(A)

r,k
(x − i)

+ (r − 1)pk�

1∕�∑
i=1

[pi−1
k

− d1(i)]

}
F
(A)

r,k
(x − i) + �k�

1∕�∑
i=k+1

F
(A)

r,k
(x − i)

+ (r − 1)pk�
[
c1
(
1∕�

)
−

1 − p
1∕�

k

qk

]
− r�

k∑
i=1

i�i−1qi, x ≥ (k + 1)r + k,

d1(i) =

min{i−1,k}∑
j=1

�j−1qjp
i−j−1

k
, i ≥ 2, d1(1) = 0,

c1(x) =

x∑
i=2

d1(i), x ≥ 2,
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waiting time of the non-overlapping scheme, as they provided by Corollary 4.1 are also 
used.

Corollary 4.3  For the probability mass function defined on a binary sequence of order k, 
with probabilities p1, p2,… , pk , the following recursions hold true:

The same formula remains valid if we replace the probability mass functions f by the 
cumulative distribution functions F and the tail probabilities F.

5 � Application

In this section, we discuss some details on the application of the extended random sum 
model S = SM + U , to the study of the total expenses of an insurance company. As 
already stated in Section 1, under this framework SM =

∑M

j=1
Xj stands for the aggregate 

claims amount and U may encompass all company operational costs, with U and Xj ’s 
taking positive integer values.

The questions to be faced by the practitioner when applying the model pertain to the 
selection of the appropriate distributions for U,  M and Xj’s. In actuarial practice, the 
number of claims, M, is usually described by a member of the Panjer family R(a, b, 0) 
(e.g., Klugman et al. 2019), while for Xj ’s it is necessary to engage distributions that can 
accommodate extreme observations, i.e., large claims that occur with low frequency.

The Pareto distribution is a very popular model for describing extreme phenomena. 
It was first introduced for the study of economic models dealing with income data. Due 
to its heavy tail, Pareto distribution has been extensively used as a severity distribution 
to describe extreme losses (e.g., Guillen et al. 2011), especially for the high-risk types 
of insurance, e.g., medical malpractice insurance. A more flexible model that contains 
the Pareto distribution as a special case is offered by the Burr (Type XII) distribution, 
symb. Br�(�, �) , with probability density function

where �, � and � are positive parameters. Besides, the two parameter Pareto distribution 
(obtained for � = 1 ), it also includes as special cases the log-logistic, exponential and 
Weibull distribution (as limiting cases). For more details, the interested reader is referred to 
Johnson et al. (2005).

In our framework, Xj ’s may be seen as multiples of a monetary unit, while the 
underlying exact (continuous) severity distribution should posses the heavy-tail prop-
erty. A reasonable approach to meet these requirements is offered by “discretizing” the 
Br�(�, �) model. As stated by Klugman et  al. (2019), a typical way for constructing a 
discrete severity distribution from a continuous one is to place the discrete probabilities 
on multiples of the desired unit of measurement h. If the exact losses Y (continuous ran-
dom variable) follow (32), the implied discrete distribution of Xj ’s (symb., DBr�(�, �) ) 
will be generated by the formulas

f
(O)

r,k
(x) =

r∑
i=1

(
r − 1

i − 1

)
qi−1
k

pr−i
k

f
(N)

i,k
(x − r + 1), x ≥ k + r − 1

(32)fY (y) =
𝛼𝛽y𝛽−1

𝜃𝛽(1 + (y∕𝜃)𝛽)𝛼+1
, y > 0,
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where

is the cumulative distribution function of Br�(�, �).
According to the last formula, the probability placed at xh is obtained by accumulating 

all the probability of Y one-half span on either sides of xh, i.e., it rounds all amounts to the 
nearest monetary unit, h. For a detailed study of the Burr and Pareto distribution, includ-
ing statistical inference and stochastic ordering properties, we refer to, e.g., Panjer (2006), 
Krishna and Pundir (2009), and Klugman et al. (2019).

In Fig. 1, we present plots of the DBr�(�, �) for several choices of �, � , and � (using 
h = 0.75 ). It is clear that the discretization of the Burr (Type XII) distribution still offers 
the opportunity to model (discrete) data with heavy tails, while most of the properties of 
Br�(�, �) seem to carry over nicely to DBr�(�, �) (e.g., unimodality for 𝛽 > 1 ), especially 
upon choosing the appropriate values for h.

Let us next move to the distribution of the third component of our model, i.e., the oper-
ating cost U. The heavy tail assumption made on Xj ’s is typically not realistic for the oper-
ating costs r.v. U; on the contrary, a “smooth” discrete distribution seems to be a fair choice 
for that variable.

If the distribution of U has a shape similar to the normal distribution, a plausible discrete 
distribution that may be used for fitting our data is offered by b(m, p) with m sufficiently large 
to justify the convergence of (U − mp)∕(

√
mp(1 − p)) to the standard normal distribution. It 

should be stressed that, if we assume that U ∼ b(m, p) we shall have V[U]∕E[U] = 1 − p < 1 , 
therefore this approach makes sense only for the case when the data justify the underdisper-
sion ( V[U] < E[U] ) of the fitting distribution. Under this framework the exact distribution of 
the company total expenses, as expressed by the extended random sum model (2), can be eas-
ily calculated by the aid of recurrence (25), with B1 = bf (1) + mp∕q and

The case of overdispersed data ( V[U] > E[U] ) can be treated by the use of the negative 
binomial distribution Nb(r, p) with p = E[U]∕V[U] . In this case, the resulting distribution for 
the total expenses obeys the recurrence (25) with B1 = bf (1) + rp and

Finally, if our data imply that V[U] ≈ E[U] the most appropriate discrete distribution for 
U is the Poisson distribution with parameter � = E[U] ≈ V[U] . Taking into account that 
the Poisson distribution with parameter � can be viewed as a member of the Panjer family 

(33)

f (0) = P(Y < h∕2) = FY (h∕2)

f (xh) = P(xh − h∕2 < Y < xh + h∕2)

= FY (xh + h∕2) − FY (xh − h∕2), x = 1, 2,… ,

FY (y) = 1 −
1

(1 + (y∕𝜃)𝛽)𝛼
, y > 0,

Ai = af (i), i ≥ 1

Bi = bif (i) + m

[
(−1)i−1

(
p

q

)i

+ a

i−1∑
j=1

(−1)j
(
p

q

)j

f (i − j)

]
, i ≥ 2.

Ai = af (i), i ≥ 1

Bi = bif (i) + r

[
pi − a

i−1∑
j=1

f (i − j)pj

]
, i ≥ 2.
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Fig. 1   The probability mass function of DBr�(�, �) , for several choices of �, � , � and h = 0.75

Fig. 2   The probability mass function of the extended sum, when Xj ’s follow the DBr
1
(1, 1) (with h = 1 ), M 

follows a negative binomial distribution and U follows a binomial, negative binomial or Poisson distribution
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R(a, b, 0) with a = 0 , b = � we conclude that the distribution of the total expenses satisfies the 
recurrence scheme (25) with B1 = bf (1) + � and

In Fig. 2, we provide plots for the probability mass function of the total expenses when 
Xj ∼ DB1(1, 1) (with h = 1 ), M ∼ Nb(r, p) , and U follows a binomial, negative binomial or 
Poisson distribution. At the left part of this figure, we can see how the distribution of the total 
expenses is affected, changing the distribution of the number of claims, M; note that U has a 
similar mean (close to 5), for every case (binomial, negative binomial and Poisson distribu-
tion). As it was expected, increasing the parameter value r of the distribution of M, the tails 
of the total expenses become heaviest. At the right part of Fig. 2, we consider the effect of 
changing the parameters of the distribution of U; generally, as the mean value of U is increas-
ing, its role to the distribution of the total expenses becomes more significant, resulting also in 
heaviest tails. Fig. 3 includes the probability mass function of the total expenses when U and 
M follow a negative binomial distribution and Xj ∼ DB�(�, �) (with h = 1 ), for several choices 
of �, � , and � ; the heavy tail property is also met for appropriate choice of parameter values.

6 � Conclusions

In this work, recursive relations for the probability mass function, cumulative distribu-
tion function, tail probabilities and the factorial moments, of an extension of the discrete 
random sum model was established. The new model and the suggested methodology was 
exploited for the study of the negative binomial distributions of order k (for the three most 
popular enumerating schemes, i.e., the non-overlapping, at least and overlapping), offering 
computationally efficient ways for obtaining their exact distribution functions. A roadmap 

Ai = af (i), i ≥ 1,

Bi = bif (i) − a�f (i − 1), i ≥ 2.

Fig. 3   The probability mass function of the extended sum, when M, U follow a negative binomial distribu-
tion and Xj ’s follow the DBr�(�, �) (with h = 1 ), for several choices of �, � , and �
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is also highlighted for applying our results in the study of the total expenses (operational 
costs and aggregate claims) of an insurance company, providing a new direction to the 
study of this problem; for doing so, a discretization of the severity distribution is also sug-
gested, which is a plausible way of keeping significant properties of well known heavy 
tailed continuous random variables.
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