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Abstract
In many stochastic problems, the output of interest depends on an input random vector 
mainly through a single random variable (or index) via an appropriate univariate transfor-
mation of the input. We exploit this feature by proposing an importance sampling method 
that makes rare events more likely by changing the distribution of the chosen index. Fur-
ther variance reduction is guaranteed by combining this single-index importance sampling 
approach with stratified sampling. The dimension-reduction effect of single-index impor-
tance sampling also enhances the effectiveness of quasi-Monte Carlo methods. The pro-
posed method applies to a wide range of financial or risk management problems. We dem-
onstrate its efficiency for estimating large loss probabilities of a credit portfolio under a 
normal and t-copula model and show that our method outperforms the current standard for 
these problems.
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1  Introduction

Many stochastic problems in finance and risk management are high-dimensional with a 
univariate quantity of interest, say � = �(Ψ(X)) for some integrable function Ψ ∶ ℝ

d
→ ℝ 

and random vector X ∼ FX for some d-dimensional distribution function FX . Because 
� rarely allows for an analytical expression, the plain Monte Carlo (MC) estimator 
𝜇̂MC
n

= (1∕n)
∑n

i=1
Ψ(Xi) where X1,… ,Xn

ind.
∼ FX is a popular choice for finding approxi-

mate solutions to such problems. Being unbiased and having an estimation error converg-
ing to zero at a rate independent of the dimension of the problem makes MC often popular 
for finding approximate solutions to such problems. The drawback of plain MC is the high 
computational cost it requires to obtain an estimate with a sufficiently small error. This 
issue is particularly severe for rare-event simulation, i.e., when ℙ(|Ψ(X)| > 0) is small, as 
then a typically very large number of samples is required to obtain non-zero observations 
and therefore an estimator with small variance. As such, plain MC is often combined with 
variance reduction techniques (VRTs), such as control variates (see, e.g., Lavenberg and 
Welch (1981)) or stratified sampling (SS) (see, e.g., Cochran (2005)) to make the variance 
and thus the width of the estimate’s confidence interval small.

Importance sampling (IS) is a VRT frequently applied to rare-event analysis in order 
to improve the reliability of MC estimators; see, e.g., Kahn and Marshall (1953) and 
Asmussen and Glynn (2007). The main idea of IS is to draw samples from a proposal 
distribution that puts more mass on the rare-event region of the sample space than the 
original distribution. As the efficiency of IS depends heavily on the choice of the pro-
posal distribution, finding a good proposal distribution is a crucial step in applying IS. 
Unfortunately, there is no single best strategy known for finding a good proposal dis-
tribution that works in every situation since the nature of the rare event and what con-
stitutes a good proposal distribution depends on the problem at hand; that is, on Ψ and 
FX . As such, much of the existing work on IS in computational finance finds effective 
proposal distributions by exploiting the structure of specific problems: Glasserman et al. 
(1999) develop IS methods to price path-dependent options under multivariate normal 
models; Glasserman et  al. (2000, 2002) estimate the Value-at-Risk of a portfolio con-
sisting of stocks and options under a normal and t-distribution; Sak et  al. (2010) esti-
mate tail probabilities of equity portfolios under generalized hyperbolic marginals with 
a t-copula assumption; Glasserman and Li (2005) estimate tail probabilities of credit 
portfolios under the Gaussian copula, Bassamboo et al. (2008); Chan and Kroese (2010) 
consider t-copula models. As all these IS techniques are exploiting specific properties 
of the problem at hand, they can achieve substantial variance reduction but are typically 
specific techniques not applicable to other problems without major modifications.

The contribution of this work is the development of theory and algorithms to apply IS 
for a wide range of problems by introducing a conditioning sampling step and optimally 
twisting the distribution of the conditioning variable. Let T = T(X) be some univariate ran-
dom variable, such as �⊤X for some (well chosen) � ∈ ℝ

d , and assume sampling from 
X ∣ T  is feasible. Let f be the density of T, FX∣T (⋅ ∣ T = t) be the distribution of X given 
T = t and g be a proposal density for T (assumed to have the same support as f), define by

for i = 1,… , n . If T explains much of the variability of the output, so if R2 ∶= Var

(�(Ψ(X) ∣ T))∕Var(Ψ(X)) is large, we can choose g optimally and make the rare event more 

𝜇̂SIS
n

= (1∕n)

n∑

i=1

Ψ(Xi)f (Ti)∕g(Ti), Ti
ind.
∼ g, Xi

ind.
∼ FX∣T (⋅ ∣ T = Ti)
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likely by changing the distribution of X through changing the distribution of the univariate 
T. Many high dimensional financial problems are of this nature; see, e.g., Caflisch et al. 
(1997); Wang and Fang (2003); Wang and Sloan (2005); Wang (2006).

In order to analyze our estimator, we write

for some (unknown) transformation T ∶ ℝ
d
→ ℝ , where m(k)(t) = �(Ψ(X)k ∣ T) for k ∈ ℕ 

and �X,T is a random error so that �X,T ∣ T has mean 0 and variance v2(t) = Var(Ψ(X) ∣ T = t) . 
We say that Ψ(X) has a strong single index structure if R2 is large (say, R2 > 0.9 ), and the 
resulting estimator is referred to as Single Index IS (SIS) estimator. We will show that the 
optimal proposal distribution for g under SIS is proportional to (m(2))1∕2(t)f (t) resulting in 
an estimator with variance no larger than the plain MC estimator. If the proposal distribution 
g allows for a simple way to evaluate the quantile function G−1

T
 of g, we can further reduce 

the variance by applying equal stratification to the support of T, i.e., instead of sampling 
T1,… ,Tn

ind.
∼ g , we can set Ti = G−1

T
(Ui) where Uk

ind.
∼U(k∕n, (k + 1)∕n) for k = 0,… , n − 1 

and G←

T
(u) = inf{t ∈ ℝ ∶ GT (t) ≥ u} is the quantile function of T under g. The resulting 

method is referred to as stratified SIS (SSIS). We also derive optimal variance expres-
sions in this case and show that (S)SIS gives zero variance when R2 = 1 . The derivation  
of these results along with some more notation and the connection between our methods 
and the IS and stratification techniques from Arbenz et al. (2018); Glasserman et al. (1999); 
Neddermeyer (2011) can be found in Sect. 2. There, we also briefly explain how our con-
ditional sampling step reduces the effective dimension of the problem and therefore makes 
quasi-Monte Carlo (QMC) particularly attractive in our setting; in QMC, pseudo-random 
numbers (PRNs) are replaced by more homogeneously distributed quasi-random numbers 
(see, e.g., see Niederreiter (1978); Lemieux (2009); Dick and Pillichshammer (2010)).

Besides the choice of g, the performance of our procedure heavily depends on the choice 
of the transformation T, which must be chosen such that i) sampling from X ∣ T  is feasible 
and ii) T explains a lot of the variability of Ψ(X) , i.e., R2 is as close to 1 as possible. The 
choice of the transformation is clearly not unique. In our numerical examples, we typically 
assume that T is a linear function of X , whose coefficients can be estimated via the average 
derivative method of Stoker (1986), the sliced inverse regression of Li (1991) or the sem-
iparametric least-squares estimator of Ichimura (1993). We remark that these methods do 
not require the form of the function m(t) to be known.

As seen earlier, the optimal proposal densities involve a conditional moment function 
that is not known in practice. We propose to estimate this function using pilot-runs. The 
resulting point-wise approximation to the optimal density function can then be integrated 
and inverted numerically using the NINIGL algorithm developed in Hörmann and Leydold 
(2003). When this is too time-consuming, we suggest finding an approximately optimal g 
in the same parametric family as f (e.g., a location-scale transform of the original density). 
We detail this calibration stage, i.e., the process of estimating T, the optimal density and a 
way to sample from it, in Sect. 3.

In the numerical examples in Sect. 4, we demonstrate that our methods are applicable 
to a wide range of problems and achieve substantial variance reduction. After investigat-
ing a simple linear model example, we consider the problem of tail probability estimation 
in Gaussian and t-copula credit portfolio problems and show that our methods outperform 
those of Glasserman and Li (2005) and Chan and Kroese (2010).

As our formulation of (S)SIS does not assume a specific Ψ or FX , it is applicable to 
a wide range of problems and is efficient as long as the problem of interest has a strong 

Ψ(X) = m(T) + �X,T
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enough single-index structure. It also adapts to the problem through the design of the one-
dimensional transformation revealing the single-index structure and through the choice of 
the proposal distribution. Besides its applicability to a wide range of problems, our pro-
posed method has the following advantages. First, as it applies IS only to the univariate 
transformation variable, SIS is less susceptible to the dimensionality problem of IS, which 
is discussed in Au and Beck (2003); Katafygiotis and Zuev (2008); Schüeller et al. (2004). 
This also simplifies the task of finding an optimal proposal distribution. Second, SIS has a 
dimension reduction feature, so it enhances the effectiveness of QMC sampling methods. 
Third, by applying IS to a transformation of the input random vector X , our proposal dis-
tribution amounts to changing the dependence structure of the problem under study, which 
can have a significant advantage over methods that only change the marginal distributions.

We conclude this paper in Sect. 5.

2 � Variance Analysis and Optimal Calibration for SIS and SSIS

2.1 � Notations and Definitions

To fix notation, recall we estimate � = �(Ψ(X)) via

for i = 1,… , n , where fT and gT denote the original and proposal densities for T with sup-
ports Ωf = (tinf, tsup) (with possibly tinf, tsup ∈ {±∞} ) and Ωg and w(t) = gT (t)∕fT (t) is the 
IS weight function.

Furthermore, we model the output Ψ(X) as Ψ(X) = m(T) + �X,T , where

and �(�X,T ∣ T) = 0 . We already introduced the coefficient of determination R2
= Var

(m(T))∕Var(Ψ(X)) (see, e.g., Kvalseth (1985)) and said that Ψ(X) is a strong single-index 
model if R2 is large. This can be true for any model Ψ(X) , as we allow �X,T to depend on 
X . However, a pure single index model is a situation where �X,T = �T only depends on X 
through T. In that case, it is easy to see that �(Ψ(X) ∣ T) = m(T) , so that overall the random 
variable Ψ(X) depends on X only through T. However, we do not impose the assumption of 
a pure single index model. Readers are referred to Powell et al. (1989), Härdle et al. (1993) 
and Ichimura (1993) for more information on single-index models.

Based on the representation of Ψ(X) and using the law of total variance, we can write

since �(v2(T)) = Var(�X,T ) − Var(�(�X,T ∣ T)) = Var(�X,T ) . We see that (1) decomposes the 
variance of Ψ(X) into two pieces: the one of the (random) systematic part, m(T) and the 
unsystematic error �X,T of the model. Note that (1) holds irrespective of wether we have a 
pure single index model or not.

In addition to applying IS on T, we also propose to use stratification on T to further reduce 
the variance; it will turn out that this essentially “stratifies away” Var(m(T)) , the variance of the 

𝜇̂SIS
n

= (1∕n)

n∑

i=1

Ψ(Xi)w(Ti), Ti
ind.
∼ gT , Xi

ind.
∼ FX∣T (⋅ ∣ T = Ti),

m(k)(t) = �(Ψ(X)k ∣ T), Var(�X,T ∣ T) = v2(t) = Var(Ψ(X) ∣ T).

(1)Var(Ψ(X)) = Var(m(T)) + �(v2(T)) = Var(m(T)) + Var(�X,T ),
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systematic part of the model. More precisely, let Ωf = (tinf, tsup) where possibly tinf = −∞ and 
tsup = ∞ . The SSIS scheme splits Ωf  into n strata of equal probability under g and draws one 
sample of T from each stratum. This is accomplished by first sampling Ui

ind.
∼ U((i − 1)∕n, i∕n) 

and then applying the quantile function to set Ti = G←

T
(Ui) . Our estimator becomes

and, as before, Xi

ind.
∼ FX∣T (⋅ ∣ T = Ti) for i = 1,… , n.

For our variance analysis below, it is useful to find an expression for Var(𝜇̂MC
n

) . 
Note that the conditional moment functions m(k) do not depend on wether we sam-
ple from fT or gT . From  (1) and the fact that Var(m(T)) = �(m(T)2) − �2 as well as 
�(v2(T)) = �(m(2)(T)) − �(m(T))2 , we find

As should be clear from the form of our estimators, their bias depends on the support Ωg 
of gT . We define

and

Notice that �SIS depends on gT through the region Ωg . The SIS and SSIS estimators are 
unbiased if gT is such that gT (t) > 0 whenever m(t)fT (t) > 0 , which holds, by construction, 
in all our numerical examples.

2.2 � Optimal Densities

We are now able to derive properties of the (S)SIS estimators and derive the optimal  
(variance-minimizing) proposal distribution of gT ; see the Appendix for the proofs. As the 
objective of our IS techniques is variance reduction, we call the practice of setting gT to its 
optimal density or their approximation as optimal calibration, and the resulting methods 
SIS∗ and SSIS∗.

Proposition 1  (Variance-optimal SIS) We have �(𝜇̂SIS
n

) = 𝜇SIS and Var(𝜇̂SIS
n

) = 𝜎2
SIS

∕n . If 
�g(m

2(T)w2(T)) < ∞ , then 
√
n(𝜇̂SIS

n
− 𝜇SIS)

d
→ N(0, 𝜎2

SIS
) as n → ∞.

Suppose that Ψ(x) ≥ 0 or Ψ(x) ≤ 0 for all x ∈ ΩX . The density gT that gives an unbi-
ased SIS estimator with the smallest variance is

𝜇̂SSIS
n

= (1∕n)

n∑

i=1

Ψ(Xi)w(Ti), Ti = G←

T
(Ui), Ui ∼ U((i − 1)∕n, i∕n),

(2)nVar(𝜇̂MC
n

) = Var(m(T)) + �(v2(T)) = �(m(2)(T)) − 𝜇2.

�SIS = ∫Ωg

m(t)fT (t) dt

�2
SIS

= ∫Ωg

m(2)(t)
f 2
T
(t)

gT (t)
dt − �2

SIS
, �2

SSIS
= ∫Ωg

v2(t)
f 2
T
(t)

gT (t)
dt.

(3)g
opt

T
(t) = c−1

√
m(2)(t)fT (t), t ∈ (tinf, tsup), c = ∫

tsup

tinf

√
m(2)(t)fT (t) dt.
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The variance of the optimal SIS estimator, denoted by 𝜇̂SIS,opt
n  , is Var(𝜇̂SIS,opt

n )

= (c2 − �2)∕n.

Remark 1 

1.	 Proposition 1 implies that using optimal SIS gives variance no larger than MC. Indeed, 
by Jensen’s inequality, nVar(𝜇̂SIS,opt

n ) ≤ �(m(2)(T)) − 𝜇2 , which is equal to Var(𝜇̂MC
n

) 
using (2). This inequality holds as an equality only when m(2)(t) is constant for all t ∈ ΩT.

2.	 If R2 = 1 (corresponding to the strongest possible single index structure), then 
Var(𝜇̂

SIS,opt
n ) = 0 : SIS provides a zero-variance estimator if m(2)(t) = (m(t))2 for all t, 

which is equivalent to having v2(t) = 0 for all t, or equivalently, to having �(v2(T)) = 0 
since v2(t) ≥ 0 for all t. This is the same as asking Var(m(T))∕Var(Ψ(X)) = R2 = 1 . 
This is why choosing a function T such that the model is an as good fit as possible is 
important for the SIS method to achieve significant variance reduction.

The following proposition gives the properties of the SSIS estimator and the optimal 
(variance-minimizing) proposal distribution of gT . Its proof is in the Appendix.

Proposition 2  (Variance-optimal SSIS) It holds that �(𝜇̂SSIS
n

) = 𝜇SIS and, for large enough 
n, Var(𝜇̂SSIS

n
) = 𝜎2

SIS
∕n + o(1∕n) . If �g

(
|m(T)w(T)|2+𝛿

)
< ∞ for some 𝛿 > 0 , 𝜇̂SSIS

n
 is 

asymptotically normal as 
√
n(𝜇̂SSIS

n
− 𝜇SIS)

d
→ N(0, 𝜎2

SIS
) for n → ∞ . Suppose that Ψ(x) ≥ 0 

or Ψ(x) ≤ 0 for all x ∈ ΩX and that ℙf (v
2(T) = 0, m(T) ≠ 0) = 0 . The density gT that gives 

an unbiased SSIS estimator with the smallest variance is

The variance of the optimal SSIS estimator 𝜇̂SSIS,opt
n  is Var(𝜇̂SSIS,opt

n ) = c2∕n + o(1∕n) . If 
ℙf (v

2(T) = 0, m(T) ≠ 0) > 0 , then 𝜇̂SSIS,opt
n  is biased.

Remark 2 

1.	 Proposition 2 implies that using optimal SSIS gives asymptotically a variance no 
larger than MC. Indeed, Jensen’s inequality implies that we have Var(𝜇̂SSIS,opt

n )

≤ (1∕n)�(v2(T)) + o(1∕n) with equality only if v(t) is constant for all t ∈ ΩT . From (2) 
(and ignoring the o(1/n) term), this means Var(𝜇̂SSIS,opt

n ) ≤ Var(𝜇̂MC
n

) , with equality only 
if v(t) is constant for all t ∈ ΩT and Var(m(T)) = 0 , which is unlikely to be the case since 
m(T) has been chosen specifically such that R2 ≈ 1.

2.	 If R2 = 1 (strongest possible single index structure), then Var(𝜇̂SSIS,opt
n ) = 0 , since 

Var(𝜇̂SSIS
n

) = 0 iff m(2)(t) = (m(t))2 for all t, or equivalently v2(t) = 0 for all t and thus 
�(v2(T)) = 0 , which means R2 = 1.

3.	 Unless m(t) = 0 , SSIS achieves variance reduction compared to SIS, as Var(𝜇̂SSIS

n
)

≤ Var(𝜇̂SIS

n
) for the same choice of gT . This in turn implies that Var(𝜇̂SSIS,opt

n ) ≤ Var(𝜇̂
SSIS,opt
n ) . 

The proposal densities gopt
T

 and gopt,s
T

 defined in (3) and (4) give estimators with smallest vari-
ance if Ψ(x) ≥ 0 or Ψ(x) ≤ 0 for all x ∈ Ω , which holds for many applications in finance 
(e.g., when Ψ is an indicator and thus � a probability or when Ψ is the payoff of an option). 
If Ψ takes both positive and negative values, m(t) could be 0 for some values of t. We can 
then improve the optimal calibration by setting gT (t) = 0 whenever m(t) = 0 . Since it is 

(4)g
opt,s

T
(t) = c−1v(t)fT (t), t ∈ (tinf, tsup), c = ∫

tsup

tinf

v(t)fT (t) dt.
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generally unknown and hard to estimate which values of t give m(t) = 0 , this improvement 
may not be implementable.

4.	 The expression for Var(𝜇̂SSIS,opt
n ) implies that SSIS∗ “stratifies away” the variance cap-

tured by the systematic part m(T) of the single-index model, so the variance of the SSIS∗ 
estimator comes only from the error term �X,T via v(t). If gT is not chosen optimally, 
then Var(𝜇̂SSIS

n
) = 𝜎2

SIS
∕n + o(1∕n) shows that we still make Var(m(T)) vanish by using 

stratification, but the contribution from v2(T) might be amplified (compared to how it 
contributes to the MC estimator’s variance) if we do not choose a good proposal den-
sity. Irrespective of the choice of gT it is true that the stronger the fit of the single index 
model, the better (S)SIS works.

5.	 These results show that as long as the problem at hand has a strong single-index structure 
and sampling from T and X ∣ T  is feasible, SIS and SSIS can be applied and should give 
large variance reduction. As those conditions do not assume a specific form for Ψ or for 
the distribution of X , SIS and SSIS are applicable to a wide range of problems.

Proposition  2 asserts the asymptotic normality of the SSIS estimator. In order to 
construct a confidence interval from this estimator, we must estimate �2

SSIS
 . We take an 

approach similar to the one by Wang et al. (2008) where the first-order difference of sam-
ples are taken to remove the effect of the mean function. Its proof is in the Appendix.

Proposition 3  (Estimation of �2
SSIS

 ) Let GT be the distribution function corresponding to 
gT . If G−1

T
 , m and v2 are continuously differentiable over the domain of T under the pro-

posal distribution, then

is a consistent estimator of �2
SSIS

 , where ri = Ψ(Xi+1) − Ψ(Xi) for i = 1,… , n − 1.

Proposition  3 assumes that G−1
T

 is continuously differentiable which requires that 
gT (t) > 0 on the support of T under the proposal distribution. This does not hold if there 
exist intervals where gT (t) = 0 . In such a situation, we propose to divide the support of T 
into disjoint intervals with gT (t) > 0 then apply Proposition 3 separately to each interval 
and combine them to obtain 𝜎̂2

SSIS
.

2.3 � Connection to Other IS and SS Techniques

In this subsection, we explain some connections of our proposed methods to other IS and 
SS techniques.

Suppose that X ∼ Nd(0, Id) . A popular strategy for constructing a proposal distribution 
under the multivariate normal (MVN) model is to shift its mean vector of X , that is, let-
ting X ∼ Nd(�, Id) under the IS distribution for some 0 ≠ � ∈ ℝ

d . The following proposition 
states that this type of IS can be achieved within our SIS framework by using T(X) = �⊤X 
where � is the normalized version of � . Based on Proposition 1 and Remark 1, this result thus 
implies that this popular mean-shifting strategy for MVN models works well if the problem 
has a strong linear single-index structure based on the specific choice of shift vector �.

𝜎̂2
SSIS

=
1

2(n − 1)

n−1∑

i=1

r2
i
w2(Ti)
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Proposition 4  (SIS in MVN models) Let X ∼ Nd(0, Id) under the original distribution. Fix 
0 ≠ � ∈ ℝ

d with �⊤� = 1 . Consider SIS with T(X) = �⊤X . If gT is the density of N(c, �2) , 
then X ∼ Nd(c�, Id + (𝜎2 − 1)��⊤) in the IS scheme.

Proposition 4 implies that X ∼ Nd(c�, Id) if gT is chosen as the N(c, 1) density (where 
we recall that the original distribution fT is N(0, 1) ), so that the previously mentioned 
mean-shifting strategy is a special case of IS (namely, by merely shifting the mean of T 
instead of applying SIS∗ ). If Var(T) ≠ 1 under g, the dependence structure of the compo-
nents in X does change in the IS scheme.

The stratification technique proposed in Glasserman et al. (1999) is applied by using the 
normalized shift vector as the stratification direction and can also be achieved within our 
SIS framework using the same function T and proposal distribution as in Proposition 4. 
The combination of IS and SS is not motivated as in Glasserman et al. (1999). In the latter 
reference, IS and SS are used to remove the variability due to the linear and the quadratic 
part, respectively, of Ψ(X) . In SSIS, SS is used to eliminate Var(m(T)) , the variance cap-
tured by the systematic part of the single-index model, and then IS is used to minimize the 
variance contribution from �X,T.

It is easy to see that the NPIS method proposed by Neddermeyer (2011) with u = 1 
(where u is defined as in Neddermeyer (2011)) is closely connected to SIS with T(X) = X1 . 
It is proposed to choose gT (t) = m(t)fT (t)∕� in Neddermeyer (2011), but by Proposition 1, 
choosing gopt

T
 defined in (3) gives an IS estimator with a smaller variance.

SIS also generalizes the IS method in Arbenz et  al. (2018) in two ways. First, SIS 
generalizes the form of the transformation function T, that is, it does not assume 
any specific form of T, while the IS method in Arbenz et  al. (2018) assumes that 
T(X) = max{F1(X1),… ,Fd(Xd)} , where F1,… ,Fd are the marginal distribution functions 
of X . Secondly, SIS generalizes the form of the proposed density of the transformed varia-
ble, whereas the proposal density gT for the IS method in Arbenz et al. (2018) has the form

for some M ≥ 1 , tinf = 𝜆1 < ⋯ < 𝜆M , and q1,… , qM ≥ 0 such that 
∑M

k=1
qk = 1.

The single-index structure we exploit to design our SIS and SSIS schemes is strongly 
related to the idea of conditional MC. In both cases, the goal is to identify a function T 
of X that explains much of the variability of Ψ(X) . However, with conditional MC one 
typically also chooses T so that m(t) = �(Ψ(X) ∣ T(X) = t) is known, and then estimates 
� by the sample mean of the m(Ti) , i = 1,… , n . In our case, we do not assume or need 
this conditional expectation to be known in closed-form. This means we typically do not 
completely get rid of the Var(m(T)) term in (1), but we aim to reduce it via IS; if SSIS is 
applied optimally, we actually do make Var(m(T)) vanish.

2.4 � Single‑Index Importance Sampling and QMC

As mentioned in the introduction, further variance reduction can be achieved by per-
forming the simulation based on quasi-random numbers (QRNs) instead of PRNs. 
Suppose we are given a sampling algorithm � ∶ [0, 1)d+k → ℝ

d for some k ≥ 0 such 

gT (t) =

M∑

k=1

qkfT (t ∣ T > 𝜆k) =

M∑

k=1

qk

fT (t)I{t>𝜆k}

1 − FT (𝜆k)
,
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that �(U) ∼ fX for U ∼ U[0, 1)d+k . For instance, when X ∼ Nd(�,Σ) , then k = 0 and 
𝜙(u) = � + C(Φ−1(u1),… ,Φ−1(ud))

⊤ , where the matrix C is such that CC⊤ = Σ and 
Φ(x) = ∫ x

∞
(2�)−0.5 exp(−t2∕2) dt is the distribution function of the standard normal dis-

tribution. For a discussion of what the function � is in a more general context, where X 
has a dependence structure modelled by a copula other than the Gaussian copula, we refer 
to Cambou et al. (2016). With � at hand, we can write 𝜇̂MC

n
= (1∕n)

∑n

i=1
Ψ(𝜙(Ui)) where 

Ui

ind.
∼ U(0, 1)d+k . With QMC, we replace the Ui with deterministic vectors vi ∈ [0, 1)d+k 

that fill the unit hypercube more evenly. A number of constructions for such points have 
been proposed (see e.g., Lemieux (2009), Ch. 5); we use the Sobol’ sequence of Sobol’ 
(1967) for our numerical examples later on. In order to obtain an easy-to-compute error 
bound, we apply a random digital shift to the vi to obtain multiple independent and identi-
cally distributed realizations of the randomized QMC (RQMC) estimator. Based on the 
digitally-shifted RQMC estimates, we can compute a probabilistic error bound in the form 
of a confidence interval.

It is widely accepted that the performance of QMC is largely influenced by the effec-
tive dimension of the problem, a concept first introduced in Caflisch et al. (1997). More 
precisely, QMC works significantly better than plain MC if the problem has a low effective 
dimension; see also Wang and Fang (2003); Wang and Sloan (2005); Wang (2006). One 
notion of effective dimension is the truncation dimension; see Wang and Sloan (2005). 
Essentially, a problem has a low truncation dimension when only a small number of lead-
ing input variables are important. Recall that X is sampled indirectly in SIS, that is, T is 
generated first then X is drawn from FX∣T . Assuming T is generated using the inversion 
method and via the first coordinate u1 of u ∈ [0, 1)k+d , the indirect sampling step of SIS 
transforms the problem in such a way that the first input variable accounts for R2

⋅ 100% of 
the variance of Ψ(X) , where R2 = Var(m(T))∕Var(Ψ(X)) . That is, the problem has a trun-
cation dimension of 1 in proportion R2 under SIS. Therefore, if the fit of the single-index 
model is good, say R2 > 0.9 , the indirect sampling step via T serves as a dimension reduc-
tion technique and enhances the efficiency of QMC.

3 � Calibration Stage in Practice

As mentioned in the introduction, we must estimate the optimal transformation function 
T = T(X) and construct an approximation ĝopt

T
 for the optimal density gopt

T
 before applying 

(S)SIS. We call the stage in which these two tasks are performed the calibration stage. 
Furthermore, the calibrations in (3) and (4) require the knowledge of the conditional mean 
function and variance function, respectively. As these are rarely known in practice, they 
must be estimated in the calibration stage as well.

3.1 � Estimating the Optimal Transformation T

In what follows, we assume that T is a linear function of the components in X , i.e., 
T = �⊤X for some � ∈ ℝ

d ; note that if X is multivariate normal, then T is univariate nor-
mal and sampling from X ∣ T  is straightforward. To find � that maximizes R2 , we use the 
average derivative method of Stoker (1986), which essentially allows us to estimate � as if 
we met the assumptions of a linear regression. That is, we sample independent realizations 
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Ψ(Xi) =∶ Ψi for i = 1,… , n1 (say, n1 = 1000 ) and compute the sample covariance matrix 
ΣX,X as well as the sample cross covariance of X1,… ,Xn1

 and (Ψ1,… ,Ψn1
) , say ΣX,Ψ to 

obtain

In some applications, we may use only a subset of the components in X ; in later 
examples, for instance, we only use the systematic risk factors in a credit model to build 
our transformation T. Sometimes one may even not need to estimate � , for instance, 
if it is clear that the d components in X are equally important, one can simply set 
� = (1∕

√
d,… , 1∕

√
d) ; see Sect. 4.2 for an example.

3.2 � Finding the Optimal Density

The calibration in (3) requires the knowledge of the conditional second moment function 
m(2)(t) = �(Ψ2(X) ∣ T = t) for all t ∈ ΩT , which, of course, is not known; similarly, the 
conditional variance function v2 required for the calibration in (4) is not known either. We 
now describe how to calibrate (3) in practice; the calibration of (4) can be done similarly.

Our first ingredient is the construction of an estimate of m(2)(t) = �(Ψ2(X) ∣ T = t) for 
all t ∈ ΩT ; we suggest using plain MC for this purpose. To this end, let t1 < ⋯ < tM be 
knots at which the function m(2) is to be estimated (e.g., M = 20 equally spaced points in 
the relevant range). Choose some small pilot sample size npilot (for example, 5% of the 
total sample size n). For each tj , sample npilot-many realizations from X ∣ T = tj and esti-
mate m(2)(tj) by its empirical equivalent for j = 1,… ,M . Then utilize smoothing splines 
(see, for example, Reinsch (1967)) and only those tj associated with a positive estimate to 
construct an estimate m̂(2) for all t ∈ ΩT ; for those t where m̂(2)(t) ≤ 0 , one can either leave 
them as m̂(2)(t) = 0 (which may lead to bias as discussed below) or set m̂(2) to be some posi-
tive function (e.g., the error function) that resembles the lower tail of �.

Having constructed an estimate for m(2) , we can set ĝopt
T

∝
√
m̂(2)(t)f (t) for t ∈ ℝ . 

However, ĝopt
T

 rarely belongs to known parametric families of distributions that are eas-
ily sampled from. One can use numerical techniques such as the NINIGL algorithm to 
approximate the quantile function of a distribution given its unnormalized density; see 
Hörmann and Leydold (2003). This approach, however, has three drawbacks: i) sampling 
from a numerically constructed density is time-consuming and can be prone to numerical 
problems; ii) the normalizing constant needs to be estimated, and iii) bias can occur when 
ĝ
opt,s

T
 does not have the same support as gopt,s

T
 , which in turn happens when m̂(2)(t) = 0 even 

though m(2)(t) ≠ 0 for some set D with ∫
D
f (t) dt > 0.

The third drawback can be alleviated if we can define m̂(2)(t) to be positive whenever 
m(2)(t) is (for example, by assuming some lower and upper tail behaviour). Furthermore, 
recall from Proposition 2 that (4) gives a biased estimator if ℙf (v

2(T) = 0, m(T) ≠ 0) > 0 
which in some cases can be debiased. For instance, if v(t) > 0 for all t ∈ Ωt , but the esti-
mated v̂(t) = 0 for t ≥ tmax for some tmax ∈ ℝ and m(t) = c for some constant c for t ≥ tmax 
(for instance, if � is a probability, then typically m(t) = c = 1 for t ≥ tmax ). If 𝜇̂SSIS

n
 is con-

structed using v̂ , we find

�̂ = Σ−1
X,X

ΣX,Ψ.
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𝜇̂SSIS
n

 can therefore be debiased by adding cℙf (T > tmax).
The second drawback can be addressed by using weighted IS (so that the normalizing 

constant cancels out); (see Lemieux (2009), Sect. 4.5). Alternatively, the normalizing con-
stant can be estimated as follows: Let ĝopt

T ,u
(t) =

√
m̂(2)g(t) denote the unnormalized density, 

and T1,… , Tn
ind.
∼ ĝ

opt

T
 (obtained, for instance, using the NINIGL algorithm). Now construct 

an estimate of the density of T1,… , Tn , such as the kernel density estimator, and denote 
this estimated density by ĥ ; note that ĥ is normalized and that each of ĥ(Ti)∕ĝ

opt

T ,u
(Ti) for 

i = 1,… , n is an estimator for the normalizing constant. As such, we suggest using the 
sample median of {ĥ(T1)∕ĝ

opt

T ,u
(T1),… , ĥ(Tn)∕ĝ

opt

T ,u
(Tn)} as an estimator for the normalizing 

constant.
The first drawback, that is, the construction of an approximation to the quantile function 

of ĝopt
T

 being both slow and potentially prone to numerical problems, is most severe. Below, 
we propose an alternative method, namely by setting ĝopt

T
(t) = 1∕𝜎f ((t − k)∕𝜎) for carefully 

chosen k ∈ ℝ and 𝜎 > 0 . In other words, we suggest using a location-scale transform of the 
original density as proposal density and will therefore call this method SISc,� . While this 
procedure does require estimation of k and � , it does not suffer from any of the three afore-
mentioned problems: i) if we can sample from f, we can also sample from f ((t − k)∕�)∕� ; 
ii) there is no normalizing constant or density to be estimated; iii) f and f ((t − k)∕�)∕� 
have the same support, so that the resulting estimator is unbiased.

The idea behind using a location-scale transform arises from the observation that in 
many practical examples (as will be seen later) the optimal density has roughly the same 
shape as the original density. As such, we try to find k and � so that 1∕�f ((t − k)∕�) is 
approximately gopt

T
(t) . Denote again by ĝopt

T ,u
(t) =

√
m̂(2)(t)f (t) the unnormalized, estimated 

optimal density and assume that the mode of fT is at zero (otherwise, shift accordingly). 
Now find k∗ = *argmaxtĝ

opt

T ,u
(t) numerically; this makes sure that the theoretical and 

approximated densities have (roughly) the same mode, thereby both sample from the 
“important region”. Having estimated k∗ , the next step is to compute � such that it mini-
mizes the variance of the resulting estimator. More precisely, given a sample T1,… , Tnpilot 
from f, we can estimate the variance of the estimator for a given � as follows: Set 
T̃i = k∗ + 𝜎Ti and wi =

f (T̃i)

f ((T̃i−k
∗)∕𝜎)∕𝜎

 and sample Xi ∣ T̃i for i = 1,… , npilot . The second 
moment of the IS estimator (written as a function of the scale � ) is then

We can now solve 𝜎∗ = *argmin𝜎>0V(𝜎) numerically. Note that due to the nature of a 
location-scale transform, we only need to sample T1,… , Tnpilot once. Intuitively, k∗ shifts the 
density to the important region, while �∗ scales it appropriately. If computing V(�) is very 
time consuming (for example, when the sampling of X ∣ T  is complicated), one can set 
�∗ = 1 ; the resulting method is then called SIS� instead of SIS�,�.

𝔼(𝜇̂SSIS
n

) = ∫
tmax

−∞

m(t)fT (t) dt = 𝜇 − ∫
∞

tmax

m(t)fT (t) dt ≈ 𝜇 − cℙf (T > tmax);

(5)V(𝜎) =

npilot∑

i=1

Ψ(Xi)w
2
i
, 𝜎 > 0.
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Remark 3 

1.	 Algorithm 1 can be easily adapted to accommodate quasi-random numbers and strati-
fication, as will be discussed in the next section.

2.	 The effort for the conditional sampling needed in Steps 2a, 2d and 3b is problem 
specific – for some problems, samples of X ∣ T = t1 can be easily transformed to 
samples from X ∣ T = t2 for t1 ≠ t2 , making these steps very fast; in some other 
problems, the conditional sampling is more involved.

3.	 Our proposed SIS method can also be combined with other VRTs. For instance, in 
Sect. 4.3, we combine conditional MC (CMC) and SIS to estimate loss probabilities of 
a credit portfolio whose dependence is governed by a t-copula.

4 � Numerical Experiments

In this section, we perform an extensive numerical study to demonstrate the effectiveness 
of our proposed methods. We start with a simplistic linear model example, in which case 
calibration of the optimal densities can be done easily. This allows us to investigate the 
effect of replacing gopt

T
 by ĝopt

T
 . In Sect. 4.2, we apply our SIS and SSIS schemes to a credit 

portfolio problem under the Gaussian copula model studied by Glasserman and Li (2005). 
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The same financial problem but this time using a more complicated t-copula model is stud-
ied in Sect. 4.3. All computations were carried out in R; see R Core Team (2020).

4.1 � Linear Model Example

Let L = �T + �T where T ∼ N(0, 1) , �T ∣ T ∼ N(0, s2) and �2 + s2 = 1 . L has a single index 
structure when �2 ≈ 1 since R2 = Var(m(T))∕Var(L) = Var(�T) = �2.

Assume interest lies in estimating the probability pl = ℙ(L > l) = Φ̄(l) = 𝔼(1{L>l}) for 
some large l; note that we can approximate the true value of pl efficiently with high precision 
since L ∼ N(0, 1) . Furthermore it is easily seen that pl(t) = ℙ(L > l ∣ T = t) = Φ̄((l − 𝛼t)∕s) 
for l, t ∈ ℝ . Since the integrand Ψ in this setting is an indicator, we find from Proposition 1 
that gopt

T
(t) ∝

√
pl(t)fT (t).

Unlike in this simplistic setting, pl(t) for t ∈ ℝ is unknown in practice as discussed in 
Sect. 3; thus, this setting serves as an excellent example to also compare whether approxi-
mating gopt

T
 by ĝopt

T
 has a significant effect on the accuracy of the estimators. Sampling from 

the true optimal densities is performed using the R package Runuran of Leydold and 
Hörmann (2020). We consider the methods SIS∗∗ (constructed using known pl(t) ), SIS

∗ 
(approximated pl(t) and NINGL), SIS� and SIS�,�

For the two settings of �2 ∈ {0.7, 0.99} (corresponding to a weaker and stronger single 
index structure), we estimate pl for l ∈ {3, 4,… , 7} using the five aforementioned methods. 
For each value of l, the optimal density is calibrated separately. In all examples, we use a sam-
ple size of n = 106 and a pilot sample size of 5 × 104 . We repeat the experiment 200 times.

Figure 1 displays on the left the optimally calibrated and approximated IS densities. The 
true optimal density is bell shaped, so it is well approximated by a normal density. It can be 
confirmed from the plot that in this case, all IS densities seem to cover the important range. 
The right of Fig. 1 displays a boxplot of run-times needed to estimate pl ; note that the run-
time does not depend on � or l. This plot, however, should be interpreted with caution as it 
highly depends on how the pilot runs are implemented.

Figure 2 displays mean relative errors; recall that we know pl here. The relative errors 
for the different methods are similar, though SIS�,� seems to give smallest errors. A pos-
sible explanation might be that the simplicity of that method (e.g., in terms of the support) 
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Fig. 1   Left: Calibrated densities for � = 0.99 , l = 5 . Right: Run-times for each method including pilot runs
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relative to numerically constructing the optimal density via NINGL might outweigh the 
benefit of the latter having slightly more theoretical support. Furthermore, note that the IS 
methods perform much better when R2 = �2 is larger, i.e., when the single index structure 
is strong, as expected.

4.2 � Loss Distribution of a Credit Portfolio

In this section, we study the effectiveness of the proposed methods for a credit portfolio 
problem studied in Glasserman and Li (2005), where the goal is to estimate the probability 
of large portfolio losses under a normal copula model. We compare our proposed methods 
to the IS technique of Glasserman and Li, to which we refer to as G&L IS.

4.2.1 � Problem Formulation

Suppose that Yk denotes the default indicator of the kth obligor with exposure ck and a 
default probability of pk for k = 1,… , h . The incurred loss is then L =

∑h

k=1
ckYk . Let
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where

and bk =
�

1 −
∑h

j=1
a2
kj

 . The akj represent the kth obligor’s factor loadings for the d risky 
systematic factors; the choice of bk ensures Xk ∼ N(0, 1) . Our goal is to estimate P(L > l) 
for large l > 0.

As in Glasserman and Li (2005), we consider a portfolio with h = 1 000 obligors 
in a 10-factor model (i.e. d = 10 ). The marginal default probabilities and exposures 
are pk = 0.01 ⋅ (1 + sin(16�k∕h)) and ck = (⌈5k∕h⌉)2 for k = 1,… , h , respectively. The 
marginal default probabilities vary between 0% and 2% and the possible exposures are 
1, 4, 9, 16 and 25, with 200 obligors at each level. The factor loadings akj ’s are inde-
pendently generated from a U(0, 1∕

√
d) . Letting Z = (Z1,… , Zd)

⊤ and � = (𝜀1,… , 𝜀h)
⊤ , 

we write L = L(Z, �) , i.e., the vector X to which we have referred throughout this paper 
is given by X = (Z, �) for this example. We investigate whether or not L has a single-
index structure. Let T = �⊤Z where � ∈ ℝ

d such that �⊤� = 1 , so T ∼ N(0, 1) . We esti-
mate � that maximize the fit by using the average derivative method of Stoker (1986). 
The estimated � has almost equal entries close to 

√
1∕d . This makes intuitive sense, as 

each component of Z is likely to be equally important because the factor loadings are 
generated randomly. The left side of Fig. 3 shows the scatter plot of (T, L). The figure 
reveals the single-index model fits L well even in the extreme tail, implying SIS based 
on this choice of T will give substantial variance reduction. The right side of Fig. 3 dis-
plays the original density of T, the optimally calibrated SIS∗ density as well as the esti-
mated function pl(t) . Note that the optimally calibrated density’s mode substantially 
differs from the original one.

Yk = 1{Xk>Φ
−1(1−pk)}

, Xk = ak1Z1 +⋯ + akdZd + bk𝜀k ∼ N(0, 1), k = 1,… , h,

(Z1,… , Zd) ∼ Nd(0, Id), �1,… , �h
ind.
∼ N(0, 1),

h∑

j=1

a2
kj
≤ 1,
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Fig. 3   Plot of Transformed variable (T) vs Portfolio Loss (L) based on 10 000 observations (left) and OCIS 
density calibrated to l = 3000 (right)
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4.2.2 � Proposed Estimators

The method of Glasserman and Li (2005) consists of a two-step procedure. In a calibra-
tion stage, an optimal mean vector � ∈ ℝ

d is found by solving an optimization problem 
minimizing the variance of the resulting IS estimator. Next, one samples Z ∼ Nd(�, Id) and 
computes the conditional default probabilities pk(Z) = ℙ(Yk = 1 ∣ Z) = Φ((a⊤

k
Z − xk)∕bk) , 

which enter another optimization problem used to find a number � ∈ ℝ so that qk(�,Z) 
are variance minimizing default probabilities. Given Z , we know that Y1,… , Yh are 
independent and can therefore easily sample the loss via L =

∑h

k=1
ck1{Uk≤qk(�(Z)} where 

(U1,… ,Uh) ∼ U(0, 1)h . Finally, the estimator 1{L>l} ⋅ w(Z,L) where w denotes the IS 
weight function is an unbiased estimator.

Our method SIS�,� proceeds as described in Algorithm 1; SIS� omits sets the scale to 
unity while the SSIS methods also stratify. Once Z ∣ T  is sampled, we sample Yk from pk(Z) 
independently. We also include SIS∗ and SSIS∗ , where the function pl(t) is estimated as 
before and the quantile function of the optimal distribution is estimated via the NINiGL 
algorithm, in our experiments; see also Fig. 3.

4.2.3 � Comparison

We compare SIS and SSIS to G&L IS by computing estimates, standard errors and compu-
tation times for l ∈ {100, 1000, 2000, 3000, 4000} . All methods require a calibration stage. 
For this comparison, we optimize the proposal distributions at each loss level of l sepa-
rately and estimate the corresponding loss probability. Table 1 shows the estimated prob-
abilities along with half-widths of estimated confidence intervals (CI) in brackets, Table 2 
shows relative error reduction factors. The last column shows the average computational 
time of each method over all loss levels l. All examples used n = 5000 samples and 1000 
samples for the calibration.

Table 1   Estimates and CI halfwidths when estimating pl in the Gaussian Credit Portfolio problem with 
h = 1000 obligors and d = 10 factors for various l and methods. The last column displays average run-times

l 100 1000 2000 3000 4000 Avg run-
time (sec)

G&L IS 0.28 0.0079 0.00077 9.2e-05 1.1e-05 2.45
(0.0078) (0.00036) (4.1e-05) (6.3e-06) (8.8e-07)

SIS
∗ 0.28 0.0081 0.00076 9.2e-05 1.1e-05 6.62

(0.0068) (0.00021) (2.1e-05) (2.4e-06) (3.5e-07)
SSIS

∗ 0.28 0.0082 0.00077 9.5e-05 1.1e-05 12.56
(0.0046) (0.00014) (1.4e-05) (1.7e-06) (2.5e-07)

SIS
� 0.28 0.0077 0.00074 8.6e-05 1e-05 1.41

(0.0086) (0.00039) (4.2e-05) (5.5e-06) (6.8e-07)
SSIS

� 0.28 0.008 0.00075 9.1e-05 1.1e-05 1.45
(0.0062) (0.00028) (2.9e-05) (4e-06) (5.1e-07)

SIS
�,� 0.28 0.0082 0.00077 9.4e-05 1.1e-05 2.45

(0.0077) (0.00034) (3.3e-05) (5.2e-06) (4.6e-07)
SSIS

�,� 0.28 0.0081 0.00075 8.9e-05 1.1e-05 2.2
(0.0059) (2e-04) (1.9e-05) (2.3e-06) (3e-07)
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We see that all our methods lead standard errors smaller than G&L IS, while the esti-
mated CIs for both methods are typically overlapping, supporting the correctness of both 
approaches. Given the small run-time, unbiasedness and small estimated errors, we can 
conclude that SSIS�,� is the best estimator for this problem. This supports our claim that 
the optimal density of T can be quickly and accurately approximated by a location scale 
transform of fT . Note that SIS∗ and SSIS∗ are particularly slow, as it involves numerically 
approximation the quantile function corresponding to the optimal gT.

4.3 � Tail Probabilities of a t‑Copula Credit Portfolio

In this section, we apply SIS to a credit portfolio problem under a t-copula model, which is 
the model studied in Sect. 4.2 with a multiplicative shock variable included. This t-copula 
model is a special case of the models with extremal dependence studied in Bassamboo 
et  al. (2008). Unlike the Gaussian copula, the t-copula is able to model tail dependence 
of latent variables, so simultaneous defaults of many obligors are more likely under the 
t-copula model than under its Gaussian copula counterpart.

4.3.1 � Problem Formulation

In the t-copula model, the latent variables X = (X1,… ,Xd) are multivariate-t distributed, 
that is,

where W ∼ IG(�∕2, �∕2) is independent of Z1,… , Zd, �k
ind.
∼ N(0, 1) . Accordingly, we 

define Yk = 1{Xk>t
−1
𝜈
(1−pk)}

 . We assume the same parameters as in Sect. (4.2.1), except that 
now we have h = 50 obligors, and the two settings for the degrees-of freedom � ∈ {5, 12} . 
Let Z = (Z1,… , Zd)

⊤ and � = (�1,… , �h) . We consider two transformations. For the first 
transformation, let ZW = Φ−1(FW (W)) and

where �W ∈ ℝ and �L ∈ ℝ
d are such that 𝛽1

W
+ �⊤

L
�L = 1 . Then, T1 ∼ N(0, 1) since 

ZW ∼ N(0, 1) is independent of Z.
Our second transformation relies on the random variable Sl(Z, �) = ℙ(L > l ∣ Z, �) and 

note that ℙ(L > l) = 𝔼(Sl(Z, �)) . Based on this and the fact that, given a sample Z, eps , the 
function Sl can be computed analytically, Chan and Kroese (2010) propose to use CMC, i.e., 

Xk =
√
W(ak1Z1 +⋯ + akdZd + bk�k), k = 1,… , h,

T1(W,Z, �) = 𝛽WZW + �⊤

L
Z,

Table 2   Relative error reduction 
factors RE(MC)/RE(RQMC) for 
the Gaussian credit portfolio with 
h = 1000 obligors and d = 10 
factors for various l and methods

l 100 1000 2000 3000 4000

G&L IS 1.5 1.5 1.5 1.5 1.6
SIS

∗ 1.3 1.3 1.2 1.7 1.5
SIS

�,� 1.6 1.5 1.9 1.7 1.6
SSIS

�,� 1 1.1 1 1.1 0.9
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estimating ℙ(L > l) by the sample mean of Sl(Zi, �i) for independent Zi, �i for i = 1,… , n . 
We propose to use this CMC idea combined with SIS by using the transformation

with �S such that �⊤

S
�S = 1 , which implies T2 ∼ N(0, 1).

The second method based on CMC, is very effective as the variable W which accounts 
for a large portion of the variance of L, is integrated out. Furthermore, Chan and Kroese 
(2010) additionally employ IS on (Z, �) to make the event {L > l} more frequent using the 
cross-entropy method; see De Boer et al. (2005); Rubinstein (1997); Rubinstein and Kroesse 
(2013). We refer to Chan and Kroese’s method as C&K CMC+IS. The numerical study 
in Chan and Kroese (2010) demonstrates that C&K CMC+IS achieves substantial variance 
reduction. We will show in our numerical examples below that combining their CMC idea 
with our proposed single index IS method gives even greater variance reduction.

4.3.2 � Fit of Single‑Index Models with and Without Conditional Monte Carlo

We first investigate whether or not L and Sl have single-index structures. As before, the 
coefficients � that maximize the fit of the single-index model are estimated using the aver-
age derivative method of Stoker (1986).

T2 = �⊤
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Fig. 4   Scatter plots of L vs T
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 (left) and S

l
 vs T

2
 (right) where l = 500 and � = 5 (top) and � = 12 (bottom)
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Figure 4 shows scatter plots of (T1, L) and (T2, Sl) for � = 12 and � = 5 . The figures show 
that there is a strong association between T1 and L but the dependence is stronger when 
� = 12 than when � = 4 . When � = 4 , there is a significant variation of L that cannot be 
captured by the single-index model based on T1 in the right-tail. This observation holds 
more generally; the smaller � (i.e., the stronger the dependence between the Xi ), the worse 
the fit of the single-index model becomes in the right-tail. When investigating the fit of 
(T2, Sl) , recall that the main advantage of CMC is that W is integrated out; the resulting 
estimators should be less sensitive to the degrees-of-freedom � , which is the case in the 
plot. We can see that the fit of T2 is excellent even in the outer right-tail for all settings of � 
and l.

4.3.3 � Estimates and Estimated Variances

We compare the original C&K CMC+IS from Chan and Kroese (2010) with SIS with and 
without CMC. We additionally investigate whether employing RQMC yields a variance 
reduction. To this end, we estimate pl for l = 100 for various n and methods; see Figs. 5 
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and 6. Variances are estimated as the sample variance of B = 20 repetitions; this ensures 
that the same variance estimator (namely, the sample variance) is used for both methods, 
rather than using the estimator from Proposition  3 for MC and the sample variance for 
RQMC.

Note that for fixed � , the data for C&K CMC+IS are identical independent of which 
transformation is used, so these lines can be used as reference. As expected, variances with 
the CMC idea are smaller than without the CMC idea. Note further that all our (S)SIS 
methods combined with T1 (which does not integrate out W) give smaller variances than 
C&K CMC+IS, which does integrate out W.

5 � Concluding Remarks

In this paper, we developed importance sampling and stratification techniques that are 
designed to work well for problems with a single-index structure, i.e., where the response 
variable depends on input variables mostly through some one-dimensional transformation. 
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The main theme of our approach is to exploit the low-dimensional structure of a given 
problem in rare-event simulation by introducing a conditional sampling step on this impor-
tant transformed random variable and using optimal IS.

We derived expressions for optimal densities of said one-dimensional transformation 
which achieve minimum variance and discussed boundary cases with zero variance. Fur-
thermore, we demonstrated that our framework includes and generalizes existing mean-
shifting techniques. Our theoretical framework and numerical examples suggest substantial 
variance reduction for problems having strong single-index structures. As the optimal den-
sity rarely belongs to a known parametric family, we also give explicit steps to calibrate the 
proposal distribution.

Our numerical experiments revealed that the proposed methods outperform existing 
methods that were specifically tailored to the Gaussian and t-copula credit portfolio prob-
lem. The success of our method in this framework highlights the flexibility and wide appli-
cability of our approach.

By combining our single-index framework with RQMC methods, we achieve even more 
precise estimation results, thanks to the dimension reduction feature of our conditional 
sampling step.

Note that there exist many other low-dimensional structures studied in the literature 
and they may provide a better fit than single-index models do. For instance, the structure 
assumed by the sufficient dimension reduction can be seen as a multi-index extension of 
the linear single-index model; see Cook (1998); Cook and Forzani (2009); Adragni and 
Cook (2009). We would like to develop importance sampling techniques for problems 
based on other low-dimensional structures in future research.

Appendix

Proofs

Proof of Proposition 1  The mean and variance follow from

and

Asymptotic normality follows from the central limit theorem. Next, we need to 
find gT among all g that give unbiased estimators so that the variance, or equiva-
lently �g(m

(2)(T)w(T)) , is minimal when Ψ(x) ≥ 0 or Ψ(x) ≤ 0 for all x ∈ Ω . Let 
Ωub = {t ∈ Ωf ∶ m(t)fT (t) ≠ 0} . By Jensen’s inequality,

�g(𝜇̂
SIS
n

) = Eg(Ψ(X)w(T)) = �g(m(T)w(T)) = ∫Ωg

m(t)
fT (t)

gT (t)
gT (t) dt = 𝜇SIS

nVarg(𝜇̂
SIS
n

) + 𝜇2
SIS

= �g

(
Ψ2(X)w(T)

)
= ∫Ωg

m(2)(t)
f 2
T
(t)

g2
T
(t)

dt.

�g

�
m(2)(T)w2(T)

� ≥ �
�g

�√
m(2)(T)w(T)

��2

=

�

�Ωg

√
m(2)(t)w(t) dt

�2

=

�

�Ωf

√
m(2)(t)w(t) dt

�2
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The last inequality follows since 𝜇̂SIS
n

 is assumed to be unbiased, i.e., Ωub ⊆ Ωg and 
the fact that 

√
m(2)(t)fT (t) = 0 for t ∉ Ωub (as m(t) = 0 implies m(2)(t) = 0 by the assump-

tion on Ψ ). The right hand side of the inequality is a constant independent of the choice 
of gT , namely the minimum variance among all SIS estimators. To achieve equality, or 
equivalently to minimize the variance, set gT ∝

√
m(2)(t)fT (t) for t ∈ Ωub and the claim 

follows.

Proof of Proposition 2  Let Ω(i)

T
= {t ∈ (tinf, tsup) ∶ 𝜆i ≤ t < 𝜆i+1} where �i = G←

T
((i + 1)∕n) 

and note that ℙ(T ∈ Ω
(i)

T
) = 1∕n for i = 1,… , n . Then

The expression for the variance is a slight generalization of (Glasserman et  al. 
(1999), Lemma 4.1) in that stratification is combined with IS, bit it can be proved similarly. 
Let �n(t) denote the index i so that t ∈ Ω

(i)

T
 . Then

Let � = �g(Ψ(X)w(T) ∣ T) = m(T)w(T) and define the sequence �n = �g(� ∣ �n(T)) . 
Note that the �−algebra generated by �n(T) forms an increasing family as n 
increases through a constant multiple of power two. Observe that �g(|xi|) < ∞ 
and supn 𝜉n < �g(Ψ

(X)w2(T)) = �g(m
(2)(T)w2(T)) < ∞ . Also, �n is a martingale if n 

increases through a constant multiple of powers of two as it is a Doob’s martingale; 
(see Karlin and Taylor (1975),  p.  246). Then using the arguments as in (Glasserman 
et al. (1999), Lemma 4.1), it follows that Varg(𝜇̂SSIS

n
) = 𝜎2

SIS
∕n + o(1).

The expression for the optimal density and variance expressions follow as in the proof of 
Prop. 1 by applying Jensen’s inequality. It remains to show that the SSIS estimator is asymp-
totically normal, which we show by applying the Lyapunov Central Theorem; (see Kole et al. 
(2007),  p.  134). Let mi = �g(Ψ(X)w(T) ∣ T ∈ Ω

(i)

T
) and v2

i
= Varg(Ψ(X)w(T) ∣ T ∈ Ω

(i)

T
) . 

It is easily seen that (1∕n)
∑n

i=1
mi = �SIS and (1∕n)

∑n

i=1
v2
i
= �2

SIS
+ o(1) . For any 

i = 1,… , n , we have

where the first inequality follows from the c� inequality as in (Loeve (1963), p. 155). The 
Lyapunov condition is satisfied, since

�(𝜇̂SSIS
n

) =
1

n

n∑

i=1

�g

(
Ψ(X)w(T) ∣ T ∈ Ω

(i)

T

)
=

1

n

n∑

i=1

�g

(
�g(Ψ(X)w(T) ∣ T) ∣ T ∈ Ω

(i)

T

)

=
1

n

n∑

i=1
∫

𝜆i+1

𝜆i

m(t)
fT (t)

gT (t)
gT (t) dt = 𝜇SIS

nVar(𝜇̂SSIS
n

) =
1

n

n∑

j=1

Varg

(
Ψ(X)w(T) ∣ T ∈ Ω

(i)

T

)
= �g

(
Varg

(
Ψ(X)w(T) ∣ 𝜂n(T)

))
.

�g

(
|Ψ(Xi)w(Ti) − mi|2+�

) ≤ 22+�
(
�g

(
|Ψ(Xi)w(Ti)|2+�

)
+ �g

(
|mi|2+�

))

= 22+�
(
�g

(
|Ψ(X)w(T)|2+� ∣ T ∈ Ω

(i)

T

)
+ �g

(
|�g(Ψ(X)w(T) ∣ T ∈ Ω

(i)

T
)|2+�

))

≤ 22+�
(
�g

(
|Ψ(X)w(T)|2+� ∣ T ∈ Ω

(i)

T

)
+ �g

(
�g(|Ψ(X)w(T)|2+� ∣ T ∈ Ω

(i)

T
)
))

= 23+��g

(
|Ψ(X)w(T)|2+� ∣ T ∈ Ω

(i)

T

)
,
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by the assumption. The Lyapunov Central Limit Theorem together with Slutsky’s Theorem
 implies (𝜇̂SSIS

n
− 𝜇SIS)∕

√
n

d
→ N(0, 𝜎2

SSIS
).

Proof of Proposition 3  Recall that Ti satisfies Ti = G←

T
((i + Ui − 1)∕n) where Ui

ind.
∼ U(0, 1) 

for i = 1,… , n , and are therefore ordered, i.e., T1 < T2 < ⋯ < Tn . For any i = 1,… , n,

for some �i ∈ (Ti, Ti+1) , which implies that for any continuously differentiable function h, 
h(Ti+1) = h(Ti) +O(1∕n) . Then we have

and so

which means that

which shows consistency.

Proof of Proposition  4  We use that (X ∣ T = t) ∼ Nd(�t, Id − ��⊤)(see Harris and Helvig 
(1965), Theorem 1) to compute the moment generating function of X . For a ∈ ℝ

d,

1

(
∑n

i=1
�2
i
)1+�∕2

n�

i=1

�g

�
�Ψ(Xi)w(Ti) − mi�2+�

�

≤ 23+�

(
∑n

i=1
�2
i
)1+�∕2

n�

i=1

�g

�
�Ψ(Xi)w(Ti)�2+� ∣ T ∈ Ω

(i)

T

�

=
23+�n

(n�2
SSIS

+ o(n))1+�∕2
�g

�
�Ψ(X)w(T)�2+�

�
→ 0, n → ∞,

Ti+1 − Ti = (G−1
T
)�(�i)

(
1 + Ui+1 − Ui

n

)
=

1

gT (G
−1
T
(�i))

(
1 + Ui+1 − Ui

n

)
= O(1∕n),

r2
i
=
(
m(Ti+1) + �Ti+1 − m(Ti) − �Ti

)2

=
(
m(Ti+1) − m(Ti)

)2
+
(
�Ti+1 − �Ti

)2

− 2(m(Ti+1) − m(Ti))(�Ti+1 − �Ti )

= (�Ti+1 − �Ti )
2 − 2(m(Ti+1) − m(Ti))(�Ti+1 − �Ti ) +O(1∕n2),

�g

(
r2
i
w2(Ti)

)
= �g

(
�g(r

2
i
w(Ti) ∣ Ti, Ti+1)

)
= �g

(
w2(Ti)(v

2(Ti) + v2(Ti+1))
)
+O(1∕n2)

= 2�g

(
w2(Ti)v

2(Ti)
)
+O(1∕n),

�g(𝜎̂
2
SSIS

) =
1

2(n − 1)

n∑

i=1

�g(r
2
i
w2(Ti)) =

1

n

n∑

i=1

�g

(
v2(T)w2(T) ∣ T ∈ Ω

(i)

T

)
+O(1∕n)

= �g(v
2(T)w2(T)) +O(1∕n) = 𝜎2

SSIS
+O(1∕n) → 𝜎2

SSIS
,

�g(�g(exp(a
⊤X)) = �g

(
�(exp(a⊤X) ∣ T)

)
= �g

(
exp

(
a⊤�T +

1

2
a⊤(Id − ��⊤)a

))

= �g(exp(a
⊤�T)) exp

(
1

2
a⊤(Id − ��⊤)a)

)
= exp

(
ca⊤� +

1

2
(a⊤�)2𝜎2

)
×

× exp
(
1

2
a⊤(Id − ��⊤)a)

)
= exp

(
a⊤(c�) +

1

2
a⊤(Id + (𝜎2 − 1)��⊤a

)
.
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By uniqueness of the moment generating function, X ∼ Nd(c�, Id + (𝜎2 − 1)��⊤).
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