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Abstract
In the present paper, we consider the problem of the estimation of a parameter � , in Banach 
spaces, maximizing some criterion function which depends on an unknown nuisance 
parameter h, possibly infinite-dimensional. The classical estimation methods are mainly 
based on maximizing the corresponding empirical criterion by substituting the nuisance 
parameter by a nonparametric estimator. We show that the M-estimators converge weakly 
to maximizers of Gaussian processes under rather general conditions. The conventional 
bootstrap method fails in general to consistently estimate the limit law. We show that the 
m out of n bootstrap, in this extended setting, is weakly consistent under conditions simi-
lar to those required for weak convergence of the M-estimators. The aim of this paper is 
therefore to extend the existing theory on the bootstrap of the M-estimators. Examples of 
applications from the literature are given to illustrate the generality and the usefulness of 
our results. Finally, we investigate the performance of the methodology for small samples 
through a short simulation study.
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1 Introduction

The semiparametric modeling has proved to be a flexible tool and provided a powerful 
statistical modeling framework in a variety of applied and theoretical contexts [refer to 
Pfanzagl (1990), Bickel et  al. (1993), van  der Vaart and Wellner (1996), van  de Geer 
(2000), and Kosorok (2008). An important work to be cited is the paper of Pakes and Pol-
lard (1989), where a general central limit theorem is proved for estimators defined by min-
imization of the length of a vector-valued, random criterion function with no smoothness 
assumptions. The last reference was extended in different settings, among many others, by 
Pakes and Olley (1995), Chen et al. (2003), Zhan (2002). Recall that the semiparametric 
models are statistical models where at least one parameter of interest is not Euclidean. 
The term “M-estimation” refers to a general method of estimation, where the estimators 
are obtained by maximizing (or minimizing) certain criterion functions. The most widely 
used M-estimators include maximum likelihood (MLE), ordinary least-squares (OLS), 
and least absolute deviation estimators. Notice that the major practical problem of maxi-
mum likelihood estimators is the lack of robustness, while many robust estimators achieve 
robustness at some cost in first-order efficiency. The appeal of the M-estimation method 
is that in addition to the statistical efficiency of the estimators when the parametric model 
is correctly specified, these estimators are also robust to contamination when the objec-
tive function is appropriately chosen. Throughout the available literature, investigations 
on the asymptotic properties of the M-estimators, as well as the relevant test statistics, 
have privileged the parametric case. However, in practice, we need more flexible models 
that contain both parametric and nonparametric components. This paper concentrates on 
this specific problem. To formulate the problem that we will treat in this paper, we need 
the following notation. Let X = (�1,… ,�n) be n independent copies of a random element 
� in a probability space (S,A,ℙ) . For a Banach spaces B and H equipped with a norm 
‖ ⋅ ‖ and a metric denoted by dH(⋅, ⋅) respectively, let M

�,H be a class of Borel measur-
able functions �

�,h ∶ S → ℝ , indexed by � over some parameter space � ⊂ B and h ∈ H , 
where � is the parameter of interest and h0 the true value of h consists of nuisance param-
eter. We define the empirical measure to be

where, for � ∈ S , �
�
 is the measure that assigns mass 1 at � and zero elsewhere. Let f (⋅) be 

a real valued measurable function, f ∶ S → ℝ . In the modern theory of the empirical it is 
usual to identify ℙ and ℙn with the mappings given by

The M-estimand of interest �0 and its corresponding M-estimator �n are assumed to be 
well-separated maximizers of the processes 

{
ℙ�

�,h0 ∶ � ∈ �

}
 and 

{
ℙn��,ĥ

∶ � ∈ �

}
 for 

a given consistent sequence of estimators ĥ for h0 , respectively. Under suitable entropy 
conditions on M

�,H (defined below) and moment conditions on its envelope, we show that 
there exist norming sequences {�n} and {rn} such that the random process {
�nℙn(��0+�∕rn ,ĥ

−�
�0,ĥ

) ∶ � ∈ K
}

 converges weakly, in the sense of Hoffmann- 
Jørgensen (1991), see van  der Vaart and Wellner (1996), in particular their Definition 

ℙn = n−1
n∑
i=1

�
�i
,

f → ℙf = ∫ fdℙ, and f → ℙnf = ∫ fdℙn =
1

n

n∑
k=1

f (�i).
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1.3.3., to the process {ℤ(�) ∶ � ∈ K} , for each closed bounded subset K ⊂ B . It follows by 
an argmax continuous mapping theorem, refer to Kosorok (2008) in particular Chapter 14, 
that rn(�n − �0) converges weakly to argmax� ℤ(�) . The latter weak limit has a compli-
cated form in general and does not permit explicit computation. It would therefore be of 
interest to estimate the sampling distribution of rn(�n − �0) by the bootstrap for inferencing 
purposes. Bootstrap samples were introduced and first investigated in Efron (1979). Since 
this seminal paper, bootstrap methods have been proposed, discussed, investigated and 
applied in a huge number of papers in the literature. Being one of the most important ideas 
in the practice of statistics, the bootstrap also introduced a wealth of innovative probability 
problems, which in turn formed the basis for the creation of new mathematical theories. 
The bootstrap can be described briefly as follows. Let T(� ) be a functional of an unknown 
distribution function � (⋅) , �1,… ,�n a sample from � (⋅) , and �1,… ,�n an independent 
and identically distributed [i.i.d.] sample with common distribution given by the empirical 
distribution �n(⋅) of the original sample. The distribution of {T(�n) − T(� )} is then approxi-
mated by that of {T(� ∗

n
) − T(�n)} conditionally on �1,… ,�n , with � ∗

n
(⋅) being the empiri-

cal distribution of �1,… ,�n . The key idea behind the bootstrap is that if a sample is repre-
sentative of the underlying population, then one can make inferences about the population 
characteristics by resampling from the current sample. The asymptotic theory of the boot-
strap with statistical applications has been reviewed in the books among others Efron and 
Tibshirani (1993) and Shao and Tu (1995). Chernick (2008), Davison and Hinkley (1997), 
van der Vaart and Wellner (1996), Hall (1992) and Kosorok (2008). A major application 
for an estimator is in the calculation of confidence intervals. By far the most favored confi-
dence interval is the standard confidence interval based on a normal or a Student t- 
distribution. Such standard intervals are useful tools, but based on an approximation that 
can be quite inaccurate in practice. Bootstrap procedures are an attractive alternative. One 
way to look at them is as procedures for handling data when one is not willing to make 
assumptions about the parameters of the populations from which one sampled. The most 
that one is willing to assume that the data are a reasonable representation of the population 
from which they come. One then resamples from the data and draws inferences about the 
corresponding population and its parameters. The resulting confidence intervals have 
received the most theoretical study of any topic in the bootstrap analysis. Roughly speak-
ing, it is known that the bootstrap works in the i.i.d. case if and only if the central limit 
theorem holds for the random variable under consideration. For further discussion we refer 
the reader to the landmark paper by Giné and Zinn (1989). It is worth noticing that some  
special examples reveal that the conventional bootstrap based on resamples of size n breaks 
down; see, for example, Bose and Chatterjee (2001) and El Bantli (2004). We focus on a 
modified form of bootstrap methods, known as the m out of n bootstrap, with a view to 
remedy the problem of inconsistency. The m out of n scheme modifies the conventional 
scheme by drawing bootstrap resamples of size m = o(n) . See, for example, Bickel et al. 
(1997) for a review of this technique in a variety of contexts. For more recent references on 
the bootstrap one can refer to Bouzebda (2010), Bouzebda and Limnios (2013), Bouzebda 
et al. (2018), Alvarez-Andrade and Bouzebda (2013, 2015, 2019) and the reference therein. 
Denote by �̂m the M-estimator calculated from a bootstrap resample of size m. Weak con-
vergence in probability of the conditional distribution of rm(�̂m − �n) to the distribution of 
argmaxg ℤ(g) is established under essentially similar conditions for weak convergence of 
rn(�n − �0) , provided that m = o(n),m → ∞ and a2

m
m−1∕2 log n∕ log(n∕m + 1) = o(1) for a 

fixed sequence {am} depending on the size of the envelope for M
�,H . The asymptotic prop-

erties of �n have been established by, among many others, Bose and Chatterjee (2001) and 
El Bantli (2004), under appropriate concavity or differentiability conditions. Empirical 
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process methods are instrumental tools for evaluating the large sample properties of esti-
mators based on semiparametric models, including consistency, distributional convergence, 
and validity of the bootstrap. In particular, modern empirical process theory provides a 
more general approach to theoretical investigation of general M-estimators; see, for exam-
ple, Dudley (1999), Kim and Pollard (1990), Pollard (1985), van  de Geer (2000) and 
van der Vaart and Wellner (1996). Most results obtained thus far are, however, restricted to 
the cases where the Gaussian process ℤ has either quadratic mean function or quadratic 
covariance function. In order to establish stronger results which cover cases where the 
covariance and mean functions of ℤ may take on more general structures, we will use the 
empirical process approach. Applications of the bootstrap to M-estimation have been inves-
tigated deeply in the literature extensively. Relevant theoretical results concern mostly 
M-estimators with rn = n1∕2 and asymptotically Gaussian limits. The most common tech-
nique for studying bootstrap M-estimators is the linearization which can not be used in a 
nonstandard setting. Under standard regularity conditions, the Edgeworth expansions for 
bootstrap distributions of finite-dimensional M-estimators are Lahiri (1992). Under a weak 
form of differentiability condition, Arcones and Giné (1992) investigated bootstrapping 
finite-dimensional n1∕2-consistent M-estimators and established an almost sure bootstrap 
central limit theorem. An in-probability bootstrap central limit theorem for possibly  
infinite-dimensional Z-estimators is investigated by Wellner and Zhan (1996). In the setting 
of the nonregular vector-valued M-estimators obtained from �

�
 concave in � , Bose and 

Chatterjee (2001) investigated a weighted form of the bootstrap including the m out of n 
bootstrap is a special case. The M-estimation for linear models under nonstandard condi-
tions was considered by El Bantli (2004), and proved that the m out of n bootstrap is con-
sistent but the conventional bootstrap is not in general. The Bose and Chatterjee (2001) and 
El Bantli (2004) results are restricted to the case where ℤ has a quadratic covariance func-
tion, concavity and differentiability assumptions. Lee and Pun (2006) prove m out of n 
bootstrap consistency for vector-valued M-estimators under twice-differentiability of the 
process ℙ�

�
 , where � may contain a subvector of nuisance parameters, in which case the 

process ℤ has a quadratic mean function. Lee (2012) gives the general result of m out of n 
bootstrap of M-estimators without the presence of a nuisance parameter. Under nonstand-
ard conditions, Lee and Yang (2020) proposed a one-dimensional pivot derived from the 
criterion function, and prove that its distribution can be consistently estimated by the m out 
of n bootstrap, or by a modified version of the perturbation bootstrap. They provide a new 
method for constructing confidence regions which are transformation equivariant and have 
shapes driven solely by the criterion function.

The main purpose of the present work is to consider a general framework of non-
smooth semi-parametric M-estimators extending the setting of Lee (2012) to the B- 
valued M-estimators in presence of nuisance parameter where the rate of convergence of 
the nuisance parameter may be different of that of the parameter of interest. More pre-
cisely, we consider the m out n bootstrapped version of the M-estimator investigated in 
Delsol and Van Keilegom (2020), where these authors showed that, their M-estimator 
converges weakly to some process which is composed on Gaussian process and some 
deterministic continuous function, which is harder to evaluate for practical use. For that 
we propose in this paper as a solution to this problem the m out of n bootstrap. We men-
tion at this stage that parameter � , in the present paper, belongs to some Banach space 
which is different from the last mentioned work where the parameter of interest is euclid-
ean. Hence, we restate the results of Delsol and Van Keilegom (2020) under more general 
conditions. The main aim of the present paper is to provide a first full theoretical justifica-
tion of the m out of n bootstrap consistency of M-estimators with non-smooth criterion 
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functions of the parameters and gives the consistency rate together with the asymptotic 
distribution of the parameters of interest �0 . This requires the effective application of large 
sample theory techniques, which were developed for the empirical processes. The Lee 
(2012) results are not directly applicable here since the estimation procedures depend on 
some nuisance parameters. These results are not only useful in their own right but essen-
tial for the derivation of our asymptotic results.

The paper is organized as follows. Section 2 introduces the notation and assumptions. 
Section 3 states the main theorems. Though our main objective in the paper is theoreti-
cal, we provide in Sect. 4 Monte Carlo simulations of simulations to look at the method’s 
performance in practice. Some concluding remarks are given in Sect.  5. All proofs are 
gathered in Sect. 6. In the Appendix we apply our theorems and prove as corollaries new 
m out of n bootstrap consistency results for three examples.

2  Notation

We abuse notation slightly by identifying the underlying probability space (S,A,ℙ) with 
the product space (S∞,A∞,ℙ∞) × (Z, C, P̃) . Now �1,… ,�n are equal to the coordinate 
projections on the first n coordinates. All auxiliary variables, assumed to be independent of 
the �i , depend only on the last coordinate. We will use the usual notation of the empirical 
processes of van der Vaart and Wellner (1996). Let ℚ denote some signed measure on S . 
Let F  be a class of measurable functions f ∶ S → ℝ . Define

For any r ≥ 1 , denote by Lr(ℚ) the class of measurable functions f ∶ S → ℝ with

where ℚ is a probability measure. The Lr(ℚ)-norm ‖ ⋅ ‖ℚ,r is defined by

for f ∈ Lr(ℚ) . The essential supremum of f ∈ L∞(ℚ) is denoted by ‖f‖ℚ,∞.
The covering number N(�,F,Lr(ℚ)) of a function class F ⊂ Lr(ℚ) is computed with 

respect to the Lr(ℚ)-norm for radius 𝜖 > 0 . To be more precise, N(�,F,Lr(ℚ)) is the mini-
mum number of balls {g ∶ ‖g − h‖ℚ,r < 𝜖} of radius � covering F .

For some random element � , the probability measure induced by � is denoted by ℙ
�
 , 

conditional on all other variables. The empirical process is defined to be

The outer and inner probability measures derived from ℙ are designated by ℙ∗ and ℙ∗ , 
respectively. Outer and inner probability measures to be understood in the sense used in the 
monograph by van der Vaart and Wellner (1996), in particular their definitions in page 6. Let 
T be any map from the underlying probability space to the extended real line ℝ . The minimal 
measurable majorant and maximal measurable minorant of T are denoted by T∗ and T∗ , respec-
tively. For any subset B of the probability space, by similar notation, its indicator function 

‖ℚf‖F = sup
f∈F

�ℚf �.

∫ |f |rdℚ < ∞,

‖f‖ℚ,r =

�
∫ �f �rdℚ

�1∕r

,

𝔾n = n1∕2(ℙn − ℙ).
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satisfies 1B∗ = 1
∗
B
 and 1B∗

= (1B)∗ . We draw randomly with replacement from X  independent 
bootstrap observations �1,… ,�m . Let us define

so that

where mW = m(W1,… ,Wn) is a multinomial vector with m trials and parameters 
(n−1,… , n−1) , independent of the �i . The probability measure induced by bootstrap resam-
pling conditional on X  is denoted by PW . Let us define the bootstrappped empirical process 
by

Let Tn denote a sequence of maps. Let � be a metric space. Let T be a �-valued meas-
urable map from the underlying probability. If Tn is bounded in outer probability, we will 
write Tn = Oℙ∗ (1) , in a similar way, if Tn converges in outer probability to zero, we will write 
Tn = oℙ∗ (1) . Assume that

If (1) holds along almost every sequence �1,�2,… , we write Tn = Oℙ∗
W
(1) a.s. (almost 

surely). If for any subsequence {Tn� } , there exists a further subsequence {Tn�� } with 
Tn�� = Oℙ∗

W
(1) a.s., we write Tn = Oℙ∗

W
(1) i.p. (in probability). We write Tn = oℙ∗

W
(1) a.s., if, 

for any 𝜖 > 0 , we have

almost surely. We write Tn = oℙ∗
W
(1) i.p., in the case when the convergence (2) is in proba-

bility. The weak convergence of Tn to T, in the sense of Hoffmann-Jørgensen (1991), is 
denoted by Tn ⇒ T  . The space of �-valued functions in ℝ bounded by 1 in the Lipschitz 
norm is denoted by BL1(�) . The conditional weak convergence of Tn to a separable T in � 
is characterized by the condition

In the case of the convergence (3) is in outer probability, we will write write Tn ⇒ T i.p., in 
a similar way, if it is outer almost sure, we write Tn ⇒ T a.s.

Define MS,H = {�
�,h ∶ � ∈ S, h ∈ H} ⊂ M

�,H , where S ⊂ � . For any 𝛿, 𝛿1, 𝜂 > 0 , let 
us denote by M�,�1

(�) and M�,�1
 the class of functions

ℙ̂m = m−1

m∑
i=1

�
�i
,

ℙ̂m =

m∑
i=1

Wi��i
,

�̂�m = m1∕2
(
ℙ̂m − ℙn

)
.

(1)lim
M→∞

lim inf
n→∞

ℙW

�
‖Tn‖ < M

�
∗
= 1.

(2)ℙW

�
‖Tn‖ > 𝜖

�∗

→ 0, as n → ∞

(3)sup
f∈BL1(𝔻)

|||ℙ
∗
W
f (Tn) − ℙf (T)

||| → 0.

M�,�1
=
�
�

�,h −�
�0,h

∶ ‖� − �0‖ ≤ �, dH(h, h
0) ≤ �1,� ∈ �, h ∈ H

�
,
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The envelope function of M�,�1
 is denoted by M�,�1

 . For each � ∈ B and h ∈ H with 
�0 + � ∈ � , define �̃

� ,h = �
�0+� ,h −�

�0,h
 . For any T ⊂ B , the class of bounded func-

tions from T  to ℝ is denoted by l∞(T) , equipped with the sup norm. In the sequel, for all 
x ∈ S and closed bounded K ⊂ � , assume that

In the sequel, we denote by C a positive constant that may be different from line to line. 
The choice of the bootstrap sample size m is theoretically governed by (AB1) and (C4). 
The above conditions are typically satisfied by taking m ∝ nc , for some sufficiently small 
c ∈ (0, 1) . Empirical determination of m has long been an important problem which has not 
yet been fully resolved, for more comments see Remark 3.12 below.

3  Main Results

In this section, we present four main theorems, each of independent interest, which lead 
eventually to weak convergence of rn(�n − �0) and in-outer-probability m out of n bootstrap 
consistencies in the context of general M-estimation by applying the argmax theorem in 
van der Vaart and Wellner (1996) and in Lee (2012) respectively. Let us recall the basic 
idea. If the argmax functional is continuous with respect to some metric on the space of the 
criterion functions, then convergence in distribution of the criterion functions will imply 
the convergence in distribution of their points of maximum, the M-estimators, to the maxi-
mum of the limit criterion function. First, we establish consistency of �n and �m for �0 by 
the following theorem.

3.1  Consistency

In our analysis, we consider the following assumptions. Assume that the sequence of posi-
tive constants rn ↑ ∞ , for some fixed 𝜈 > 1 and for some function � ∶ (0,∞) → [0,∞) 
which is slowly varying at ∞.

(A1) ℙ
(
ĥ ∈ H

)
⟶ 1 as n ⟶ ∞ and dH(ĥ, h0)

ℙ∗

⟶0.
(A2) M

�,H is Glivenko-Cantelli:

(A3) limdH(h,h0)→0 sup�∈� |ℙ�
�,h − ℙ�

�,h0 | = 0.
(A4) The parameter of interest �0 lies in the interior of � and satisfies, for every open O 
containing �0 , 

M𝛿,𝛿1
(𝜂) =

�
�

�,h −�
� ,h ∶ ‖� − �‖ < 𝜂, ‖� − �0‖ ∨ ‖� − �0‖

< 𝛿, dH(h, h
0) ≤ 𝛿1,�,� ∈ �, h ∈ H

�
.

sup
�∈K,h∈H

|�
�,h(x) − ℙ�

�,h| < ∞.

‖ℙn − ℙ‖M�,H
= oℙ∗ (1).

ℙ�
�0,h

0 > sup
�∉O

ℙ�
�,h0 .
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(A5) The M-estimator �n satisfies ℙn��n,ĥ
≥ ℙn��0,ĥ

− Rn , with 

(AB1) m = mn → ∞ , m = o(n) and r�
m
�(rm) = o

(
r�
n
�(rn)

)
.

(AB2) dH(ĥm, h0) = oℙ∗
W
(1) i.p.

(AB3) The m out of n bootstrap M-estimator �m satisfies ℙ̂m��m,ĥm
≥ ℙ̂m��0,ĥm

− R̂n , 
with 

Remark 3.1 

 (i) Assumption (A2) fulfilled under some entropy and moment conditions; see for exam-
ple, Theorem 2.4.3, (p.123) of van der Vaart and Wellner (1996).

 (ii) Assumption (A3) is automatically hold for example if; there exist function �(⋅) such 
that for any h in the neighborhood of h0 and any � ∈ � , we have: 

   The function �(⋅) satisfies; 

or the function h ↦ �(x,�, h) is Lipschitz uniformly over x and �.
 (iii) Assumptions (A5) and (AB3) are trivially fulfilled when 

and 

respectively, which allows to deal with approximations of the value that actually 
maximizes � ↦ ℙ

n
�

�,ĥ
 and maximizes � ↦ ℙ̂

m
�

�,ĥ
m

 respectively.
 (iv) Assumption (AB2) poses no difficulty in practice and is met trivially by, for example, 

setting ĥm = ĥ.
 (v) For the finite-dimensional � , (A5) and (AB3) can be achieved by a global maximi-

zation of the processes ℙn��,ĥ
 and ℙ̂m��,ĥm

 , in this situation Rn = R̂n = 0 . For the 
infinite-dimensional � , the maximization of the processes may be very complex or 
not practically feasible. To circumvent this, we need sophisticated algorithms to 
construct �n and �m fulfilling (A5) and (AB3).

 (vi) Finally, it’s possible to replace the following assumptions (A2) and (A4) by:

(A1’) For every compact K ⊂ � , MK,H is Glivenko-Cantelli.
(A2’) The map � ↦ ℙ�

�,h0 is upper semicontinuous with a unique maximum at �0.
(A3’) �n is uniformly tight.
(AB1’) �m is uniformly tight i.p.

r�
n
�(rn)Rn = oℙ∗ (1).

r�
m
�(rm)R̂n = oℙ∗

W
(1), i.p.

|�(�i,�, h) −�(�i,�, h
0)| ≤ �(�i)dH(h, h

0).

ℙ�(�) < ∞,

ℙn��n,ĥ
≥ sup

�∈�

ℙn��,ĥ
− Rn,

ℙ̂m��m,ĥm
≥ sup

�∈�

ℙ̂m��,ĥm
− R̂n,
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Theorem 3.2 

 (i) Assume (A1)-(A5). Then 

 (ii) Assume (A2), (A3), (A4) and (AB1)-(AB3). Then 

Note that, the result of part (i) holds if we replaced (A2) and (A4) by ((A1’)-(A3’) and 
the result of part (ii) holds if we replaced (A2) and (A4) by (A1’), (A2’) and (AB1’).

In the sequel, we refer to the sets of assumptions which implies the parts (i) and (ii); (C) 
and (CP); respectively. Next we give the set of assumptions needed to identify rates of con-
vergence of �n and �m to �0 , which is the important step for studying the weak convergence 
of these estimators.

Remark 3.3 We highlight that the parameter of interest � is not restricted to belong to some 
Euclidean space as in Delsol and Van Keilegom (2020). More precisely, we consider the 
general framework in which � ∈ � , where � is a subset of some Banach space B . Notice 
that the result (i) of Theorem 3.2 is a bit more general than the analogous stated in the last 
reference, by the fact the conditions imposed are more general in our setting and extend 
those of Lee (2012) to the semiparametric models.

3.2  Rates of Convergence

Let us introduce the following assumptions:

(B1) vndH(ĥ, h0) = Oℙ∗ (1) for some vn ⟶ ∞.
(B2) For all 𝛿1 > 0 , there exist � < 𝜈 , K > 0 , 𝛿0 > 0 , for all n ∈ ℕ there exist a function 
� for which � ↦

�(�)

��
 is decreasing on (0, �0] and r�

n
�(rn)n

−1∕2�(1∕rn) ≤ C for n suffi-
ciently large and some positive constant C, such that for all � ≤ �0 , 

(B3) There exist 𝜂0 > 0 , C > 0 and two positive and non-decreasing functions �1 and �2 
on (0, �0] such that for all � ∈ � satisfying ‖� − �0‖ ≤ �0 : 

Moreover, there exist 𝛽2 > 𝛼, 𝛽1 < 𝛽2, 𝛿0 > 0 such that � ↦ �1(�)�
−�1 is non-increasing 

and � ↦ �2(�)�
−�2 is non-decreasing on 

(
0, �0

]
, and such that, for some sequence rn → ∞ , 

for definition of ℙ-measurability.
(BB1) vmdH(ĥm, h0) = Oℙ∗

W
(1) i.p. for some vm ⟶ ∞.

�n − �0 = oℙ∗ (1).

�m − �0 = oℙ∗
W
(1) i.p.

ℙ
∗
⎡⎢⎢⎣

sup
‖�−�0‖≤�,dH(h,h0)≤ �1

vn

�𝔾n�̃�−�0,h
�
⎤⎥⎥⎦
≤ K�(�).

ℙ�̃
�−�0,ĥ

≤ Wn�1(‖� − �0‖) − (C + oℙ∗ (1))�2(‖� − �0‖).

�1

(
r1−�
n

�−1(rn)
)
Wn = Oℙ∗

(
�2

(
r1−�
n

�−1(rn)
))
.
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(BB2) With the same notation in assumption (B2) we replace rn ( vn ) by rm ( vm ) with 
assumption (AB1) we have; 

(BB3) With the same notation in assumption (B3) we replace rn by rm with assumption 
(AB1) in mind we have; 

where for some sequence rm → ∞ , 

Remark 3.4 

 (i) Assumption (B1) is a high-level assumption. Such condition on the nuisance param-
eter ĥ could be obtained by many asymptotic results. In the present paper, we are 
primarily concerned with the cases where the convergence rate of the M-estimator 
of � is not affected by the estimation of the nuisance parameter h.

 (ii) Assumption (B2) is fulfilled if we assume that for any x the function 
(�, h) → �(x,�, h(x,�)) −�

(
x,�0, h

(
x,�0

))
 is uniformly bounded on an open 

neighborhood of 
(
�0, h

0
)
 , i.e., on 

for some 𝛿0, 𝛿′1 > 0. We consider the class M�,�′
1
 for any � ≤ �0 and its envelope 

M�,�′
1
. For any �1, we have, for n large enough; �1v−1n ≤ ��

1
 . After by the entropy 

conditions on M�,�′
1
,

where the second supremum is taken over all finitely discrete probability measures 
ℚ on S . We get; 

see Theorems 2.14.1 and 2.14.2 in van der Vaart and Wellner (1996). Then the last 
part of (B2) holds if �(�) can be chosen such that 

   Note that, all the different rate of convergence rn in the literature for smooth or not 
smooth function satisfied the last term in assumption (B2).

ℙ
∗
ℙ
∗
W

⎡
⎢⎢⎣

sup
‖�−�0‖≤�,dH(h,h0)≤ �1

vm

��̂�m�̃�−�0,h
�
⎤
⎥⎥⎦
≤ K�(�).

ℙ�̃
�−�0,ĥm

≤ Wm�1(‖� − �0‖) − (C + oℙ∗ (1))�2(‖� − �0‖),

�1

(
r1−�
m

�−1(rm)
)
Wm = Oℙ∗

W

(
�2

(
r1−�
m

�−1(rm)
))
, i.p.

�
(�, h) ∶ ‖� − �0‖ ≤ �0, dH

�
h, h0

� ≤ ��
1

�
,

(4)∫
1

0

sup
𝛿<𝛿0

sup
ℚ

√
1 + logN

(
𝜖
‖‖‖M𝛿,𝛿�

1

‖‖‖𝕃2(ℚ)
,M𝛿,𝛿�

1
,𝕃2(ℚ)

)
d𝜖 < +∞,

ℙ
∗
⎡⎢⎢⎣

sup
‖�−�0‖≤�,dH(h,h0)≤ �1

vn

�𝔾n�̃�−�0,h
�
⎤⎥⎥⎦
≤ K1

�
ℙ∗

�
M2

�,��
1

�
,

(5)∃K0,∀� ≤ �0 ∶

√
ℙ∗

[
M2

�,��
1

] ≤ K0�(�).
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 (iii) We choose for simplification �1(x) = Id(x) = x and �2(x) = x2 in assumption (B3), 
so it’s hold under the following conditions : 

(a) � ⊂ B , where B is a Banach space.
(b) There exists 𝛿2 > 0 such that for any h satisfying dH(h, h0) ≤ �2 , the function 

� ↦ ℙ(�(�,�, h)) is twice Fréchet differentiable on an open neighborhood of �0 , 

  For more detail see (Allaire 2005, p.306).
(c) Γ(�0, h)(⋅) is a continuous linear form, with ‖Γ(�0, ĥ)‖ = Oℙ∗

�
1

r�−1
n

�(rn)

�
 and 

Γ(�0, h
0) = 0.

(d) Λ(�0, h)(⋅, ⋅) is bilinear form with Λ(�0, h
0) is bounded, symmetric, positive defi-

nite and elliptic (i.e. Λ(�0, h
0)(u, u) ≥ C‖u‖2 ) and h ↦ Λ(�0, h) is continuous in 

h0 , i.e., 

  These assumptions and the fact that the bilinear form is bounded, it results 
when dH(ĥ, h0) ≤ �2 ; 

where �
�
= � − �0 . So (B3) holds with 

  Note that when the space � ⊂ � where � is some Euclidean space, the Fréchet 
derivatives Γ(�0, h) and Λ(�0, h) become the usually derivatives i.e., the Gradient 
and Hessian matrix respectively, which is given in Remark 2(v) of Delsol and 
Van Keilegom (2020).

 (iv) Assumption (BB1) poses no difficulty in practice and is met trivially by, for example, 
setting ĥm = ĥ , like in Remark 3.1 (iv).

 (v) Assumption (BB2) is a ’high-level’ assumption. It serves to control the modulus of 
continuity of the bootstrapped empirical processes; which is needed to derive the 
rate of convergence of the bootstrapped estimator �m . Note that when we are in the 
situation of the n out of n bootstrap this condition is given in Ma and Kosorok (2005) 
and in Lemma 1 of Cheng and Huang (2010) for more generally in the exchangeable 
bootstrap weights. In our setting; it’s fulfilled under some entropy conditions, for 
brevity with the same notation in (ii), let Ñ1, Ñ2,… be i.i.d. symmetrized Poisson 
variables with parameter 1

2
m∕n and �1, �2,… are i.i.d. Rademacher variables inde-

lim‖�−�0‖→0
sup

dH(h,h
0)≤�2

‖� − �0‖−2���ℙ��,h − ℙ�
�0,h

− Γ(�0, h)(� − �0)

+
1

2
Λ(�0, h)(� − �0,� − �0)

���� = 0.

lim
dH(h,h0)→0

sup
u∈ℝk ,‖u‖=1

���
�
Λ
�
�0, h

�
− Λ

�
�0, h

0
��
u
��� = 0.

ℙ�
�,ĥ

− ℙ�
�0,ĥ

= Γ(�0, ĥ)(��) −
1

2
Λ(�0, h

0)(�
�
, �

�
) + oℙ∗ (‖��‖2) + o(‖�

�
‖2)

≤ Wn‖��‖ − C‖�
�
‖2 + �n(‖��‖),

Wn =
‖‖‖‖Γ

(
�0, ĥ

)‖‖‖‖.
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pendent of Ñ1, Ñ2,… and �1,�2,… . Denote by R =
(
R1,… ,Rn

)
 a random permuta-

tion of {1, 2,… , n} , independent of all other variables. Let us introduce 

for each k ∈ {1,… , n}. By Lemma 3.6.6 of van der Vaart and Wellner (1996) and 
the paragraph before it (ahead) with sub-Gaussian inequality for Rademacher pro-
cess we obtain 

   Applying now Lemma 3.6.7 of van der Vaart and Wellner (1996) to the right side 
of (6) with n0 set to 1 we get; 

where C >
√

n

k

‖‖‖�Ni
‖‖‖2,1 see Problem 3.6.3 of van der Vaart and Wellner (1996). By 

Jensen’s inequality the outer expectation of the left side of (7) is bounded by 
C
√

ℙ[M�,�
�

1

]2, for every 𝛿 < 𝛿1 . The inequality in assumption (BB2) holds for every 
n ∈ ℕ this implied by the fact that the variables we consider are i.i.d.

 (vi) Finally, for the assumption (BB3) with the same discussion given in (iii) only the 
choice Wn =

‖‖‖‖Γ
(
�0, ĥ

)‖‖‖‖ becomes 

with Wm = Oℙ∗
W

(
1

r�−1
m

�(rm)

)
 i.p.

Theorem 3.5 

 (i) Assume (C) and (B1)-(B3). Then 

 (ii) Assume (CP) and (BB1)-(BB3). Then 

ℙ
R
k
= k−1

k∑
i=1

�
�Ri

,

(6)ℙ
∗
W

����̂�m
���M�,��

1

≤ 4ℙ
Ñ

������
1√
k

n�
i=1

�Ñi��i��i

������M�,��
1

.

(7)

ℙ
∗
W

����̂�m
���M�,��

1

≤ 4ℙ
Ñ

������
1√
k

n�
i=1

�Ñi��i��i

������M�,��
1

≤
�

n

k

���Ñi
���2,1 max

1≤k≤nℙRℙ�

������
1√
k

k�
i=1

�i��Ri

������

∗

M�,��
1

≤ C max
1≤k≤nℙR

�
ℙ
R
k
M�,��

1

�1∕2

≤ C
�
ℙnM�,��

1

�1∕2

,

Wm =
‖‖‖‖Γ

(
�0, ĥm

)‖‖‖‖,

rn(�n − �0) = Oℙ∗ (1).

rm(�m − �0) = Oℙ∗
W
(1) i.p.
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Remark 3.6 The result (i) of this Theorem still holds for � belongs to Banach space which is 
more general of the Theorem 2 of Delsol and Van Keilegom (2020), where the authors are 
interested in the finite dimensional case. Noting that the choice of � = 2 and � ≡ 1 in assump-
tions B2 and B3, reduces to the assumptions B2 and B3 respectively of the last reference.

3.3  Weak Convergence

We start this section by introducing some notation. For any � ∈ � and h ∈ H , let 
K = {� ∈ � ∶ ‖�‖ ≤ K} for K > 0 . Define, for sufficiently large n and for � ∈ K , the 
empirical processes

which can be treated as random elements in �∞(K) . Also let for any 𝛿 > 0;

Finally, for any p ∈ ℕ and any f ∶ � ⟶ ℝ and for any � = (�1,… , �p) ∈ �
p , denote

We give the set of assumptions for the asymptotic distribution of the processes given 
in (8) and their maximum.

(C1) rn‖�n − �0‖ = Oℙ∗ (1) and vndH(ĥ, h0) = Oℙ∗ (1) for some sequences rn ⟶ ∞ 
and vn ⟶ ∞, and r𝜈−2

n
�(rn) < C for some C > 0.

(C2) �0 lies to the interior of � , where � ⊂ (B, ‖ ⋅ ‖).
(C3) For all 𝛿2, 𝛿3 > 0 , 

(C4) There exists a sequence {an} with 

such that, for all C, 𝜂 > 0 and for every sequence {jn} with an = o(jn) , 

(C5) For all K and for any �n ⟶ 0 , 

(8)
𝕄n(� , h) = r�

n
�(rn)(ℙn − ℙ)�̃�∕rn,h

,

�̂�n(� , h) = r�
m
�(rm)(ℙ̂m − ℙn)�̃�∕rm,h

,

�𝛿(⋅) ≥ sup
‖�−�0‖≤𝛿

����(⋅,�, h0) −�(⋅,�0, h
0)
���,

M𝛿 =
�
�(⋅,�, h0) −�(⋅,�0, h

0) ∶ ‖� − �0‖ ≤ 𝛿
�
,

M𝛿(𝜂) =
�
�

�,h0 −�
� ,h0 ∶ ‖� − �‖ < 𝜂, ‖� − �0‖ ∨ ‖� − �0‖ < 𝛿,�,� ∈ �

�
.

f
�
= (f (�1),… , f (�p))

⊤.

sup

‖� − �0‖ ≤ �2
rn

dH(h, h
0) ≤ �3

vn

�(ℙn − ℙ)�̃
�−�0,h

+ (ℙn − ℙ)�̃
�−�0,h

0 �
r−�
n
�−1(rn) + �ℙn�̃�−�0,h

� + �ℙn�̃�−�0,h
0 � + �ℙ�̃

�−�0,h
� + �ℙ�̃

�−�0,h
0 � = oℙ∗ (1).

a2
m
m−1∕2 log n∕ log(n∕m + 1) = o(1) and a−1

n
= O(1),

r2𝜈
n
�2(rn)

n
ℙ∗

�
�

2
C

rn

�
= O(1) and

r2𝜈
n
�2(rn)

n
ℙ∗

⎡⎢⎢⎣
�

2
C

rn

1I�
� C

rn

>
𝜂jnn

1∕2

r𝜈n�(rn )

�⎤⎥⎥⎦
= o(1).
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(C6) For x , the function � ↦ �(x,�, h0) and almost all paths of the two processes 
� ↦ �(x,�, ĥ) and � ↦ �(x,�, ĥm) are uniformly bounded on closed bounded sets 
(over �).
(C7) There exist a random and linear function Wn ∶ B ⟶ ℝ , a deterministic and 
bilinear function V ∶ B × B ⟶ ℝ and �n = oℙ∗ (1) ; such that for all � ∈ � ; 

and 

where �
�
= � − �0 and the notation o(‖�

�
‖2) means 

Moreover, for any bounded closed set K ⊂ B , 

(C8) There exists a zero-mean Gaussian process � defined on B and a continuous 
function Λ such that for all p ∈ ℕ and for all � = (�1,… , �p) ∈ K

p , 

Moreover, �(�) = �(�
�

) a.s. implies that � = �
� , and 

(C9) There exists a 𝛿0 > 0 such that 

(C10) For all 𝛿, 𝜂 > 0 , the classes M� ,M�(�) and M�(�)
2 are ℙ-measurable, see 

(van der Vaart and Wellner 1996, p.110) for definition of ℙ-measurability.
(C11) For all C > 0 , there exists n0 ∈ ℕ such that for all n0 ≥ n , 

where Rn is given in (A5).

sup
‖�1−�2‖<𝜂n ,‖�1‖∨‖�2‖≤K

r2𝜈
n
�2(rn)

n
ℙ

�
�

�
�,�0 +

�1

rn
, h0

�
−�

�
�,�0 +

�2

rn
, h0

��2
= o(1).

ℙ�̃
�−�0,ĥ

= Wn(��) + V(�
�
, �

�
) + �n‖��‖2 + o(‖�

�
‖2)

ℙ�̃
�−�0,h

0 = V(�
�
, �

�
) + o(‖�

�
‖2),

lim‖�
�
‖⟶0

o(‖�
�
‖2)

‖�
�
‖2 = 0.

∃𝜏, 𝛿1 > 0, r𝜈−1
n

�(rn) sup
�∈K,𝛿≤𝛿1
‖�‖≤𝛿

����
Wn(�)

𝛿𝜏
���� = Oℙ(1) and sup

�,�
�
∈K,𝛿≤𝛿1

‖�−��‖≤𝛿

�V(�, �) − V(�
�

, �
�

)�
𝛿𝜏

< ∞.

r�−1
n

𝓁(rn)Wn� + r�
n
𝓁(rn)ℙn�̃ ⋅

rn
,h0

�

⇒ Λ
�
+ 𝔾

�
.

ℙ
∗

�
lim sup
‖�‖⟶∞

(Λ(�) + 𝔾(�)) < sup
�∈B

(Λ(�) + 𝔾(�))

�
= 1.

∞

�
0

sup
𝛿≤𝛿0

sup
ℚ

�
log

�
N(𝜖‖�𝛿‖ℚ,2,M𝛿 ,𝕃

2(ℚ))
�
d𝜖 < ∞.

ℙn��n,ĥ
≥ sup

‖�−�0‖≤ C

rn

ℙn��0,ĥ
− Rn,
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(CB1) rm‖�m − �0‖ = Oℙ∗
W
(1) i.p. and vmdH(ĥm, h0) = Oℙ∗

W
(1) i.p. for some sequences 

rm ⟶ ∞ and vm ⟶ ∞ and r�−2
m

�(rm) ≤ C.
(CB2) For all 𝛿2, 𝛿3 > 0 , 

(CB3) There exists a random and linear function Wm ∶ B ⟶ ℝ , and �m = oℙ∗ (1) , 
such that for all � ∈ � ; 

and 

Moreover, for any closed bounded set K ⊂ � , 

(CB4)

where Λ and � are given in (C8) and the weak convergence is conditionally on the 
sample.
(CB5) For all C > 0 , there exist m0 ∈ ℕ such that for all m ≥ m0 , 

where R̂n is given in (AB3).

Remark 3.7 

 (i) We can obtained the first part of condition (C1) by part (i) of Theorem 3.5.
 (ii) Assumption (C3) holds under the common condition: for all 𝛿2, 𝛿3 > 0,

which is implied by the fact that; there exists a function f and a constant 𝛿0 > 0 such 
that for all 𝛿2, 𝛿3 < 𝛿0 , 

sup

‖� − �0‖ ≤ �2
rm

dH(h, h
0) ≤ �3

vm

�(ℙ̂m − ℙn)�̃�−�0,h
+ (ℙ̂m − ℙn)�̃�−�0,h

0 �
r−�
m
�−1(rm) + �ℙn�̃�−�0,h

� + �ℙn�̃�−�0,h
0 � + �ℙ̂m�̃�−�0,h

� + �ℙ̂m�̃�−�0,h
0 �

= oℙ∗ (1).

ℙ�̃
�−�0,ĥm

= Wm(��) + V(�
�
, �

�
) + �n‖��‖2 + o(‖�

�
‖2)

ℙ�̃
�−�0,h

0 = V(�
�
, �

�
) + o(‖�

�
‖2).

∃𝜏, 𝛿1 > 0, r𝜈−1
m

�(rm) sup
�∈K,𝛿≤𝛿1
‖�‖≤𝛿

����
Wm(�)

𝛿𝜏
���� = Oℙ∗

W
(1) i.p. , sup

�,�
�
∈K,𝛿≤𝛿1

‖�−��‖≤𝛿

�V(�, �) − V(�
�

, �
�

)�
𝛿𝜏

< ∞.

r�−1
m

𝓁(rm)Wm�
+ r�

m
𝓁(rm)ℙ̂m�̃ ⋅

rm
,h0

�

⇒ Λ
�
+ 𝔾

�
i.p.,

ℙ̂m��m ,ĥm
≥ sup

‖�−�0‖≤ C

rm

ℙ̂m��0,ĥm
− R̂n,

sup
‖�−�0‖≤ �2

rn
,dH(h,h

0)≤ �3
vn

���(ℙn − ℙ)�̃
�−�0,h

+ (ℙn − ℙ)�̃
�−�0,h

0

��� = oℙ∗ (r−�n �−1(rn)),
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and 

   Using the same arguments as in Remark 3.3(ii), we get the last inequality.
 (iii) If we assume that jn =

√
n , and noting; � ↦ �n(� , h

0) =
r�
n
�(rn)√
n

�n�̃�∕rn,h
0 is the 

empirical process with indexed class r
�
n
�(rn)√
n

M C

rn

 then, under assumption (B2), the 
assumptions (C4) and (C5) hold by the following conditions: there exists a 𝛿4 > 0 
such that for all � ≤ �4 , ℙ∗(�2

�
) ≤ K�2(�) for some C > 0 , 

for all 𝜂 > 0 and 

for all C > 0 , corresponding the case to Theorem 3.2.10 in van der Vaart and Wellner  
(1996).

 (iv) Let K be an arbitrary closed bounded subset in B , the first part of condition (C8) is 
used to assume the convergence of the marginals of the process 
� ↦ r�−1

n
�(rn)Wn(�) + r�

n
�(rn)ℙn�̃ �

rn
,h0 for deriving its weak convergence in �∞(K) 

by the fact that it is asymptotically tight; which is fulfilling by using (C4), (C5), (C9) 
and the preceding discussion in (iii). If 

we treat the given process as in the parametric case, where its marginals converge 
provided that 

for all �1, �2 and we lead to a rate of convergence rn as the solution of 

r�
n
�(rn)f

�
�2
rn
,
�3
vn

�
= o

�√
n
�
,

ℙ
∗
⎡
⎢⎢⎣

sup
‖�−�0‖≤ �2

rn
,dH(h,h

0)≤ �3
vn

���(ℙn − ℙ)�̃
�−�0,h

+ (ℙn − ℙ)�̃
�−�0,h

0

���
⎤
⎥⎥⎦

≤ 2ℙ∗
⎡⎢⎢⎣

sup
‖�−�0‖≤ �2

rn
,dH(h,h

0)≤ �3
vn

���𝔾n�̃�−�0,h
���
⎤⎥⎥⎦

≤ 1√
n
f

�
�2
rn
,
�3
vn

�
.

lim
𝛿⟶0

ℙ∗
[
�

2
𝛿
1I{�𝛿>𝜂𝛿

−2𝜑2(𝛿)}

]

𝜑2(𝛿)
= 0,

lim
𝜖⟶0

lim
𝛿⟶0

sup
‖�1−�2‖<𝜖,‖�1‖∨�2≤K

ℙ
�
�
�
�,�0 + �1𝛿, h

0
�
−�

�
�,�0 + �2𝛿, h

0
��2

𝜑2(𝛿)
= 0,

r�−1
n

�(rn) sup
�∈K,�≠0

‖Wn(�)‖�‖−1‖ = oℙ(1),

lim
n→∞

r2�
n
�2(rn)

n
ℙ

{[
�

(
�,�0 +

�1
rn
, h0

)
−�

(
�,�0 +

�2
rn
, h0

)]2}

= ℙ

[(
𝔾
(
�1
)
− 𝔾

(
�2
))2]

,
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for more detail see Theorem 3.2.10 of van der Vaart and Wellner (1996). Note that 
almost all sample paths of the process � ↦ Λ(�) + �(�) have a supremum affiliated 
to their attitude on bounded closed set, which is guaranteed by the last assumption. 
The dominant term of the deterministic part Λ is usually a negative definite quad-
ratic form and hence exponential inequalities could lead to such result, for example 
when we are in the situation of the smooth function, one can refer to Lee and Pun 
(2006), Ma and Kosorok (2005), Kosorok (2008), Kristensen and Salanié (2017) 
among many others.

 (v) Assumption (C9) is a technical assumption, which is the same in the parametric case 
where the nuisance parameter h0 is known, needs to show that; the process 
� ↦ r�

n
�(rn)ℙn�̃ �

rn
,h0 is asymptotically tight, see Theorem 3.2.10 of van der Vaart 

and Wellner (1996).
 (vi) First part of (CB1) follows by part (ii) of Theorem 3.5.
 (vii) Assumption (CB2) is automatically hold under the condition : for all 𝛿2, 𝛿3 > 0,

   This condition is hold if: there exists a function g and a constant 𝛿0 > 0 such that 
for all 𝛿2, 𝛿3 < 𝛿0 , 

and 

   Using the same arguments as in Remark 3.3(v), we get the last inequality.
 (viii) Following similar discussion of the condition (C7) provided in Remark 3(iv) of 

Delsol and Van Keilegom (2020), we only change the random function Wn(�) for the 
bootstrap version to Wm(�) = ⟨Γ(�0, ĥm), �⟩ . If we are in the situation where ĥm is 
calculated from a dataset independently from the bootstrapped sample (�∗

1
,… ,�∗

m
) , 

so it is sufficient for assumption (CB4) to suppose the conditional weak convergence 
of each term; r�−1

m
�(rm)Wm�

 and r�
m
𝓁(rm)ℙ̂m�̃ ⋅

rn
,h0

�

 separately. We can get the con-

vergence of the second one as the same in the situation without the nuisance param-
eter, the interested reader is referred to Lemma 1 of Lee (2012). Note that if 
r�−1
m

�(rm)Γ(�0, ĥm) → W  conditionally in distribution, the marginals of the process 

r�
n
�(rn)�(1∕rn) =

√
n,

sup
‖�−�0‖≤ �2

rm
,dH(h,h

0)≤ �3
vm

���(ℙ̂m − ℙn)�̃�−�0,h
+ (ℙ̂m − ℙn)�̃�−�0,h

0

��� = oℙ∗
W
(r−�

m
�−1(rm)) i.p.

r�
m
�(rm)g

�
�2
rm

,
�3
vm

�
= o

�√
m
�
,

ℙ
∗
ℙ
∗
W

⎡
⎢⎢⎣

sup
‖�−�0‖≤ �2

rm
,dH(h,h

0)≤ �3
vm

���(ℙ̂m − ℙn)�̃�−�0,h
+ (ℙ̂m − ℙn)�̃�−�0,h

0

���
⎤⎥⎥⎦

≤ 2ℙ∗
ℙ
∗
W

⎡⎢⎢⎣
sup

‖�−�0‖≤ �2
rm

,dH(h,h
0)≤ �3

vm

����̂�m�̃�−�0,h
���
⎤⎥⎥⎦

≤ 1√
m
g

�
�2
rm

,
�3
vm

�
.
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� ↦ ⟨r�−1
m

�(rm)Γ(�0, ĥm), �⟩ tend in distribution to the marginals of � ↦ ⟨W, �⟩. Fur-
thermore, if rm =

√
m and � ≡ 1, it is common to assume that 

where Ui,m, i = 1,… ,m, are independent and centered random variables. The con-
vergence follows from Lindeberg’s condition.

Theorem  3.8 (Weak Convergence of Empirical Processes). For all K > 0 , let 
K = {� ∈ � ∶ ‖�‖ ≤ K} be a closed bounded subset of B , treating � ↦ �n(� , ĥ) and 
� ↦ �̂n(� , ĥm) as random elements in �(K) for sufficiently large n, we have the following 
results: 

 (i) Assume (C1)-(C10). Then 

 (ii) Assume (A2), (AB1), (B2), (C2)-(C6),(C9)- (C11) and (CB1)-(CB4). Then 

Our main results concerning weak convergence of rn(�n − �0) and m out of n boot-
strap consistency are embodied in the following theorem.

Theorem  3.9 Assume for any such K that almost every sample path of the process 
� ↦ Λ(�) + �(�) achieves its supremum at a unique random point �0 = argmax

�∈B
Λ(�) + �(�) , 

then; 

 (i) Assume (C1)-(C11). Then 

 (ii) Assume (A2), (AB1), (B2), the first part of (C1), (C2)-(C6),(C9)- (C11) and (CB1)-
(CB5). Then 

Remark 3.10 The result (i) of the Theorem 3.8 is the same result of Lemma 1 of Delsol and 
Van Keilegom (2020) where the parameter of the interest � is in a Euclidean space, for the 
particular case � = 2 and � ≡ 1 , then by the application of Theorem 3.2.2 of van der Vaart 
and Wellner (1996) and the uniform tightness of the sequence rn(�n − �0) , the authors 
established the weak convergence to some tight random variable �0 in �∞(K) for the com-
pact set K in their Theorem 3 which is given in the result (i) of the Theorem 3.9 in this 
case. In our setting, we provide the weak convergence of the same sequence for the Banach 
valued parameter by using Theorem of van der Vaart and Wellner (1996) where the com-
pact sets and the uniformed tightness of rn(�n − �0) are replaced, respectively, by closed 

Γ(�0, ĥm) = m−1

m∑
i=1

Ui,m + oℙ∗
W

(
m−1∕2

)
,

r�
n
�(rn)ℙn�̃ �

rn
,ĥ
⇒ Λ(�) + 𝔾(�).

r�
m
�(rm)ℙ̂m�̃ �

rm
,ĥm

⇒ Λ(�) + 𝔾(�) i.p.

rn(�n − �0) ⇒ �0.

rm(�m − �n) ⇒ �0 i.p.
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bounded sets with a similar structure as the set K and rn(�n − �0) = Oℙ∗ (1) , as given in Lee 
(2012) without the nuisance parameter h0.

Note that (i) still holds if (C4) is replaced by this more weak condition

In order to prove the conditional stochastic equicontinuity of the bootstrapped process 
�̂n we need the condition (C4), that is fulfilled if the uniform integrability condition is 
imposed for jn ≥ nc , for some 0 < c < 1∕4.

Remark 3.11 It is well known that Theorem 3.9 can be used easily through routine boot-
strap sampling, which we describe briefly as follows. More precisely, this can be used, for 
example, to form confidence bands for the true parameter � based N, be a large integer, 
sampled samples �k

1
,… ,�k

m
 , k = 1,… ,� . Let �k

m
 the bootstrapped estimator of � based on 

the sample �k
1
,… ,�k

m
 , k = 1,… ,� . An application of Theorem 3.9 implies that

where �1
0
,… , ��

0
 are independent copies of �0 . Notice that we have

n−1r2𝜈
n
�(rn)

2
ℙ
∗
�

2
c∕rn

{
�c∕rn

> 𝜂nr−𝜈
n
�−1(rn)

}
→ 0.

(rn(�n − �0), rm(�
1
m
− �n),… , rm(�

�

m
− �n)) ⇒ (�0, �

1
0
,… , ��

0
) i.p. ,

lim
n→∞

ℙ
(
�n − r−1

n
c(�) ≤ �0 ≤ �n + r−1

n
c(�)

)
= ℙ(|�0| ≤ c(�)) = 1 − �.

Table 1  Kolmogorov Distance 
(KD) Between Distributions of 
n
1∕3(�

n
− �0) and m1∕3(�

m
− �

n
) , 

for n = 250 , n = 1000 and 
n = 2000

n = 250 n = 1000 n = 2000

m KD m KD m KD

10 0,1733 50 0,0880 50 0,0730
20 0,1267 60 0,0843 100 0,0780
30 0,0853 70 0,0870 110 0,0717
40 0,0687 80 0,1267 120 0,1150
50 0,0527 90 0,1197 130 0,0950
60 0,0793 100 0,1040 140 0,1103
70 0,0780 110 0,1180 150 0,0997
80 0,1213 120 0,1133 160 0,1437
90 0,0953 130 0,1080 170 0,1557
100 0,1183 140 0,1283 180 0,1337
125 0,1383 150 0,1073 190 0,1523
150 0,1453 200 0,1553 200 0,1480
175 0,1773 275 0,2187 300 0,2073
200 0,1757 350 0,2543 400 0,2530
225 0,2057 425 0,2917 500 0,2833
250 0,1993 500 0,2990 750 0,3533

750 0,3787 1000 0,3953
1000 0,4187 1250 0,4310

1250 0,4310
1500 0,4537
2000 0,5240
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In order to approximate c(�) , one can use the sampling estimator ĉ(�) , of c(�) , as the 
smallest z such that

Remark 3.12 In nonregular problems where the conventional n out of n bootstrap is incon-
sistent, the m out of n bootstrap provides a useful remedy to restore consistency. In prac-
tice, however, choosing an appropriate m needs careful attention. Asymptotically, 

√
n, log n 

or 20 log n satisfy the o(n) requirement, but in finite sample settings the actual results can 
vary dramatically depending on the choice. Let Xn =

(
X1,… ,Xn

)
 be a random sample 

drawn from an unknown distribution F, and Tn
(
Xn,F

)
 be a statistical functional of inter-

est. Under mild conditions the m out of n bootstrap distribution L∗
m,n

 provides a consistent  
estimator of the distribution Ln of Tn

(
Xn,F

)
, provided that the bootstrap sample size m is 

properly chosen, refer to Götze and Račkauskas (2001) and Bickel et al. (1997). Empirical 
selection of m has long been an important problem, which has been discussed by, for 

1

�

�∑
k=1

1{rm(�km−�n)≤z} ≥ 1 − �.
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Fig. 1  Empirical distribution of n1∕3(�
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− �0) compared with those of m1∕3(�

m
− �

n
) , m = 50 , m = 110 , 

m = 200 , m = 250 and n = 250
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example, Datta and McCormick (1995), Hall et al. (1995) and Politis et al. (1999) in differ-
ent contexts. The prevailing idea is to estimate a theoretically optimal sample size m, 
defined in a frequentist sense to be the value of m which minimises the expected value of 
some metric measure d

(
Ln,L

∗
m,n

)
 between Ln and L∗

m,n
 . The problem can be solved using 

bootstrap samples of size m, where m → ∞ and m∕n → 0 . Bickel and Sakov (2008) pro-
posed an adaptive rule to select a value m̂ and discuss its properties. The authors show, 
under some conditions, that m̂∕n

P
−→1 when the n bootstrap works, but m̂ → ∞ and m̂∕n → 0 

when the n-bootstrap does not work. More precisely, the authors suggested the following 
rule for choosing m: 

1. Consider a sequence of m’s of the form 

where ⌊�⌋ denotes the smallest integer ≥ �.
2. For each mj, find L∗

mj,n
 (in practice this is done by Monte-Carlo).

mj =
⌊
qjn

⌋
, for j = 0, 1, 2,… , 0 < q < 1,
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Fig. 2  Empirical distribution of n1∕3(�
n
− �0) compared with those of m1∕3(�

m
− �

n
) , m = 50 , m = 60 , 

m = 275 , m = 1000 and n = 1000
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3. Let d be some metric consistent with convergence in law, and set 

If there is more than one value of m which minimizes the difference, then we pick 
the largest one. These results mean that the rule behaves well under both situations. 
Swanepoel (1986) proposed m = (2∕3)n to obtain the desired coverage probability of a 
confidence interval. Alin et al. (2017) have considered m = nj where the value j satisfies 
nj =

2

3
n . Solving this equation for j, this expression leads to the choice

for which we note 0 < j < 1 , so that m = o(n) . Götze and Račkauskas (2001) have sug-
gested the estimation m by minimizing d

(
L
∗
m,n

,L∗
m∕2,n

)
, yielding an optimal bootstrap sam-

m̂ = argmin
mj

d
(
L∗
mj,n

, L∗
mj+1,n

)
.

m = nj for j = 1 +
log

(
2

3

)

log(n)
,
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Fig. 3  Empirical distribution of n1∕3(�
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− �

n
) , m = 50 , m = 110 , 

m = 500 , m = 2000 and n = 2000
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ple size in the sense of Wei et al. (2016), provided that the latter has order op(n) . Wei et al. 
(2016) have investigated stochastic version of the optimal bootstrap sample size, defined as 
the minimiser of an error measure calculated directly from the observed sample. The 
authors have developed procedures for calculating the stochastically optimal value of m. 
The performance of their methodology is illustrated in the special forms of Edgeworth-
type expansions which are typically satisfied by statistics of the shrinkage type.

4  Numerical Results

We provide numerical illustrations regarding the asymptotic distribution of estimators 
in the classification with missing data, details are provided in Sect.  7.2. The comput-
ing program codes were implemented in R. In our simulation, we will show resampling 
bootstrap samples of size n fails while resampling with size m satisfying the condi-
tions given in previous sections for the consistency of the bootstrap. Let us describe the 
model, define

where U ∼ U[0, 1] , � ∼ U[−.1, .1] and X1 ∼ U[0, 1] , with X1 , � and U are independent. Let

X2 = max(min(U + �, 1), 0),
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Fig. 4  The RMSE of �
m
 in function of m, for n = 250
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were f�(x1) = �x1 , for some �, we define

The data is composed of Zi =
(
Xi1,Xi2, YiΔi,Δi

)
 i = 1, 2,… , n from the described 

model. For the bandwidth, we use hn =
ch√
n
 ( hm =

ch√
m

 ), which satisfies the requirements of 
regularity conditions of the asymptotic theory. In this simulation, we use the quadratic ker-
nel defined by

which is a density function having support [−1, 1] . The results given below are based on 
three different value of n, we took n = 250 , n = 1000 and n = 2000 and the true value to 
be �0 = 1 , we choose ch = 3.5 and �0 = 0.5 , this choice is not restrictive, we can obtain 
the same desired result with different value of ch and �0 for example ch = 2 or 5 and 
�0 = .25 or .75 . The bootstrap procedure is as follows, for each value of m we generate B 

(9)Y = 1{U ≥ f�(X1)},

p
(
x1
)
= ℙ

(
Δ = 1 ∣ X1 = x1

)
= �0 +

(
x1 − 0.5

)2
.

K(u) =
15

16

(
1 − u2

)2
1{|u| ≤ 1},

Fig. 5  The RMSE of �
m
 in function of m, for n = 1000
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independent bootstrap samples 
{
Z∗
ib
∶ i ≤ m

}
 for b = 1,… ,B , using some method of boot-

strapping, and for each given value of m, we compute an estimator �(b)
m

 based on the b-th 
bootstrapped sample. Our main objective is to give a comparison between the distribution 
of n1∕3(�n − �0) with the m out of n bootstrap distribution of m1∕3(�m − �n) . To achieve this 
goal, we have used the Kolmogorov distance between the distributions of n1∕3(�n − �0) and 
m1∕3(�m − �n) by averaging over 1000 and 1500 m out of n bootstrap sample drawn from 
one chosen arbitrarily random sample. Table 1 displays the results for n = 250 , n = 1000 
and n = 2000 which show that the most accurate estimates are given for the choices of 
m = 50 , m = 60 and m = 110 respectively. Deviations from these choices in either direc-
tion result in deteriorating accuracy. In Figs. 1, 2 and 3, we give the empirical distribution 
of the true distribution and the empirical distribution of the bootstrapped one for some 
values of m given in Table 1, which each figure compares the estimated bootstrap empiri-
cal distribution with those of n1∕3(�n − �0) for the different values of n. All these figures 
show that the classical bootstraps (n out n bootstrap) fail while the m out n bootstraps are 
consistent. Figures 4, 5 and 6 show the root mean squared error (RMSE) of the estimator 
�m for several values of m given in Table 1, for each value of n. One can see as in any other 
inferential context, the greater the sample size, the better.
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5  Concluding Remarks

In the present work, we have considered the estimation of a parameter � that maximizes 
a certain criterion function depending on an unknown, possibly infinite-dimensional nui-
sance parameter h. We have followed the common estimation procedure by maximizing 
the corresponding empirical criterion, in which the nuisance parameter is replaced by some 
nonparametric estimator. We show that the M-estimators converge weakly to maximizers of 
Gaussian processes in an abstract setting permitting a great flexibility for applications. We 
have established that the m out of n bootstrap, in this extended setting, is weakly consistent 
under conditions similar to those required for weak convergence of the M-estimators in the 
general framework of Lee (2012), when an additional difficulty comes from the nuisance 
parameters. The goal of this paper is therefore to extend the existing theory on the boot-
strap of the M-estimators, this generalization is far from being trivial and harder to control 
the nuisance parameter in non-standard framework, which form a basically unsolved open 
problem in the literature. This requires the effective application of large sample theory 
techniques, which were developed for the empirical processes. Examples of applications 
are given to illustrate the generality and the usefulness of our results. It would be inter-
esting to extend the results to a dependent framework, this would require further theory 
which is out of the scope of the present article. An important question is how to extend our 
findings to the setting of incomplete data (censored data, missing data, etc). This will be a 
subject of investigation for future work.

6  Mathematical Developments

In this section, we give the proofs of the asymptotic results of our M-estimator �n and its 
bootstrap version.

Proof of Theorem 3.2 Part (i) follows directly from Theorem 1 of Delsol and Van Keilegom 
(2020). For (ii), note that (AB1) and (A2) imply that

By using the result in Lemma 3.6.16 of van der Vaart and Wellner (1996). We have; for 
every 𝜂 > 0 there is 𝛿 > 0 , such that

Making use of the assumption (AB3), there is n0 ∈ ℕ , such that for every n ≥ n0 , 
we obtain the existence of 𝛿′ > 0 , such that � − R̂n ≥ 4�� i.p., and the last expression is 
bounded by:

(10)‖ℙ̂m − ℙ‖M�,H
= oℙ∗

W
(1) a.s.

ℙ
∗
W

�‖�m − �0‖ > 𝜂
�

≤ℙ∗
W

�
ℙ�

�0,h
0 − ℙ�

�m ,h
0 > 𝛿

�

≤ℙ∗
W

�
2 sup
�∈�

�ℙ�
�,�hm

− ℙ�
�,h0 � + ℙ�

�0,
�hm

− ℙ�
�m ,

�hm
> 𝛿

�

≤ℙ∗
W

�
2 sup
�∈�

�ℙ�
�,�hm

− ℙ�
�,h0 � + 2‖�ℙm − ℙ‖M�,H

> 𝛿 − �Rn

�
.
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By using the assumptions (AB1), (A3), (AB3) in combination with (10), we obtain the 
desired result.  ◻

Proof of Theorem 3.5 Firstly note that, we will give the proof of this theorem for the par-
ticular choice of function

It worth noticing that this condition is in agreement with those used in Lee (2012) in the 
parametric setting. Let �n be the oℙ∗ (1) in assumption (B3) and we define the sets

we observe

Our objective is to show that; for any 𝜖 > 0 , there exists 𝜏𝜖 > 0 such that

for any n sufficiently large. In the sequel, we work with arbitrary fixed 𝜖 > 0 . For any 
𝛿, 𝛿1,M,K,K

′

> 0 , by using the condition (A5), we readily obtain

where

Indeed, we can write

ℙ
∗
W
(‖�m − �0‖ > 𝜂)

≤ℙ∗
W

�
2 sup
�∈�

�ℙ�
�,�hm

− ℙ�
�,h0 � + 2‖�ℙm − ℙ‖M�,H

> 4𝛿�
�

≤ℙ∗
W

�
sup
�∈�

�ℙ�
�,�hm

− ℙ�
�,h0 � > 𝛿�

�
+ ℙ

∗
W

�
‖�ℙm − ℙ‖M�,H

> 𝛿�
�
.

�1(x) = Id(x) = x and �2(x) =
x�

�(1∕x)
for every x ≠ 0.

Sj,n =
�
� ∈ � ∶ 2j−1 < rn‖� − �0‖ ≤ 2j

�
,

���0 =

∞⋃
j=1

Sj,n.

(11)ℙ
∗
�
rn‖�n − �0‖ > 𝜏𝜖

�
< 𝜖,

ℙ
∗
�
rn‖�n − �0‖ > 2M

�

≤ �
M≤j,2j≤𝛿rn

ℙ
∗

�
sup
�∈Sj,n

[ℙn��,�h − ℙn��0,
�h] ≥ −Kr−𝜈

n
�(rn)

−1,An

�

+ ℙ
∗
�
2‖�n − �0

�� ≥ 𝛿) + ℙ
∗
�
r𝜈
n
�(rn)�Rn� > K

�
+ ℙ

∗
�
r𝜈−1
n

�(rn)�Wn� > K
��

+ ℙ
∗
�
�𝛽n� > C

2

�
+ ℙ

∗

�
dH

�
�h, h0

�
>

𝛿1
vn

�
,

An =

{
r�−1
n

�(rn)|Wn| ≤ K
�

, |�n| ≤ C

2
, dH

(
ĥ, h0

) ≤ �1
vn

}
.
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Condition (C) implies, for all 𝛿 > 0 , that there exists n� , such that, for n > n𝜖 , we have

By the definitions of Rn , Wn and under condition (B1), there exist �1,K� ,K
′

�
 and K2,� 

such that we have

For n larger than some n1 . We fix 𝛿 < 𝛿0 and suppose n ≥ max(n0, n1, n�) , for 2j ≤ �rn , 
we have the assumptions (B2) and (B3) are fulfilled on all Sj,n . For each fixed j such that 
2j ≤ �rn , under assumption (B3), for all � ∈ Sj,n , we then have

Consequently, we obtain the following inequalities;

ℙ
∗
�
rn‖�n − �0‖ > 2M , 2‖�n − �0‖ < 𝛿, r𝜈

n
�(rn)�Rn� ≤ K,An

�

≤ �
j≥M,2j≤𝛿rn

ℙ
∗
�
�n ∈ Sj,n, r

𝜈
n
�(rn)�Rn� ≤ K,An

�

≤ �
j≥M,2j≤𝛿rn

ℙ
∗

�
sup
𝜃∈Sj,n

�
ℙn��,�h − ℙn��0,

�h

� ≥ −Rn, r
𝜈
n
�(rn)�Rn� ≤ K,An

�

≤ �
j≥M,2j≤𝛿rn

ℙ
∗

�
sup
𝜃∈Sj,n

�
ℙn��,�h − ℙn��0,

�h

� ≥ −Kr−𝜈
n
�(rn)

−1,An

�
.

ℙ
∗
�
2‖�n − �0‖ ≥ 𝛿

�
<

𝜖

6
.

(12)
ℙ∗

(
r𝜈
n
�(rn)|Rn| > K𝜖

)
<

𝜖

6
, ℙ∗

(
r𝜈−1
n

�(rn)|Wn| > K
�

𝜖

)
,

ℙ∗
(
|𝛽n| > C

2

)
<

𝜖

6
, ℙ∗

(
dH(

�h, h0) >
𝛿1
vn

)
<

𝜖

6
.

ℙn��,ĥ
− ℙn��0,ĥ

≤ ℙ�
�,ĥ

− ℙ�
�0,ĥ

+ sup

‖�−�0‖≤ 2j

rn

���ℙn��,ĥ
− ℙn��0,ĥ

− ℙ�
�,ĥ

+ ℙ�
�0,ĥ

���

≤ �Wn�2
j

rn
− (C − �n)

2�(j−1)

r�
n
�(2−(j−1)rn)

+ sup

‖�−�0‖≤ 2j

rn

���ℙn��,ĥ
− ℙn��0,ĥ

− ℙ�
�,ĥ

+ ℙ�
�0,ĥ

���

≤ �Wn�2
j

rn
− (C − �n)

1

2−j�r�
n
�(2−jrn)

+ n−1∕2 sup

‖�−�0‖≤ 2j

rn

���𝔾n�̃�−�0,ĥ

���.

ℙ
∗

�
sup
�∈Sj,n

�
ℙn��,ĥ

− ℙn��0,ĥ

� ≥ −K�r
−�
n
�(rn)

−1,An

�

≤ℙ∗
⎛
⎜⎜⎝
n−1∕2 sup

‖�−�0‖≤ 2j

rn
,dH(h,h

0)≤ �1
vn

���𝔾n�̃�−�0,h
��� ≥

C

2

2j�

r�
n
�(2−jrn)

− K�
�

2j

r�
n
�(rn)

− K�
1

r�
n
�(rn)

⎞⎟⎟⎠

≤ℙ∗
⎛
⎜⎜⎝
n−1∕2 sup

‖�−�0‖≤ 2j

rn
,dH(h,h

0)≤ �1
vn

���𝔾n�̃�−�0,h
���

≥ 2j�

r�
n
�(2−jrn)

�
C

2
− K�

�

�(2−jrn)

2j(�−1)�(rn)
− K�

2−j��(2−jrn)

�(rn)

��
.
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For any 𝜆 > 0 , we can find a non-decreasing function � such that

It follows that 2
−j��(2−jrn)

�(rn)
 is uniformly bounded for M ≤ j ≤ log2 �rn and for all n. Making 

use of the condition (B2) in combination with the Chebyshev’s inequality and the fact that 
�(c�) ≤ c�� for all c ≥ 1 , there exists a positive constant C′ and for any 𝜆 > 0 , we have

where 𝜈� = 𝜈 − 𝜆 > 𝛼 . By choosing small value of � and by using the properties of the 
function �(⋅) , we infer that

the last expression tends to 0 as M → ∞ , so we obtain the result (i) of our theorem for suf-
ficiently large value of M and n.

For (ii) we have :

We obtain from assumption (BB3), for each fixed j such that 2j < 𝛿rm and for all � ∈ Sm,j

x��(x) ∼ �(x) as x → ∞.

ℙ
∗

(
sup
�∈Sj,n

[
ℙn��,ĥ

− ℙn��0,ĥ

] ≥ −K�r
−�
n
�(rn)

−1,An

)

≤C�2−j�r�
n
�
(
2−jrn

)
n−1∕2�

(
2j

rn

)

≤C�2−j(�−�)r�
n
�
(
rn
)
n−1∕2�

(
2j

rn

)

≤C�2−j(�
�−�)r�

n
�(rn)n

−1∕2�

(
1

rn

)
,

∑
M≤j,2j≤�rn

ℙ
∗

(
sup
�∈Sj,n

[ℙn��,ĥ
− ℙn��0,ĥ

] ≥ −Kr−�
n
�(rn)

−1,An

)

≤ ∑
M≤j

2−j(�
�−�),

(13)

ℙ
∗
W

�
rm‖�m − �0‖ > 2M

�

≤ �
M≤j,2j≤𝛿rm

ℙ
∗
W

�
sup
�∈Sj,n

[�ℙm��,�hm
− �ℙm��0,

�hm
] ≥ −Kr−𝜈

m
�(rm)

−1,Am

�

+ ℙ
∗
W

�
2‖�m − �0

�� ≥ 𝛿) + ℙ
∗
W

�
r𝜈
m
�(rm)��Rn� > K

�
+ ℙ

∗
W

�
r𝜈−1
m

�(rm)�Wm� > K
��

+ ℙ
∗
W

�
�𝛽n� > C

2

�
+ ℙ

∗
W

�
dH

�
�hm, h

0
�
>

𝛿1
vm

�
.
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This gives us, by using Chebyshev’s inequality, for some C′ > 0

From assumptions (B2) and (BB2) the outer expectation of the first term in right of (13) 
is bounded by

with assumption (AB1) in mind the last two terms converge to 0 as M, n → ∞ , the outer 
expectation of the others terms in (13) are oℙ∗

W
(1) i.p., by Lemma 3 of Cheng and Huang 

(2010), which completes the proof of Theorem 3.5.  ◻

Proof of Theorem 3.8 The proof of the first part (i) of Theorem 3.8 is given in Lemmas 1, 
2 and 3 of Delsol and Van Keilegom (2020), where in our setting we use bounded closed 
subsets in the place of compact subsets. We note by their Lemma 2, we obtain the existence 
of �1,n, �2,n, �3,n such that

ℙ̂m�̃�−�0,ĥm

≤ℙ�̃
�−�0,h

+ sup

‖�−�0‖≤ 2j

rm

���ℙ̂m�̃�−�0,ĥm
− ℙn�̃�−�0,h

+ ℙn�̃�−�0,h
− ℙ�̃

�−�0,h
���

≤�Wm� 2
j

rm
− (C − �n)

1

2−j�r�
m
�(2−jrm)

+ m−1∕2 sup

‖�−�0‖≤ 2j

rm

����̂�m�̃�−�0,ĥm

���

+ n−1∕2 sup

‖�−�0‖≤ 2j

rm

���𝔾n�̃�−�0,ĥm

���.

ℙ
∗
W

�
sup
�∈Sj,n

[ℙ̂m�̃�−�0,ĥm
] ≥ −Kr−�

m
�(rm)

−1

�

≤ ℙ
∗
W

⎛⎜⎜⎝
n−1∕2 sup

‖�−�0‖≤ 2j

rm
,dH(h,h

0)≤ �1
vm

���𝔾n�̃�−�0,h
��� + m−1∕2 sup

‖�−�0‖≤ 2j

rm
,dH(h,h

0)≤ �1
vm

����̂�m�̃�−�0,h
���

≥ 2j�

r�
m
�(2−jrm)

�
C

2
− K�

�

�(2−jrm)

2j(�−1)�(rm)
− K�

2−j��(2−jrm)

�(rm)

��

≤ C�2−j�
�

r�
m
�(rm)m

−1∕2

�
ℙ
∗
W

����̂�m
���M

2j∕rm ,�1∕vm

+ m1∕2n−1∕2��𝔾n
��M

2j∕rm ,�1∕vm

�
.

∑
M≤j,2j≤�rm

ℙℙ
∗
W

(
sup
�∈Sj,n

[ℙ̂m��,ĥm
− ℙ̂m��0,ĥm

] ≥ −Kr−�
m
�(rm)

−1,Am

)

≤ ∑
M≤j,2j≤�rm

C�2−j�
�

r�
m
�(rm)m

−1∕2

{
ℙℙ

∗
W

‖‖‖�̂�m
‖‖‖M

2j∕rm ,�1∕vm

+ m1∕2n−1∕2ℙ‖‖𝔾n
‖‖M

2j∕rm ,�1∕vm

}

≤ ∑
M≤j,2j≤�rm

C�2−j�
�

r�
m
�(rm)m

−1∕2�

(
2j

rm

)

+
∑

M≤j,2j≤�rm
C�m1∕2n−1∕22−j�

�

r�
m
�(rm)m

−1∕2�

(
2j

rm

)

≤C�
∑
M≤j

2−j(�
�−�) + C�m1∕2n−1∕2

∑
M≤j

2−j(�
�−�),
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and the following decomposition

By their Lemma 3, the properties of the function � ↦ Wn(�) and the assumptions of 
Theorem 3.8; we obtain the weak convergence of the process

Briefly, we have the following decomposition;

where

and

The process � ↦ T1,n(�) does not depend on the estimation of nuisance parameter, so it 
can be studied in a similar way as in the parametric model, by Theorem 2.11.1 of van der 
Vaart and Wellner (1996) and the use of assumptions (C4), (C5), (C9) and (C10), we 
obtain its uniformly asymptotic equicontinuity. For the process � ↦ T2,n(�) , we can show 
that it is asymptotically uniformly equicontinuous by the same method given in the proof 
of their Lemma 3. By Theorem 1.5.7 and 1.5.4 of van der Vaart and Wellner (1996), we 
obtain the asymptotic tightness and the weak convergence of Tn to Λ + � in �(K) and using 
Addendum 1.5.8 in the same reference; the almost all paths of the limiting process on K 
are uniformly continuous with respect to ‖ ⋅ ‖ . Finally by Slutsky’s theorem we obtain the 
desired result.  ◻ 

For part (ii) we are in the situation to show the weak convergence of the bootstrapped 
process, which follows directly from Slutsky’s theorem and Lemmas 6.1 and 6.2 given 
bellow.

Lemma 6.1 Let K = {� ∈ � ∶ ‖�‖ ≤ K}. Then under assumptions of part (ii) of Theo-
rem 3.8, for all � ∈ K , there exist z0,m , z1,m , z2,m , such that

and

Proof of Lemma 6.1 We need to introduce the following notation

sup
�∈K

|�l,n| = oℙ(1), for l = 1, 2, 3,

r�
n
�(rn)ℙn�̃ �

rn
,ĥ
(1 + �1,n) =

[
r�−1
n

�(rn)Wn + r�
n
�(rn)ℙn�̃ �

rn
,h0

]
(1 + �2,n) + �3,n.

� ↦ r�−1
n

�(rn)Wn(�) + r�
n
�(rn)ℙn�̃ �

rn
,h0 .

Tn(�) = r�−1
n

�(rn)Wn(�) + r�
n
�(rn)ℙn�̃ �

rn
,h0 = T1,n(�) + T2,n(�),

T1,n(�) = �n(� , h
0)

T2,n = r�
n
�(rn)ℙ�̃ �

rn
,h0 + r�−1

n
�(rn)Wn(�).

sup
�∈K

|||zj,m
||| = oℙ∗

W
(1), i.p. , j = 0, 1, 2,

r�
m
�(rm)ℙ̂m�̃ �

rm
,ĥm

(
1 + z0,m

)

=
[
r�
m
�(rm)ℙ̂m�̃ �

rm
,h0 + r�−1

m
�(rm)Wm(�)

](
1 + z1,m

)
+ z2,m.
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The set K is bounded and �0 belongs to the interior of Θ , there exist mK such that for all 
m ≥ mK and for all � ∈ K , the quantity �0 +

�

rm
 is in Θ . Then for all � ∈ K we have;

This can be rewritten as follows

where;

We get from the assumption (CB1) and (CB3) that

�0,n(�) =

ℙn�̃ �

rm
,ĥn

− ℙ�̃ �

rm
,ĥn

− ℙn�̃ �

rm
,h0 + ℙ�̃ �

rm
,h0

r−�
n
�−1(rn) +

||||ℙn�̃ �

rm
,ĥn

|||| +
||||ℙn�̃ �

rm
,h0

|||| + |ℙ�̃ �

rm
,ĥn
| + ||||ℙ�̃ �

rm
,h0

||||
,

�0,m(�) =

ℙ̂m�̃ �

rm
,ĥn

− ℙn�̃ �

rm
,ĥn

− ℙ̂m�̃ �

rm
,h0 + ℙn�̃ �

rm
,h0

r−�
m
�−1(rm) +

||||ℙ̂m�̃ �

rm
,ĥn

|||| +
||||ℙ̂m�̃ �

rm
,h0

|||| + |ℙn�̃ �

rm
,ĥn
| + ||||ℙn�̃ �

rm
,h0

||||
,

sn,h(�) = sign
[
ℙn�̃ �

rn
,h

]
,

sh(�) = sign
[
ℙ�̃ �

rn
,h

]
,

sm,h(�) = sign
[
ℙ̂m�̃ �

rm
,h

]
.

ℙ̂m�̃ �

rm
,ĥn

= ℙ̂m�̃ �

rm
,h0 + ℙ�̃ �

rm
,ĥn

− ℙ�̃ �

rn
,h0

+ �0,m(�)

(
r−�
m
�−1(rm) +

||||ℙ̂m�̃ �

rm
,ĥn

||||
+
||||ℙ̂m�̃ �

rm
,h0

|||| + |ℙn�̃ �

rm
,ĥn
| + ||||ℙn�̃ �

rm
,h0

||||
)

+ �0,n(�)

(
r−�
n
�−1(rn) +

||||ℙn�̃ �

rm
,ĥ

|||| +
||||ℙn�̃ �

rm
,h0

|||| + |ℙ�̃ �

rm
,ĥ
| + ||||ℙ�̃ �

rm
,h0

||||
)
.

(14)

r�
m
�(rm)ℙ̂m�̃ �

rm
,ĥm

(
1 − �0,m(�)sm,ĥn

(�)
)

= r�
m
�(rm)ℙ̂m�̃ �

rm
,h0

(
1 + �0,m(�)sm,h0 (�)

)

+ r�
m
�(rm)ℙ�̃ �

rm
,ĥm

(
1 + �0,n(�)sĥn

(�)
)

− r�
m
�(rm)ℙ�̃ �

rm
,h0

(
1 − �0,n(�)sh0 (�)

)
+ z�

2,m
,

z�
2,m

= �0,m(�) + r�
m
�(rm)

(
�0,m(�) + �0,n(�)

)||||ℙn�̃ �

rm
,ĥn

||||
+ r�

m
�(rm)

(
�0,m(�) + �0,n(�)

)||||ℙn�̃ �

rm
,h0

|||| +
r�
m
�(rm)

r�
n
�(rn)

�0,n(�).
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By combining (14) and (15), we infer that

where

and

It is easily to show that

by using assumptions (A2), (AB1) (C3), (CB2), (CB3) and Lemma 3 of Cheng and Huang 
(2010).  ◻

Lemma 6.2 Under the assumptions of Lemma 6.1, the process

converges weakly conditionally in probability to the process

Proof of Lemma 6.2 Making use of the assumption (CB4), we need only to show the equi-
continuity of the process

One can see that the process Tm can be decomposed into the sum three processes in the 
following way

(15)

r�
m
�(rm)

�
ℙ�̃ �

rm
,ĥn

− ℙ�̃ �

rm
,h0

�
= r�−1

m
�(rm)Wm(�) + r�−2

m
�(rm)�n‖�‖2

+ r�−2
m

�(rm)o(‖�‖2)
∶ = r�−1

m
�(rm)Wm(�) + �1,n(�).

r�
m
�(rm)ℙ̂m�̃ �

rm
,ĥm

(
1 + z0,m

)

=
[
r�
m
�(rm)ℙ̂m�̃ �

rm
,h0 + r�−1

m
�(rm)Wm(�)

](
1 + z1,m

)
+ z2,m,

z0,m(�) = −�0,m(�)sm,ĥn
(�)

z1,m(�) = �0,m(�)sm,h0 (�)

z2,m(�) = z�
2,m

(�) + z��
2,m

(�),

z��
2,m

(�) = �0,n(�)
�
1 +

�
V(� , �) + r�−2

m
�(rm)o(‖�‖2)

��
s
ĥ
+ sh0

�
(�)

+
�
r�−1
m

�(rm)Wm(�) + �1,n(�)
��
s
ĥ
− sn,h0

�
(�)

�

+ �1,n(�)
�
1 + z1,m(�)

�
.

sup
�∈K

|||zj,m
||| = oℙ∗

W
(1) i.p., for j = 0, 1, 2,

� ↦ r�
m
�(rm)ℙ̂m�̃ �

rm
,h0 + r�−1

m
�(rm)Wm(�)

� ↦ Λ(�) + �(�) in �∞(K).

Tm ∶ � ↦ r�
m
�(rm)ℙ̂m�̃ �

rm
,h0 + r�−1

m
�(rm)Wm(�).
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where

We shall study separately the properties of each process. Firstly, we note that by assump-
tion (C6), (CB3) and (AB1), for sufficiently large m, we have �0 +

K

rm
⊂ Θ and then the 

processes T1,m , T2,m and T3,m take values in �∞(K) . The process T2,m can be treated as in the 
proof of part (i) by reformulating it to this form

as in the proof of (i) apply Theorem 2.11.22 of van der Vaart and Wellner (1996) to the 
process

by assumptions (C4), (C5), (C9) and (C10) we get its uniform equicontinuity with respect 
to ‖ ⋅ ‖ on K and by the use of assumption (AB1), we obtain our main result for the process 
T2,m . Then the process T1,m also does not depend to the estimation of the nuisance param-
eter, it can be treated in the same way as in part (ii) of Lemma 2 in Lee (2012). Briefly, we 
want to show that

Define the class

and let

its envelope function. Making use of the condition (B2), we readily infer that

It follows by Lemmas 2.9.1 and 3.6.6 of van  der Vaart and Wellner (1996) that, for 
1 ≤ n0 ≤ n;

Tm =

3∑
i=1

Ti,m,

T1,m ∶ � ↦ r�
m
�(rm)

(
(ℙ̂m − ℙn)�̃ �

rm
,h0

)
,

T2,m ∶ � ↦ r�
m
�(rm)

(
(ℙn − ℙ)�̃ �

rm
,h0

)
,

T3,m ∶ � ↦ r�
m
�(rm)ℙ�̃ �

rm
,h0 + r�−1

m
�(rm)Wm(�).

(16)

T2,m(�) = r�
m
�(rm)

�
(ℙn − ℙ)�̃ �

rm
,h0

�

=

�
m

n
𝔾n

r�
m
�(rm)√
m

�̃ �

rm
,h0 ,

� ↦ �n

r�
m
�(rm)√
m

�̃ �

rm
,h0 ,

Δn

def
= P∗

W
sup

���T1,m(�) − T1,m(�
�)�� ∶ ‖� − � �‖ ≤ �n, � , �

� ∈ K
�
→ 0 i.p.

Hn = rv
m
�
(
rm
)
m−1∕2Md∕rm

(
�n∕rm

)
,

M̃n = rv
m
�
(
rm
)
m−1∕2Md∕rm

ℙ
∗ sup

{|f | ∶ f ∈ Hn

} ≤ Cℙ∗M̃n ≤ C < ∞.
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where Ñ = (Ñ1, Ñ2,…) and � =
(
�1, �2,…

)
 are independent sequences of i.i.d. sym-

metrized Poisson variables with parameter m/(2n) and i.i.d. Rademacher variables, respec-
tively and both being independent of �1,… ,�n . By Jensen’s inequality, problem 3.6.3 of 
van der Vaart and Wellner (1996) and (B2), we readily get

By taking

it follows, by condition (C4), that

We refer to the integrand in (C9) by N(�) for 𝜖 > 0 . By using the triangular inequal-
ity, the properties of sub-Gaussianity of Rademacher processes, under (C10) and using the 
Cauchy-Schwarz inequality with (B2), we obtain

where

Our aim is to show that

for an arbitrary subsequence 
{
nk ∶ k = 1, 2,…

}
 of {n}, and any arbitrary sequence 

{
jk
}
 

such that n0,nk ≤ jk ≤ nk for all k = 1, 2,… . Write m∗
k
= mnk

. Define, for any � ∈ K,

ℙ
∗Δn ≤Cn0m−1∕2

(
𝔼max

1≤i≤n Ñi

)
ℙ
∗M̃n

+ Cn1∕2m−1∕2 �
∞

0

(
ℙ
{||Ñ1

|| > x
})1∕2

dx max
n0≤j≤n

ℙ
∗

‖‖‖‖‖‖
j−1∕2

j∑
i=n0

𝜖i𝛿�i

‖‖‖‖‖‖Hn

,

(17)ℙ
∗Δn ≤ Cn0m

−1∕2 log n∕ log(n∕m + 1) + C max
n0≤j≤n

ℙ
∗

‖‖‖‖‖‖
j−1∕2

j∑
i=n0

�i��i

‖‖‖‖‖‖Hn

.

n0 = n0,n = amm
1∕4{log(n∕m + 1)∕ log n}1∕2 ∈ [1, n],

(18)n0m
−1∕2 log n∕ log(n∕m + 1) → 0 as n → ∞.

(19)

max
n0≤j≤n

ℙ
∗

‖‖‖‖‖‖
j−1∕2

j∑
i=n0

𝜖i𝛿�i

‖‖‖‖‖‖Hn

= max
n0≤j≤n

ℙXℙ𝜀

‖‖‖‖‖‖
j−1∕2

j∑
i=n0

𝜖i𝛿�i

‖‖‖‖‖‖Hn

≤ 2 max
n0≤j≤n

ℙXℙ𝜀

‖‖‖‖‖‖
j−1∕2

j∑
i=1

𝜖i𝛿�i

‖‖‖‖‖‖Hn

≤ C max
n0≤j≤n

{
ℙ
∗

(
�

�n,j

0

N(𝜖)d𝜖

)2
}1∕2(

ℙ
∗M̃2

n

)1∕2

≤ C max
n0≤j≤n

{
ℙ
∗

(
�

�n,j

0

N(𝜖)d𝜖

)2
}1∕2

,

�n,j = sup
�
‖f‖ℙj ,2

∶ f ∈ Hn

�
.

(20)�nk ,jk
= oℙ∗(1) as k → ∞,
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As in the proof of part (ii) of Lemma 2 of Lee (2012); he showed these variables satisfy 
the condition of Theorem 2.11.1 of van der Vaart and Wellner (1996), which is implies our 
result in (20) for arbitrary subsequence nk and jk ∈

[
n0,nk , n

]
 , by arguing as in the proof of 

this Theorem. It then follows by the dominated convergence theorem that the bound in (19) 
has limsup equal to 0 as n → ∞ . Substituting this and (18) into (17) to obtain the desired 
result. Finally, for the process T3,m , for large value of m, we have �0 +

�

rm
∈ Θ by using the 

assumption (CB3), we get, for all 0 < 𝛿 < 𝛿1,

where

and �m = Oℙ∗
W
(1) i.p. uniformly over � ≤ �1 . From this, we obtain, for any 𝜖 > 0 and 𝜂 > 0,

By choosing C� such that the last term is bounded by � for large value of m, and taking 

� ≤ �1 ∧
(

�

2C�

) 1

� , which implies the main result for the process T3,m . Finally by using the 
fact that

we obtain the desired result on the process Tm.  ◻

Proof of Theorem 3.9 Making use of the result (i) in Theorem 3.8 in connection with the 
assumption (C8), we infer that we have almost all paths of the process � ↦ �(�) + Λ(�) 
are uniformly continuous on every K ⊂ B , and reaching the supremum at an unique point 
�0 . For part (i), an application of (i) in Theorem 3.8, for any closed bounded K ⊂ B , gives

Zki(𝛾) = rv
m∗

k

�

(
rm∗

k

)
m

∗−1∕2

k
j
−1∕2

k
m̃𝛾∕r∗

mk

(
�i

)
.

(21)

sup
� ,� �∈K,‖�−� �‖≤�

���T3,m(�) − T3,m
�
� �
����

= sup
� ,� �∈K,‖�−� �‖≤�

���r
�−1
m

�(rm)Wm

�
� − � �

�
+ r�−2

m
�(rm)

�
V(� , �) − V

�
� �, � �

��

+r�
m
�(rm)

�
o

�‖�‖2
r2
m

�
+ o

�‖� �‖2
r2
m

�������

≤ ��
⎛⎜⎜⎝
r�−1
m

�(rm) sup
�∈K,�≤�1,‖�‖≤�

����
Wm(�)

��

���� + r�−2
m

�(rm) sup
� ,� �∈K,�≤�1,‖�−� �‖≤�

���V(� , �) − V
�
� �, � �

����
��

⎞⎟⎟⎠
+ bm

∶= ���m + bm,

bm ≤ sup
� ,� �∈K

r�
m
�(rm)

�
o

�‖�‖2
r2
m

�
+ o

�‖� �‖2
r2
m

��
→ 0, as m → ∞,

ℙ
∗
W

�
sup

𝛾 ,𝛾 �∈K,‖𝛾−𝛾 �‖≤𝛿
��T3,m(𝛾) − T3,m(𝛾

�)�� > 𝜖

�

≤ ℙ
∗
W

�
𝛿𝜏𝛼m + bm > 𝜖, 𝛼m ≤ C, �bm� < 𝜖

2

�
+ ℙ

∗
W

�
𝛼m > C

�

≤ ℙ
∗
W

�
𝛿𝜏 >

𝜖

2C

�
+ ℙ

∗
W

�
𝛼m > C

�
.

Tm = T1,m + T2,m + T3,m,
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We get from the assumption (C11) that

Noting that �0 is the unique, well-separated, maximizer of �(�) + Λ(�) , then part (i) fol-
lows by Theorem 3.2.2 of van der Vaart and Wellner (1996), where compact sets and uni-
form tightness of rn(�n − �0) are replaced respectively by closed bounded sets with similar 
structure as the set K and

For part (ii), we infer that

By combining the assumption (CB5) with the first part of (CB1), we have respectively

and

An application of Lemma 4(ii) of Lee (2012) gives

It follows from the first part of the assumptions (C1), (AB1) and Slutsky’s theorem that

Hence the proof of the statement (ii) is complete.  ◻

7 Appendix: Applications

We present in this section some examples which can not handled with the classical 
theory of semiparametric estimators and their m out of n bootstrap version cannot be 
applied while theory of the paper can be applied. This illustrate the usefulness of our 
results. Delsol and Van Keilegom (2020) provided some examples of situations in which 
the existing theory on semiparametric estimators cannot be applied, whereas their result 
could be applied. It worth noticing that the aim of this section is to verify the boot-
strap conditions that are different from those used for the non bootstrapped estimators 
checked in the last mentioned reference. Although only three examples will be given 
here, they stand as archetypes for a variety of models that can be investigated by the 
methodology of the present paper.

𝕋n(�) = r�
n
�(rn)ℙn�̃ �

rn
,ĥ
⇒ Λ(�) + 𝔾(�), in �∞(K).

𝕋n

(
rn(�n − �0)

) ≥ sup
�≤K

𝕋n(�) − oℙ(1).

rn(�n − �0) = Oℙ∗ (1).

𝕋m(�) = r�
m
�(rm)ℙ̂m�̃ �

rm
,ĥm

⇒ Λ(�) + 𝔾(�) i.p. in �(K).

𝕋m

(
rm(�m − �0)

) ≥ sup
�≤K

𝕋m(�) − oℙ∗
W
(1)

rm(�m − �0) = Oℙ∗
W
(1), i.p.

rm(�m − �0) ⇒ �0, i.p.

rm(�m − �n) = rm(�m − �0) −
rm

rn
rn(�n − �0) ⇒ �0 i.p.
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7.1 Single Index Model with Monotone Link Function

The single index regression models are typical examples which are given

where ℙ(𝜀|�) = 0, Var(𝜀|�) < ∞ and we assume that the unknown function g(⋅) is 
monotone, we refer to Ichimura (1993) for more details. On the basis of the sample (
�1, Y1

)
,… ,

(
�n, Yn

)
 coming from the model (22), we make use of the the pool-adjacent-

violators algorithm to constrcut and estimator of the function g(⋅) . This gives a non-smooth 
estimator ĝ

�
(⋅) of g

�
(�) = �

[
Y|�⊤

� = �
]
. Next, by using the least-squares estimation 

method we estimate �

By the fact that ĝ
�
(⋅) is of non-smooth nature implies that the criterion function is not 

smooth in � . This is a situation where the theory of the present paper can be applied.

7.2 Classification with Missing Data

Let �1 = (�11,�12),… ,�n = (�n1,�n2) be independent and identically distributed ran-
dom copies of the random vector � = (�1,�2) , coming from two underlying popula-
tions. For j = 0, 1 , let �i = j when the �i comes from the population j. Let us denote by 
� the population indicator associated with the vector � . Using the information of avail-
able data, we seek to find a classification method for novel observations with unknown 
true population.

The classification is performed by regressing �2 on �1 making use of the parametric 
criterion function f

�
(⋅) , and choosing � that maximize the following

Let �0 denote the maximizer of (23) with respect to all � ∈ � , here � is assumed to 
be a compact subset of ℝk containing as an interior point �0 . Now assume that �i ’s are 
subject to some missing mechanism. Let Δi be a random variable (respectively Δ ) equals 
to 1 when we observe the random variable �i (respectively � ), and 0 otherwise. Let 
�1 = (�1,�1Δ1,Δ1),… ,�n = (�n,�nΔn,Δn) be the observations at hand. The missing 
at random mechanism in considered in the following sense

Note that the relation (23) can be written

We define

(22)Y = g
(
�

⊤
�
)
+ 𝜀

�̂ = argmax
�

[
−n−1

n∑
i=1

(
Yi − ĝ

�

(
�

T
i
�
))2

]
.

(23)ℙ1I{�=1,�2≥f�(�1)}
+ ℙ1I{�=0,�2<f�(�1)}

.

ℙ
(
1I{Δ=1}|�1,�2,�

)
= ℙ

(
1I{Δ=1}|�1

)
∶= p0

(
�1

)
.

�

[
1I{Δ=1}

p0(�1)

{
1I{�=1,�2≥f�(�1)}

+ 1I{�=0,�2<f�(�1)}

}]
.
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here the infinite dimensional nuisance parameter p(⋅) belonging to some functional space P 
to be specified later. Consequently, the estimator �n of �0 is given by

where, for any x and a bandwidth sequence h = hn,

where the kernel function K(⋅) is assumed to be a density function having support [−1, 1] , 

Kh(u) =
K
(

u

h

)

h
 . Non parametric regression with missing have long attracted a great deal of 

attention, for good sources of references to research literature in this area along with sta-
tistical applications consult Müller (2009), Pérez-González et  al. (2009) and Koul et  al. 
(2012) among many others.

7.3 Binary Choice Model with Missing Data

Let us define the binary choice model, in the linear regression function framework, by

where we assume that � is zero median conditionally on �. The random variable Y is miss-
ing at random with the probability, to observe Y, depending on � via the following relation

where Δ = 1 when we observe Y and 0 elsewhere. The observed data for the preceding 
model are given by of i.i.d. triplets 

(
�1, Y1Δ1,Δn

)
,… ,

(
�n, YnΔn,Δn

)
 . To estimate p� (z) = 

ℙ
(
1I{Δ=1}|�⊤

� = z
)
, we use the following

The parameter estimate is given by

where

�
�,p(�) =

1I{Δ=1}

p(�1)

{
1I{�=1,�2≥f�(�1)}

+ 1I{�=0,�2<f�(�1)}

}
,

�n = argmax
�∈�

ℙn��,p̂,

p̂(x) =

n�
i=1

Kh(x − �i1)
n∑
j=1

Kh(x − �j1)

1I{Δi=1}
,

{
U = �⊤

� − 𝜀,

Y = 1I(U ≥ 0),

ℙ(1I{Δ=1}|�, Y) = ℙ
(
1I{Δ=1}|�⊤𝛾

)
∶= p

(
�

⊤𝛾
)
,

�p
�
(z) =

n∑
i=1

Kh

(
�

⊤
i
� − z

)
n∑
j=1

Kh

(
�

⊤
j
� − z

)1I{Δi=1}
.

(�̂, �̂) = argmax
�,�

ℙn��,�,p̂
�
,

�
�,�,p =

1I{Δi=1}

p
(
�

⊤
i
�
)[21I{Yi=1} − 1

]
1I{�⊤

i
�≥0}.
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The existing theory cannot be applied here by the fact that the function �
�,�,p is 

smooth in � but non-smooth in �.
Now we will study in full detail the example in Sect. 7.2 and we work out the veri-

fication of the conditions of Theorems 3.2, 3.5, 3.8 and 3.9 the most of this conditions 
verified in Sect. 7 of Delsol and Van Keilegom (2020) by noting that � = 2 and � ≡ 1 , so 
our focuses is to verify the conditions needed for the m out of n bootstrapped version. In 
the beginning we give some information about the nuisance function and her space and 
some notation. Let P be the space of functions p ∶ �

�1
→ ℝ that are continuously dif-

ferentiable, for which

where

and �
�1

 is the support of �1 , where we suppose it is a compact subspace of ℝ . We equip the 
space P with the supremum norm:

After, the conditions of the consistency are verified as follows, (A1) holds true pro-
vided the functions p0(⋅) and K(⋅) are continuously differentiable. For assumption (A2) 
we can showing that the bracketing number of the class F = {�

�,p,� ∈ Θ, p ∈ P} ; 
N[ ]

(
�,F,𝕃ℙ

)
 is finite for all 𝜖 > 0 , by using Corollary 2.7.2 of van der Vaart and Wellner 

(1996), we get

and

by the properties of the set P and the fact that � ↦ f
�
(�) is continuously differentiable over 

� with bounded derivative and as a consequence it’s easily to show that

for the class T =
{(

�1, �2
)
→ 1I{x2≥f�(�1)} ∶ � ∈ �

}
 . From (24) and (25) we get;

Then assumption (A3) is straightforward. Assumption (A4) is an identifiability condi-
tion to ensure the uniqueness of �0 and (A5) is verified by construction of the estimator �n . 
The consistency of �n is then follows. For the conditions of the bootstrap version they are 
verified as follows; fist part of assumption (AB1) is satisfied by definition of the m out of n 
bootstrap, where the second part in this situation follows directly by noting that if rn = n� , 
we get rm = m� for some 𝜅 > 0 , by consequent we have r2

m
= o(r2

n
) . For (AB2) as men-

tioned in remark 3.1(v) we take p̂m(⋅) = p̂(⋅) where we replace the variables �1i and Δi by 
�

∗
1i

 and Δ∗
i
 respectively in p̂(⋅) ; i.e.,

sup
�1∈��1

p(�1) ≤ M < ∞, sup
�1∈��1

|p�

(�1)| ≤ M and inf
�1∈��1

p(�1) > 𝜂∕2,

𝜂 = inf
�1∈�X1

p0(�1) > 0

dP(p1, p2) = sup
�1∈��1

|p1(�1) − p2(�1)| for any p1, p2 ∈ P.

(24)N[ ]

(
�,P,𝕃ℙ

) ≤ exp{��−1},

N[ ]

(
�, {f

�
,� ∈ �},𝕃ℙ

) ≤ exp{��−1},

(25)N[ ]

(
�, T,𝕃ℙ

) ≤ exp{��−1},

N[ ]

(
�,F,𝕃ℙ

) ≤ exp{��−1}.
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we remark that

which implies dH
(
p̂m, p̂

)
= oℙ∗

W
(1) i.p. By the triangular inequality we get

(AB3) is verified by construction of the estimator �m . Which implies the consistency 
of �m . Next for the rate of convergence we show only conditions (B2) and (B3). For (B2), 
it suffices by remark 3.3(ii) to show (4) and (5). For that by uses of the relation between 
covering and bracketing numbers and Corollary 2.7.2 of van der Vaart and Wellner (1996) 
we get that

for every probability measure ℚ on ℝ4 , which implies our relation in (4), (5) is verified 
by the choice �(�) =

√
� as consequence we get (B2). For (B3), it follows directly like in 

Sect. 7 of the same reference which described this example and by the choice of the two 
functions �1(⋅) and �2(⋅) given in Remark 3.3(iii), which implies (B3). By their discus-
sion for the rates rn , vn and the bandwidth h of the kernel; it follows

We verify the assumption (BB1) as in the verification of condition (AB2) by choosing 
p̂m(⋅) = p̂(⋅) we get v−1

m
=

√
logm

mh
+ h , where h = hm. Assumption (BB2) holds by the same 

argument given for (B2). For assumption (BB3), we check conditions (b)-(d) of Remark 
3.3(iii). We obtain

and

provided the derivatives in Λ
(
�0, p

)
 all exist. By the definition of maximum it follows that 

Γ
(
�0, p

0
)
= 0 and Λ

(
�0, p

0
)
 is negative. Noting that

p̂m(x1) =

m�
i=1

Kh(x1 − �
∗
i1
)

m∑
j=1

Kh(x1 − �
∗
j1
)

1I{Δ∗
i
=1},

ℙW

(
1

m

m∑
i=1

Kh(x1 − �
∗
i1
)1I{Δ∗

i
=1}

)
=

1

n

n∑
i=1

Kh(x1 − �i1)1I{Δi=1}
,

dH
(
p̂m, p

0
) ≤ dH

(
p̂m, p̂

)
+ dH

(
p̂, p0

)
= oℙ∗

W
(1), i.p.

logN

(
�
‖‖‖M�,��

1

‖‖‖𝕃2(ℚ)
,M�,��

1
,𝕃2(ℚ)

)
≤ exp{��−1},

�n − �0 = Oℙ∗

(
n−1∕3

)
.

(26)Γ
(
�0, p

)
= ℙ

[
p0
(
�1

)

p
(
�1

) {
1 − 2ℙ

(
1I{�=1}|�1,�2

)}
f
�2|�1

(
f
�0

(
�1

)) �

��
f�0

(
�1

)]
,

Λ
(
�0, p

)
=ℙ

[
p0
(
�1

)

p
(
�1

) {
1 − 2ℙ

(
1I{�=1}|�1,�2

)}{
f �
�2|�1

(
f
�0

(
�1

))( �

��
f
�0

(
�1

))2

+f
�2|�1

(
f
�0

(
�1

)) �2

��2
f
�0

(
�1

)}]
,
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if rm satisfies

by noting that the expectation in (26) is taken with respect to � and � when we are work-
ing with p̂m , since our function are measurable, we obtain such result by applying Fubi-
ni’s Theorem. This condition on rm and the other given in (BB2) which is satisfied for 
rm = O(m1∕3) are reconcilable provided

Note that if we assume that p0(⋅) is twice continuously differentiable we can weaken the 
first condition to mh6

m
= O(1) , as a consequence we get the v−1

m
 of p̂m would be 

O
(√

logm

mhm
+ h2

m

)
 , which is faster than r−1

m
= m−1∕3 of �m provided mh3

m
⟶ ∞ . The level of 

complexity of the latter case is less than the case where p0 is only once differentiable, And 
we do not discuss it any further, therefore. We conclude that,

Finally, for the weak convergence of �n , we note that our assumptions (C4) is satis-
fied for jn =

√
n like in Remark3.5 (iii) and (C9) hold similarly to (B2). By consequence 

n1∕3(�n − �0) converge weakly, where assumption (CB1) follows from part (ii) of Theo-
rem 3.5 and condition (BB1), by similar proof of condition (BB2) we get (CB2). We get 
from Remark 3.3 (iii), (vi) and Remark 3.5 (viii) that assumption (CB3) holds, provided 
that

Clearly we have for some positive constant c > 0 that m−1∕3 < C . For assumption 
(CB4), we have

provided mh3
m
= o(1) and log

3∕2 m

mh
3∕2
m

= o(m−1∕2) , by using what we discuss already for (BB3). 

Next, by the result given to the process in (16) i.e., the process � ↦ �n

r2
m√
m
�̃ �

rm
,h0 converges 

weakly to the process �(�) and condition (AB1), we get

with Γ(�0, p
0) = 0 and

‖Γ��0, p̂m
�‖ = OℙW

(r−1
m
) i.p.

rm

(
m−1∕2 + hm +

logm

mhm

)
= O(1),

mh3
m
= O(1) and

(logm)3∕2

mh
3∕2
m

= O(1).

�m − �0 = Oℙ∗
W
(m−1∕3) i.p.

|Λ(�0, p
0)| < ∞.

rmWm(�) = rmΓ(�0, p̂m)� = oℙW
(1) i.p.,

r2
m
ℙ̂m�̃ �

rm
,p0 = r2

m

⎡
⎢⎢⎣

�
ℙ̂m − ℙn

�
�̃ �

rm
,p0 +

�
m

n
𝔾n

�̃ �

rm
,p0

√
m

+ ℙ�̃ �

rm
,p0

⎤⎥⎥⎦
= r2

m

�
ℙ̂m − ℙn

�
�̃ �

rm
,p0 +

1

2
Λ(�0, p

0)�2 + oℙ(1),
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The process � → r2
m

(
ℙ̂m − ℙn

)
�̃ �

rm
,p0 are the same given in Lee (2012) where there is 

no presence of nuisance parameter. Hence, we can follow the same steps given in Lemma 1 
of Lee (2012) and get the convergence of the marginals using Lindeberg’s condition and 
some regularity assumption on f

�1∕�2
 and � ↦ f

�
 . By construction of the estimator �m , con-

dition (CB5) follows. Then we get the asymptotic distribution of rm(�m − �n) from part (ii) 
of Theorem 3.9.
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