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Abstract
In this article a method, using finite Markov chains, to obtain the run-length properties of a 
two-stage control process is presented. The method furnishes the obtaining of the distribu-
tion of waiting time to signal that gives additional insight into the design and performance 
of a control chart when a warning zone is considered to feature a two-stage control pro-
cess and when a departure from the null assumption can be clearly defined. An example is 
given for illustration when samples come from a normal population, though not necessary, 
with an outlined process inspection scheme. A second example is given to demonstrate the 
extension of our approach to modelling Markov dependent data observations.

Keywords Finite Markov chain · Waiting time · Quality control process · Warning zone

Mathematics Subject Classification 60E05

1 Introduction

Shewhart shares in his book Shewhart (1931) since 1931 on the importance of distribu-
tion theory for the reason that no matter what definition is used for quality, its measure-
ment is a variable. Page (1955) and the Western Electric Company (1956) since the 
1950s have been using the idea of incorporating zones in a chart to monitor the con-
formity of items in a production line based on some measurable characteristic of those 
items. Croasdale (1974) introduces first in 1974 the idea of setting up a control chart of 
two parts (double-sampling scheme) to monitor process mean, with a warning zone in 
the first part but without an out-of-control zone which only is incorporated in the second 
part of the chart in design. Later, Daudin (1992) and Irianto and Shinozaki (1998) have 
modified and improved the double-sampling scheme judging by the criterion of average 
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run length (ARL). Since then it continues to receive much attention in research and 
to be studied extensively, for example, by Wu and Spedding (2000) and Yang and Wu 
(2017).

When production is being set up naturally in a way that materials have to undergo a 
series of steps for a product to be made, a sequence of processing steps is needed to produce 
silicon-based integrated circuit for an example, the production can be modelled as a staged 
system. Duffuaa et  al. (2009) look into a problem when the number of non-conforming 
items, based on some quality characteristic of the items, in a sample from a lot at the end of 
the first process is large enough, the whole lot is inspected (100% inspection) before going 
through the next process. A final quality characteristic is considered as a convolution of the 
quality characteristic measured from the first process and a separate quality characteristic 
measured at the end of the second process for items in a sample from a lot, based on the 
assumption that quality-characteristic measurements of each item from the two processes 
in series are independent. Pricing a product depend then on the number of non-conforming 
items in the second sample based on final quality characteristic. In contrast to optimising 
total profit, the interest of Aslam et al. (2018) is in designing an attribute control chart for 
production also in the setup of a series of two independent processes. In the first step, a first 
process alone is considered to be in-control if the number of non-conforming items in a sam-
ple from the process is smaller than some threshold and proceed to the second step, the two 
processes together is declared to be out-of-control otherwise. In the second step, judge then, 
independent of the first process, the number of non-conforming items in a sample from the 
other process. The two processes combined is considered to be in-control if the convolution 
of the number of non-conforming items from the first process and of the number from the 
second process is smaller than some threshold, the two processes together is to be declared 
out-of-control otherwise. Li and Liu (2006), on the other hand, study a two-stage produc-
tion control system in a perspective from that of queue scheduling, the goal therewith is to 
optimize the work-in-process between the two stages by analyzing the busy period steady-
state distribution of a queueing system. The two-stage CCC 

2
 chart introduced by Chan et al. 

(1997) and later the CCC 
1+�

 chart by Chan et al. (2003) can be used to detect shifts in the 
fraction of nonconforming item produced by a manufacturing process, in other words, the 
authors’ primary interest is in the probability of failure for each trial of a Bernoulli process. 
The decision rules are based on the number of inspected items required to obtain the first or 
the second failure. They propose that by splitting the overall false-alarm probability (type I 
error rate) � ∈ (0, 1) into two parts (1 − �)� and �� , � ∈ (0, 1) , determine first a boundary 
on the number of trials required to observe the first failure, and then a boundary on the num-
ber of trials required to observe the second failure in aid of process control.

Our main goal has a twofold aim: to provide analytic formulas for the distribution of 
time to signal and the average run length for a two-stage control process. The result will 
cover various quality control charts suitable for the incorporation of a warning zone (or 
a mechanism to trigger warning signals), such as a chart based on runs and patterns (see 
Mosteller (1941) for example), an X̄-chart, a cumulative sum (CUSUM) chart, an exponen-
tially weighted moving average (EWMA) chart, and finite Markov chain imbeddable qual-
ity control processes in general (see Fu et al. (2002), Fu et al. (2003), Koutras et al. (2007), 
Chang and Wu (2011) and Bersimis et al. (2014) for example). The finite Markov chain 
imbedding technique has been successfully used as well in the theoretical developments 
of system reliability modelling (see Fu and Lou (1991), Koutras (1996), Chang and Huang 
(2010), Eryilmaz (2016), Eryilmaz et al. (2016) and Chang et al. (2018) for example) and 
their application in financial risk management (see  Koutras et al. (2016) for example). In 
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this manuscript the same technique will be adopted to study the properties of our proposed 
two-stage statistical process control.

The nomenclature and the results from literatures to be adopted throughout will be 
brought forth in the next section. The main results for our proposed method are presented 
in Sect. 3. Detailed examples to illustrate our theoretical results are given in Sect. 4 and are 
followed by some concluding remarks.

2  Notation and Preliminary Results

Let �
1
 represent the first-stage quality control process which is homogeneous finite Markov 

chain imbeddable, and its imbedded homogeneous Markov chain {Y1(t)}nt=0 , defined on 
state space Ω1 containing an out-of-control state �

1
 and a warning state � , has a transition 

probability matrix in the form of

for all t = 1,… , n.
Let �

2
 represent the second-stage quality control process which is homogeneous finite 

Markov chain imbeddable, and its imbedded homogeneous Markov chain {Y2(t)}nt=0 , 
defined on state space Ω2 containing an out-of-control state �

2
 , has a transition probability 

matrix in the form of

for all t = 1,… , n . It will be seen throughout the manuscript that the symbol O is used to 
denote a zero matrix or vector of an appropriate size.

Readers may see Fu et al. (2003) for an in-depth discussion of the approach to Markov 
chain imbedding for the control scheme of Shewhart-type with or without supplementary 
runs rules, Cusum-type, weighted moving average-type, or a combination of Shewhart-
type and a Cusum- or moving average-type under the normality and independence assump-
tions on the sampled observations from a process.

Definition 1 (�
1
,�

2
) is a two-stage control process if the process follows the proceeding 

steps: 

 (i) Given a warning limit and a control limit (or action line, which more often than not 
are determined by product designer or are given to meet a product design specifica-
tion), define an in-control, an out-of-control and a warning zone for the first-stage 
process. Given another control limit (whether a new random sample drawn to start 
the second stage is to be combined with the last sample from the first stage or not 
when a warning signal appears), define an in-control and an out-of control zone for 
the second-stage process.

 (ii) Begin (first-stage) process control by taking a random sample of size k1 > 0 of items 
from a production line and obtain sample statistic Y1(t) for sampling time t = 1, 2,….

(1)M1 =

⎛⎜⎜⎝

N1 C
�
�
C
�
�
1

O
1

0

0

1

⎞⎟⎟⎠

(2)M
2
=

(
N

2
C
�
�
2

O 1

)
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 (iii) When Y1(t) belongs to the in-control zone, return to step (ii) for sampling time t + 1 ; 
else when Y1(t) belongs to the out-of-control zone, proceed to step (vi); else, Y1(t) 
belongs to the warning zone and based on the sample, one can be irresolute with 
regard to whether the process is prone to a shift, activate then the second-stage pro-
cess control.

 (iv) In the second stage, take a sample of size k2 > 0 from the production line and obtain 
sample statistic Y2(t) for sampling time t = 1, 2,….

 (v) When Y2(t) belongs to the in-control zone, return to step (iv) for sampling time t + 1 ; 
else Y2(t) belongs to the out-of-control zone, proceed to step (vi).

 (vi) An out-of-control alarm is issued and actions are taken to identify and remove prob-
able causes. Reset t to 0 and return to step (ii).

We assume throughout this article that the control processes �
1
 and �

2
 are finite 

Markov chain imbeddable, their transition probability matrices are M1 of the form in (1) 
and M2 of the form in (2), respectively.

Definition 2 Define the following waiting-time random variables

and let W be the waiting time of a two-stage control process (�
1
,�

2
) being in an out-of-

control state (either �
1
 in the first stage or �

2
 in the second stage), that is,

which is a random variable.

By applying Theorem 2 of Fu et al. (2016), we have the distributions of waiting-time 
random variables W�

1
 , W� and W�

2
 , and in the long term the mean time to the first occur-

rence of �
1
 , � and �

2
 being E[W�

1
] , E[W�] and E[W�

2
] , respectively. Proofs are omitted 

here.

Theorem 1 Given �
1
 and �

2
, and M1 and M2, it follows from (3)–(5) in Definition 2 that 

 (i) 

 and 

 (ii) 

 and 

(3)W�
1
= inf

1≤n{n ∶ Y1(n) = �
1
},

(4)W� = inf
1≤n{n ∶ Y1(n) = �},

(5)W�
2
= inf

1≤n{n ∶ Y2(n) = �
2
},

W = min(W�
1
,W� +W�

2
)

P(W�
1

= n) = �
0
N

n−1
1

C
�
�
1

for n = 1, 2,…

E[W�
1

] = �
0
(I − N

1
)−2C�

�
1

,

P(W� = n) = �
0
N

n−1
1

C
�
�

for n = 1, 2,…
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 (iii) 

 and 

where N1 , C�
1
 and C

�
 are given in (1), N2 and C�

2
 are given in (2), and row vectors �

0
 and 

�
0
 , each with non-negative elements that sum to one, are initial probability distributions 

for �
1
 and �

2
 , respectively.

3  Distribution and ARL of Two‑Stage Control Process

The distribution of W, or is called the run length for a chart, which is the number of differ-
ent time points at which some process characteristic is measured and plotted on a (control) 
chart until (and including) the first appearance of an out-of-control alarm, can be obtained 
by the following theorem.

Theorem 2 Given �
1
 and �

2
, we have 

 (i) for n = 1 , 

 (ii) and for n ≥ 2 , 

where �
0
 and �

0
 are initial distributions with respect to �

1
 and �

2
 , and N1 , C�

1

 and C
�
 are 

defined in (1), N2 and C
�
2

 are defined in (2).
Proof It follows from the definitions of waiting times W�

1
 , W� , W�

2
 and W that a two-

stage control process gives an out-of-control alarm at n if either {W = W�
1
= n} or 

{W = W� +W�
2
= n} occurs. Note that

and those n − 1 events are mutually exclusive. Hence,

E[W�] = �
0
(I − N

1
)−2C�

�
,

P(W�
2

= n) = �
0
N

n−1
2

C
�
�
2

for n = 1, 2,…

E[W�
2

] = �
0
(I − N

2
)−2C�

�
2

,

P(W = n) = P(W = W�
1

= n) = �
0
C
�
�
1

,

P(W = n) = �
0
N

n−1
1

C
�
�
1

+

n−1∑
i=1

(�
0
N

i−1
1

C
�
�
)(�

0
N

n−i−1
2

C
�
�
2

),

{W = W� +W�
2
= n} =

n−1⋃
n
1
=1

{W� = n
1
, W�

2
= n

2
, n

1
+ n

2
= n},
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Since W� and W�
2
 are stochastically independent, it follows from Theorem 1 that

This completes the proof.

The average run length, E[W], of a two-stage control process (�
1
,�

2
) is a result of the fol-

lowing theorem.

Theorem 3 Given a two-stage control process (�
1
,�

2
) , we have

where

Equation (6) can then be reduced to

Proof Note that

for n = 1, 2,… , and it follows that

It is trivial that P(W� +W�
2
= n) = 0 when n = 1 , it further follows that

where n
1
+ n

2
= n . The variables W� and W�

2
 are stochastically independent, hence, Eq. (8) 

can be written as

P(W = n) = P(W = W�
1
= n) + P(W = W� +W�

2
= n)

= P(W = W�
1
= n) +

n−1∑
n
1
=1

P(W� = n
1
, W�

2
= n − n

1
).

n−1∑
n
1
=1

P(W� = n
1
, W�

2
= n − n

1
) =

n−1∑
n
1
=1

P(W� = n
1
)P(W�

2
= n − n

1
)

=

n−1∑
n
1
=1

(�
0
N

n
1
−1

1
C
�
�
)(�

0
N

n−n
1
−1

2
C
�
�
2

)

(6)E[W] = �
0
(I − N1)

−2
C
�
�
1

+ �
1
�
0
(I − N1)

−2
C
�
�
+ �

2
�
0
(I − N2)

−1
1
�,

𝜅
1
=

∞∑
i=1

�
0
N

i
2
C
�
𝛾
2

= 1, 𝜅
2
=

∞∑
i=1

�
0
N

i
1
C
�
𝜃
< 1, 1 = (1 1 … 1).

(7)E[W] = �
0
(I − N1)

−1
1
� + �

2
�
0
(I − N2)

−1
1
�.

P(W = n) = P(W = W�
1
= n) + P(W = W� +W�

2
= n)

E[W] =

∞∑
n=1

nP(W = W�
1
= n) +

∞∑
n=1

nP(W = W� +W�
2
= n).

(8)

E[W] =

∞∑
n=1

nP(W = W�
1
= n) +

∞∑
n=2

n−1∑
n
1
=1

nP(W� = n
1
, W�

2
= n − n

1
)

=

∞∑
n=1

nP(W�
1
= n) +

∞∑
n=2

n−1∑
n
1
=1

(n
1
+ n

2
)P(W� = n

1
, W�

2
= n

2
),
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The result in (6) follows from (9) and Theorem 1, and Eq. (7) follows from �
1
≡ 1 and 

C
�
�
1

+ C
�
�
= (I − N1)1

� . This completes the proof.

In a similar argument, we can obtain the moment generating function of W to be

for some |s| < 𝛿 , and 𝛿 > 0.
Hence, from Theorem 1, the form of the moment generating function of W can be writ-

ten as

It can easily be verified that

and the same expression is also found in Theorem 3.
We will denote in the rest of this article, by conventions, E[W] by ARL0 under the 

assumption that parameters specifying the quality of an output are of their desired values, 
and by ARL1 under the alternative when there is a departure away from such assumption. 
Two simple examples will later be provided for readers to easily understand the mecha-
nism and the main spirit of a two-stage control procedure of general type, some technical 
remarks regarding the two-stage procedure deserve special consideration.

Remark 1 In contrast to how a warning line is typically added in a single-stage control 
scheme for the purpose of signaling for action to seek out and eradicate cause of trouble 

(9)

E[W] =

∞∑
n=1

nP(W�
1
= n) +

∞∑
n
2
=1

P(W�
2
= n

2
)

∞∑
n
1
=1

n
1
P(W� = n

1
)

+

∞∑
n
1
=1

P(W� = n
1
)

∞∑
n
2
=1

n
2
P(W�

2
= n

2
).

M
W
(s) = E[esW ] =

∞∑
n=1

ensP(W = n)

=

∞∑
n=1

ens
[
P(W = W�

1
= n) + P(W = W� +W�

2
= n)

]

=

∞∑
n=1

ensP(W�
1
= n) +

∞∑
n=2

e(n1s+n2s)P(W� = n
1
,W�

2
= n

2
)

=

∞∑
n=1

ensP(W�
1
= n) +

[ ∞∑
n
1
=1

en1sP(W� = n
1
)

][ ∞∑
n
2
=1

en2sP(W�
2
= n

2
)

]

M
W
(s) =

∞∑
n=1

ens�
0
N

n−1
1

C
�
�
1

+

∞∑
n
1
=1

en1s�
0
N

n
1
−1

1
C
�
�

∞∑
n
2
=1

en2s�
0
N

n
2
−1

2
C
�
�
2

= �
0
(I − esN1)

−1
C
�
�
1

+
[
�
0
(I − esN1)

−1
C
�
�

] ∞∑
n
2
=1

en2s�
0
N

n
2
−1

2
(I − N2)1

�

= �
0
(I − esN1)

−1
C
�
�
1

+
[
�
0
(I − esN1)

−1
C
�
�

][
�
0
(I − esN2)

−1(I − N2)1
�
]
.

E[W] =
d

ds
M

W
(s)

|||s=0 = �
0
(I − N1)

−2
C
�
�
1

+ �
0
(I − N1)

−2
C
�
�
+ �

2
�
0
(I − N2)

−1
1
�,
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when a cluster of points on the chart is considered to be peculiar, e.g., supplementary 
rules in Fu et al. (2003) are used to set off out-of-control signals that tend to make charts 
more sensitive (and therefore increasing the rate of false alarm), supplementary rules in 
Shewhart-type control chart in our examples are used merely to set off warnings when sam-
ple points on a chart remain within control limits. As a matter of fact, a warning line (or 
a set of warning lines) is not a necessity in this two-stage control process for defining a 
warning state in Markov chain imbedding. The warning state is a general notion for a set of 
decision rules being used as a mechanism to switch to the second stage of process control 
which may have more stringent rules than those of the first for signaling trouble. Instead of 
an out-of-control alarm being issued when suspicious, a warning signal gives a hint for the 
possibility of the process being charted may be off its course, but definitive evidence is not 
in presence to call for action.

Remark 2 The conditions for (1) and (2) are rather mild. They are satisfied with most finite 
Markov chain imbeddable quality control processes. The conditions are given to make the 
proof simple and tractable for our results. The conditions can be extended in several direc-
tions and the results will hold.

Remark 3 A multitude of charts that can be studied using a two-stage control procedure is 
more inclusive than what can be considered using the method in Fu et al. (2003). Despite 
that in special scenarios a two-stage control chart may be studied using the method in Fu 
et al. (2003), computations based on the two-stage approach will definitely gain efficiency 
due to the use of much smaller matrices when the state space of a Markov chain being 
analyzed using their method is large, and especially when it is associated with a transition 
matrix largely of zeros. In these special scenarios, the set of states corresponding to the 
second-stage process as a whole is closed to the set of states corresponding to the first-
stage process according to Feller (1968) by his Definition in Section 4 of Chapter XV. In 
other words, states in the set corresponding to the first-stage process can not be reached 
from any state of the set corresponding to the second-stage process, and some or all states 
corresponding to the second-stage process may be reached from the set of warning states 
that needs to be defined for the first-stage process. However, the initial state of the second-
stage process may or may not necessarily be dependent upon the warning states.

Remark 4 The results shown above can be extended to the case when the first-stage control 
process Y1(t) has m warning states, and associated with them are m options for the second-
stage control process as Y

2j
(t) , j = 1,… ,m . The distribution of W of the process is then, for 

n = 1, 2,…,

and the formula to obtain ARL is now

where

P(W = n) = �
0
N

n−1
1

C
�
�
1

+

m∑
j=1

n−1∑
i=2

(�
0
N

i−1
1

C
�
�
j

)(�
0
N

n−i−1
2j

C
�
�
2j

),

E[W] = �
0
(I − N1)

−2
C
�
�
1

+

m∑
j=1

�
1j
�
0
(I − N1)

−2
C
�
�
j

+

m∑
j=1

�
2j
�
0
(I − N

2j
)−11�,
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and

Remark 5 For the practical use of our two-stage process control procedure, an idea similar 
to that of Chan et  al. (2003) can be incorporated into decision rules to allow automatic 
determination, from a statistical point of view, when an alarm may be considered as a sig-
nal for “process being out-of-control” from a “false alarm”.

In practice of setting up an upper control limit to detect upward shift or a lower control 
limit to detect downward shift of some process characteristic, or whether it be given both 
upper and lower control limits in a setup to detect a shift in either direction, early appear-
ance of an out-of-control alarm gives ground for alleged irregularity of the process. Since 
waiting time is here a discrete random variable, let

be the critical value for waiting time corresponding to nominal type I error rate 0 < 𝛼 < 1 , 
or simply the 100� th percentile of waiting-time distribution. If the first occurrence of an 
out-of-control alarm appears at or before the n

�
 th trial in either the first or the second stage, 

there is considerable evidence for that investigation and corrective action may be required. 
Otherwise, when the first occurrence of an out-of-control alarm appears after the n

�
 th trial 

in either the first or the second stage, it may be interpreted as a false alarm and the process 
is regarded as in control, reset n to 0 and the next inspection will correspond to n = 1 of the 
first stage of the process control.

Furthermore, the quantity in (10) can be regarded as a decision rule in a hypothesis 
test where the null hypothesis states that the process being examined is under control. In a 
typical situation, one may reject the null hypothesis if the first appearance of out-of-control 
alarm is observed from a sample at or before the n

�
 th time point since the initial of the 

monitoring process or since a reset of the process. The probability P(W ≤ n
�
∣ H 

o
) is then 

the true type I error rate. On the other hand, the performance of a test in various degrees of 
departure of the truth away from the null hypothesis can be assessed by looking at type II 
error rate, i.e., P(W > n

𝛼
∣ H 

a
).

4  Example and Numerical Study

Example 1 Please refer to Fig. 1 for an example of a chart for two-stage control process 
only for the purpose of demonstration. Let us suppose that each observation of some 
quality characteristic is X(t) ∼ N(� = 0 , �2 = 1 ), t = 1, 2,… . In the first stage, consider 
the three zones A = [x

1
,∞) , B = [y

1
, x

1
) , and C = (−∞, y

1
) , one has p

A
= P(X(t) ∈ A) , 

p
B
= P(X(t) ∈ B) , and p

C
= P(X(t) ∈ C) for each t: 

 (i) an out-of-control alarm is issued when an observation appears in zone A;

�
1j
=

∞∑
i=1

�
0
N

i−1
2j

C
�
�
2j

= 1 for j = 1,… ,m,

𝜅
2j
=

∞∑
i=1

�
0
N

i−1
1

C
�
𝜃
j

< 1 for j = 1,… ,m.

(10)n
�
≡ max{n ∶ P(W ≤ n) ≤ �}
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 (ii) a warning signal is issued when two consecutive observations appear in zone B, then 
the second-stage control process is initiated;

 (iii) or first-stage control process continues otherwise.

With understanding, the imbedded Markov chain {Y1(t)} induced by the sequence {X(t)} 
defined on the state space Ω1 = {�

1
,B,C, �, �

1
} has the transition matrix

where �
1
 stands for the initial (dummy) state (not out-of-control) in which the process is 

represented prior to the first observation of the first stage, �
1
 the state in which the process 

is considered as out-of-control, and � the state in which a warning is to be given.
In the second stage, if initiated, let us consider zone D = [x

2
,∞) with p

D
= P(X(t) ∈ D) 

and zone E = (−∞, x
2
) with p

E
= P(X(t) ∈ E) for each t: 

 (i) an out-of-control alarm is issued when an observation appears in zone D;
 (ii) or second-stage control process continues otherwise.

The imbedded Markov chain {Y2(t)} here induced by the sequence {X(t)} in the second 
stage defined on the state space Ω2 = {�

2
,E, �

2
} has the transition matrix

where �
2
 stands for the initial (dummy) state (not out-of-control) in which the process is 

represented prior to the first observation of the second stage, and �
2
 the state in which the 

process is considered as out-of-control.

M
1
=

�
1

C

B

�

�
1

⎛⎜⎜⎜⎜⎝

0 p
C
p

B
0 p

A

0 p
C
p

B
0 p

A

0 p
C
0 p

B
p

A

0 0 0 1 0

0 0 0 0 1

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎝

N
1
C
�
�
C
�
�
1

O
1

0

0

1

⎞⎟⎟⎠
for all t = 1, 2,… ,

M
2
=

�
2

E

�
2

⎛⎜⎜⎝

0 p
E
p

D

0 p
E
p

D

0 0 1

⎞⎟⎟⎠
=

�
N

2
C
�
�
2

O 1

�
for all t = 1, 2,… ,

Fig. 1  Example chart for two-stage control process
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By setting y
1
= 1.8807936 and x

1
= 3.5400838 , variable X(t) belongs to the zones C and 

B with probabilities p
C
= 0.97 and p

B
= 0.0298 , respectively. Note that p

A
+ p

B
+ p

C
= 1 , 

so that p
A
= 0.0002 . By setting x

2
= 1.8807936 , X(t) belongs to zone E with probability 

p
E
= 0.97 , so then p

D
= 0.03 . Let �0 = (1 0 0 0 0) and �0 = (1 0 0) , the waiting-time dis-

tribution of the out-of-control alarm is tabulated in Table 1. In Table 2 are the ARLs with 
various choices of ( p

A
 , p

B
 , p

C
 , p

D
 , p

E
 ) which can be used to suggest control limits given that 

Table 1  Waiting-time 
distribution

∗All entries in the  P(W = n)  column are to be scaled by a factor 
of 10−4

n P(W = n) n P(W = n) n P(W = n) n P(W = n)

1 2.0000 14 4.6053 27 6.4850 40 7.7036
2 1.9996 15 4.7798 28 6.5989 41 7.7767
3 2.2638 16 4.9489 29 6.7091 42 7.8473
4 2.5121 17 5.1125 30 6.8156 43 7.9155
5 2.7529 18 5.2709 31 6.9186 44 7.9813
6 2.9861 19 5.4242 32 7.0182 45 8.0448
7 3.2119 20 5.5726 33 7.1145 46 8.1060
8 3.4306 21 5.7161 34 7.2075 47 8.1652
9 3.6425 22 5.8551 35 7.2975 48 8.2222
10 3.8476 23 5.9895 36 7.3844 49 8.2771
11 4.0463 24 6.1196 37 7.4684 50 8.3302
12 4.2387 25 6.2455 38 7.5495 ⋮ ⋮

13 4.4249 26 6.3672 39 7.6279

Table 2  Two-stage control process and its ARL 

Reference Limits p
A

p
B

p
C

p
D

p
E

ARL
0

(A1) y
1
= 1.8807936

x
1
= 3.5400838

x
2
= 1.8807936

0.0002 0.0298 0.9700 0.0300 0.9700 968.37416

(A2) y
1
= 0.8416212

x
1
= 1.8807936

x
2
= 1.8807936

0.0300 0.1700 0.8000 0.0300 0.9700 33.33333

(A3) y
1
= 2.5971532

x
1
= 3.1946511

x
2
= 2.78215045

0.0007 0.0040 0.9953 0.0027 0.9973 1405.0166

(A4) y
1
= 1.6448536

x
1
= 2.7943759

x
2
= 2.7666215

0.0026 0.0474 0.9500 0.002832024 0.997167976 370.37037

(A5) y
1
= 1.8706039

x
1
= 2.8781617

x
2
= 2.0243549

0.0020 0.0287 0.9693 0.021466824 0.978533176 370.37037

(A6) y
1
= 1.8691640

x
1
= 2.8943041

x
2
= 0.8907810

0.0019 0.0289 0.9692 0.186523325 0.813476675 370.37037

(A7) y
1
= 1.6448536

x
1
= 2.78215045

x
2
= 2.78215045

0.0027 0.0473 0.9500 0.0027 0.9973 370.37037
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a process is in control. Probability values with four decimal places are handpicked except 
those for p

D
 and p

E
 given sets of control limits in (A4), (A5) and (A6), where with chosen 

( p
A
 , p

B
 , p

C
 ), that are searched particularly to achieve the ARL of 370.37037.

For each specified � the 100� th percentile of the waiting-time distribution of out-of- 
control signal for each control reference of (A1) to (A6) is placed in Table 3. In Fig. 2 are the  
cumulative waiting-time distributions, P(W ≤ n) for n = 1,… , 5000 , of the out-of-control 
alarm for references (A1) to (A4) in Table 2. The distributions for references (A5), (A6) 
and (A7) almost mimic that for (A4).

The ARLs for the case when only the second stage is used as a single-stage control pro-
cess with various values for the control limit are displayed in Table 4. It is well known that 
in such case, the formula to obtain the average run length of the control process simply is

(11)ARL = �
0
(I − N2)

−1
1
�.

Table 3  100� th percentile of the 
waiting-time distribution of out-
of-control signal

Reference

(A1) (A2) (A3) (A4) (A5) (A6)

� = 0.005 14 0 3 1 1 1
� = 0.010 23 0 5 2 2 2
� = 0.025 44 0 8 3 4 4
� = 0.050 73 1 11 5 6 6
� = 0.100 126 1 16 8 9 9

Fig. 2  Cumulative waiting-time distribution of out-of-control alarm
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In comparing the ARLs in Table 4 to those in Table 2, if we compare reference (B1) 
to (A1), the ARL is lengthened when a portion solely of the out-of-control zone in the 
single-stage design is transformed into a warning zone to form the first stage of a two-stage 
control process while the second stage is kept the same to that of (B1). Comparing (B1) 
to (A2), the ARL is not affected when a portion solely of the in-control zone in the single-
stage design is transformed into a warning zone to form the first stage while the second 
stage is kept the same to that of (B1). However, if a second stage is augmented with a 
tighter in-control zone as (B2) is compared to (A1), the ARL can be shortened.

The behaviour of ARL requires to be studied numerically when portions from each of 
the out-of-control zone and the in-control zone are combined to form a new warning zone 
in the first stage of a two-stage control process, and when this is practised however, the 
ARL can be controlled by the choice of the warning zone and by how the out-of-control 
zone is set up in the second stage as (B3) is compared to (A3) and (A4). It is not surprising 
that various choices of warning limit in the first stage, and control limits in the first and the 
second stages, may yield the same ARL as seen in (B3) compared to that in (A4), (A5) and 
(A6). It seems that a slightly wider in-control zone set up in the first stage can go with a 
much tighter in-control zone set up in the second stage to maintain the same ARL to that of 
a single-stage control process.

Supposedly, the N(� = 0 , �2 = 1 ) normality assumption for X(t) is hypothesized under 
the null for an in-control process. By choosing y

1
= 1.6448536 , x

1
= 2.78215045 , and 

x
2
= 2.78215045 , therefore ( p

A
 , p

B
 , p

C
 , p

D
 , p

E
 ) = (0.0027, 0.0473, 0.95, 0.0027, 0.9973), 

the in-control ARL for such two-stage control process is 370.37037 and max{n : P(W ≤ n ∣ 
H 

o
) ≤ �} = 18 for the nominal � = 0.05 . We take a look then at the behaviour of out-of-

control process ARL and the waiting-time distribution of an alarm when there is a shift away 
in mean under the alternative. In other words, obtain for the same warning and control limits 
the ARL when there is a small positive shift in mean to d for each of d = 0.01 , d = 0.025 and 
d = 0.05 , and for each of a larger shift of d = 0.1 , d = 0.25 and d = 0.5 . Results are organ-
ised in Table 5. The cumulative waiting-time distributions of out-of-control signal are dis-
played in order from right to left and by line width as seen in Fig. 3. Furthermore, we plot in 

Table 4  Single-stage control 
process and its ARL 

Reference control limit p
D

p
E

ARL
0

(B1) x
2
= 1.8807936 0.0300 0.9700 33.3333

(B2) x
2
= 3.5400838 0.0002 0.9998 5000

(B3) x
2
= 2.7821505 0.0027 0.9973 370.37037

Table 5  ARL of two-stage control process when there is a shift in mean to N(� = d , �2 = 1)

shift in mean p
A

p
B

p
C

p
D

p
E

ARL
0

d = 0.00 0.0027 0.0472952 0.9500048 0.0027 0.9973 370.37037
ARL

1

d = 0.01 0.0027844 0.0482555 0.9489601 0.0027844 0.9972156 359.14837
d = 0.025 0.0029154 0.0497165 0.9473681 0.0029154 0.9970846 343.00895
d = 0.05 0.0031461 0.0522264 0.9446275 0.0031461 0.9968539 314.6668
d = 0.10 0.0036575 0.0575333 0.9388092 0.0036575 0.9963425 273.40873
d = 0.25 0.0056683 0.0758617 0.9184700 0.0056683 0.9943317 176.42077
d = 0.50 0.0112402 0.1148947 0.8738651 0.0112402 0.9887598 88.96615
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Fig. 4 with the vertical axis being 𝛽 = P(W > 18 ∣ H a : � = d) and the horizontal axis being 
d for d starting from 0.005 to 2.5 with intervals of 0.005. A graph of any relation between � 
and d here is usually called an operating-characteristic curve. We wish to point out that the 
outcome of ARL calculation depends on how accurate the probability of a sample statistic to 
fall in each of the regions A to E, thus the values used to construct the two transition matri-
ces M1 and M2 , is estimated. Estimation of these transition probabilities is well dependent 

Fig. 3  Cumulative waiting-time distribution of out-of-control alarm when there is a shift in mean

Fig. 4  Type II error rate when there is a shift in mean
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on the, either parametric or empirical, estimation of the sampling distribution of the statis-
tic being monitored for a given set of control and warning limits. For example, if X(t) of 
an in-control process was to have a Student’s t-distribution with five degrees of freedom, 
the setting of y

1
= 2.0150484 , x

1
= 4.686915 and x

2
= 4.686915 would yield the same val-

ues for ( p
A
 , p

B
 , p

C
 , p

D
 , p

E
 ) as before; if X(t) was to have a chi-square distribution with six 

degrees of freedom, the setting of y
1
= 12.591587 , x

1
= 20.0619 and x

2
= 20.0619 would 

yield the same values for the set of transition probabilities, and therefore an in-control ARL 
of 370.37037 and the same waiting-time distribution of false alarm, as those of the N(� = 0 , 
�2 = 1 ) setup in the above.

Finally, we demonstrate numerically one advantage of a two-stage process control 
with a flexibility to adjust control limits at each stage and possibly having an out-of- 
control signal sooner when there is a shift away in process mean. With normality assump-
tion N(� = 0 , �2 = 1 ) about X(t) while the process is in control, ARLs are calculated  
and displayed in Table 6 for a small shift of � + d for d = 0.01 , d = 0.025 and d = 0.05 , 
and for a larger shift of d = 0.1 , d = 0.25 and d = 0.5 , had a single-stage process control 
been chosen. We then choose reference (A6) in Table 2 for a two-stage process control 
example and recalculate the ARLs for the same shifts in mean, numerical results are 
organised in Table 7. In comparing the results in both tables, it can be seen that when 
the concern is in the upper tail region of a distribution above some target of a process, 
the two-stage control process provides an out-of-control alarm marginally faster for all 
our studied processes with a positive shift away from the target.

Example 2 This example is created to show the possibility of extending our method in 
the case when some kind of dependency structure exists among time-homogeneous data 

Table 6  ARL of single-stage 
control process with an upper 
control limit of 2.78215045 
when there is a shift in mean to 
N(� = d , �2 = 1)

shift in mean p
D

p
E

ARL
0

d = 0.00 0.0027 0.9973 370.37037
ARL

1

d = 0.01 0.0027844 0.9972156 359.1484
d = 0.025 0.0029154 0.9970846 343.0090
d = 0.05 0.0031461 0.9968539 317.8518
d = 0.10 0.0036575 0.9963425 273.4087
d = 0.25 0.0056683 0.9943317 176.4208
d = 0.50 0.0112402 0.9887598 88.9662

Table 7  ARL of two-stage control process when there is a shift in mean to N(� = d , �2 = 1)

shift in mean p
A

p
B

p
C

p
D

p
E

ARL
0

d = 0.00 0.0019 0.0289 0.9692 0.186523325 0.813476675 370.37037
ARL

1

d = 0.01 0.00196 0.02954 0.9685 0.18922 0.81078 357.774795
d = 0.025 0.00206 0.03052 0.96742 0.19331 0.80669 338.972737
d = 0.05 0.00223 0.03221 0.96556 0.20024 0.79976 310.660124
d = 0.10 0.0026 0.03583 0.96157 0.21454 0.78546 261.963245
d = 0.25 0.00409 0.04861 0.9473 0.26083 0.73917 159.006240
d = 0.50 0.00833 0.07714 0.91453 0.34798 0.65202 73.324997
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observations. With this in mind, let us reconsider Example 1, in addition, suppose that the 
process X(t = 1),X(t = 2),… ,X(t = n) is first-order Markov dependent. Given constant 
c
0
 and suppose marginally X(t) ∼ f (x) = (

√
2�)−1 exp{−(x − c

0
)2∕2} for all t = 1,… , n , 

−∞ < x < ∞ , and the conditional distribution function of X(t + 1) = y given X(t) = x is 
f (y ∣ x) = (

√
2�)−1 exp{−(y − x)2∕2} for t = 1,… , n , −∞ < y < ∞ . The joint density of 

X(t = 1) = z
1
,X(t = 2) = z

2
,… ,X(t = n) = z

n
 will then be f (z

1
, z

2
,… , z

n
) = f (z

1
)f (z

2
∣ z

1
)

f (z
3
∣ z

2
)⋯ f (z

n
∣ z

n−1
).

Having the same control rules as those in Example 1, the imbedded Markov chain 
{Y(t) , Ωt , t = 0, 1, 2,…} on the state space Ωt = {�,C,B, �,E, �

1
, �

2
} for the process {X(t) , 

t = 0, 1, 2,…} , where for any t while in the first stage, Y(t) = C when an observation 
appears in ( −∞, y

1
 ) at t, Y(t) = � when both observations at t − 1 and t appear in [ y

1
, x

1
 ), 

or Y(t) = B when an observation appears in [ y
1
, x

1
 ) just at t, otherwise, Y(t) = �

1
 when an 

observation appears in [ x
1
,∞ ). On the other hand, for any t while in the second stage, 

Y(t) = E when an observation appears in ( −∞, x
2
 ) at t, or Y(t) = �

2
 when an observation 

appears in [ x
2
,∞ ). Y(t) has the transition matrix

which is independent of t, where � stands for the (dummy) state (not out-of-control) which 
the process is in at the initial time t = 0 prior to the first observation of the first stage, �

1
 is 

used to denote the state of the process when it is considered to be out-of-control in the first 
stage, and �

2
 in the second stage, and

Mt =

�

C

B

�

E

�
1

�
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 p
C

p
B

0 0 p
A

0

0 p
CC

p
CB

0 0 p
CA

0

0 p
BC

0 p
BB

0 p
BA

0

0 0 0 0 p
BE

0 p
BD

0 0 0 0 p
EE

0 p
ED

0 0 0 0 0 1 0

0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

�
N C

O I

�
for t = 1, 2,… , n

p
A
= ∫

∞

x
1

1√
2�

e−(x−c0)
2∕2dx, p

B
= ∫

x
1

y
1

1√
2�

e−(x−c0)
2∕2dx, p

C
= ∫

y
1

−∞

1√
2�

e−(x−c0)
2∕2dx,

p
BA
= P(X(t + 1) ∈ A ∣ X(t) ∈ B) =

∫ x
1

y
1

�∫ ∞

x
1

1√
2�

e−(y−x)
2∕2dy

�
1√
2�

e−(x−c0)
2∕2dx

∫ x
1

y
1

1√
2�

e−(x−c0)
2∕2dx

,

p
BB
=

1

2�
∫ x

1

y
1

�∫ x
1

y
1

e−(y−x)
2∕2dy

�
e−(x−c0)

2∕2dx

∫ x
1

y
1

1√
2�

e−(x−c0)
2∕2dx

, p
BC
=

1

2�
∫ x

1

y
1

�∫ y
1

−∞
e−(y−x)

2∕2dy
�
e−(x−c0)

2∕2dx

∫ x
1

y
1

1√
2�

e−(x−c0)
2∕2dx

,

p
CA
=

1

2�
∫ y

1

−∞

�∫ ∞

x
1

e−(y−x)
2∕2dy

�
e−(x−c0)

2∕2dx

∫ y
1

−∞

1√
2�

e−(x−c0)
2∕2dx

, p
CB
=

1

2�
∫ y

1

−∞

�∫ x
1

y
1

e−(y−x)
2∕2dy

�
e−(x−c0)

2∕2dx

∫ y
1

−∞

1√
2�

e−(x−c0)
2∕2dx

,

p
CC

=

1

2�
∫ y

1

−∞

�∫ y
1

−∞
e−(y−x)

2∕2dy
�
e−(x−c0)

2∕2dx

∫ y
1

−∞

1√
2�

e−(x−c0)
2∕2dx

,
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Given y
1
 , x

1
 and x

2
 , the probabilities p

A
 , p

B
 , p

C
 , p

BA
,… , p

EE
 can be obtained by numer-

ical integration. Hence, the distribution of W of the two-stage control process in this 
case simply is

For the purpose of illustration and to simplify our computation, for t = 1, 2,… 
under the null assumption, suppose marginally X(t) ∼ N(0,  1), and conditionally, 
X(t + 1) ∣ X(t) = x ∼ N(0, 1) for all x ∈ (−∞, y

1
) and X(t + 1) ∣ X(t) = x ∼ N(y

1
, 1 ) for all 

x ∈ [y
1
, x

1
 ) when in the first stage. Suppose conditionally X(t + 1) ∣ X(t) = x ∼ N(0, 1) for 

all x ∈ (−∞, x
2
) when in the second stage.

By choosing y
1
= 1.6448536 , x

1
= 2.78215045 , and x

2
= 2.78215045 , therefore ( p

A
 , p

B
 , 

p
C
 , p

D
 , p

E
 ) = (0.0027, 0.0473, 0.95, 0.0027, 0.9973). The transition matrix of our imbedded 

Markov chain to obtain the distribution of time to an out-of-control alarm in this case is

The in-control ARL0 for such two-stage control process can be calculated to be 256.3 
using (11) with N in place of N2 , and it can easily be obtained that max{n : P(W ≤ n ∣ 
H 

o
) ≤ �} = 5 for the nominal type I error rate of � = 0.05.
When independence is to be assumed about the data generated from the process 

X(t = 1) , X(t = 2) , … ,X(t = n) , the transition matrix of Y(t), for t = 1,… , n , will become

and formula (12) can still be used for computation for the distribution of W of the two-
stage control process, and therefore obtain the in-control ARL0 to be 370.37037 and max{n : 
P(W ≤ n ∣ H 

o
) ≤ �} = 18 at the nominal type I error rate of � = 0.05 , which are the same 

to what we have seen earlier in Example 1.

p
BD
=

1

2�
∫ x

1

y
1

�∫ ∞

x
2

e−(y−x)
2∕2dy

�
e−(x−c0)

2∕2dx

∫ x
1

y
1

1√
2�

e−(x−c0)
2∕2dx

, p
BE
=

1

2�
∫ x

1

y
1

�∫ x
2

−∞
e−(y−x)

2∕2dy
�
e−(x−c0)

2∕2dx

∫ x
1

y
1

1√
2�

e−(x−c0)
2∕2dx

,

p
ED
=

1

2�
∫ x

2

−∞

�∫ ∞

x
2

e−(y−x)
2∕2dy

�
e−(x−c0)

2∕2dx

∫ x
2

−∞

1√
2�

e−(x−c0)
2∕2dx

, p
EE
=

1

2�
∫ x

2

−∞

�∫ x
2

−∞
e−(y−x)

2∕2dy
�
e−(x−c0)

2∕2dx

∫ x
2

−∞

1√
2�

e−(x−c0)
2∕2dx

.

(12)P(W = n) = (1 0 0 0 0 0 0)Nn−1(I − N)1�.

Mt =

�

C

B

�

E

�
1

�
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0.95 0.0473 0 0 0.0027 0

0 0.95 0.0473 0 0 0.0027 0

0 0.5 0 0.3723 0 0.1277 0

0 0 0 0 0.8723 0 0.1277

0 0 0 0 0.9973 0 0.0027

0 0 0 0 0 1 0

0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

for t = 1, 2,… , n.

Mt =

�

C

B

�

E

�
1

�
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 p
C
p

B
0 0 p

A
0

0 p
C
p

B
0 0 p

A
0

0 p
C
0 p

B
0 p

A
0

0 0 0 0 p
E
0 p

D

0 0 0 0 p
E
0 p

D

0 0 0 0 0 1 0

0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

�
N C

O I

�
for t = 1, 2,… , n,
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5  Concluding Remarks

As an alternative to single-stage control scheme, we present a method to evaluate the per-
formance of implementing a mechanism to advise process inspector of the potential risk in 
the first stage of a two-stage control process. The aim in this work is to not merely com-
pare a specific two-stage control chart to a previously known single-stage type of chart 
(e.g., Shewhart chart), but to demonstrate the computational feasibility in designing a 
Markov chain imbeddable two-stage process control. Our method relies on a Markov chain 
approach in aid to obtain an analytical expression for each of the various statistical prop-
erties, such as the average run length and the distribution of time to signal, of a chart. 
Obtaining the waiting-time distribution of false alarm allows one to determine for inference 
the actual type I error rate when process is on-target. The quantiles of the distribution of 
time to false alarm then allows one to further obtain the probability of failing to reject the 
false in-control null assumption about the process when there is a shift away from the null. 
With a clear-cut process inspection scheme, the method of analysis can be extended in a 
straightforward manner even when the first or the second stage, or both, of a two-stage con-
trol process is to be monitored using a plot of Shewhart-type, Cusum-type, or a weighted 
moving average type without or with supplementary runs rules in the sense of Champ and 
Woodall (1987), or with more complicated rules in the sense of   Fu et  al. (2003). One 
may also consider the processes studied by Chang and Wu (2011) when data points, on a 
plot of Shewhart-type, Cusum-type and/or EWMA-type without or with certain feature, are 
autoregressive in nature in the first or the second stage, or in both.

We have taken into account the possibility and flexibility of monitoring under the on-
target assumption in different aspects of the same process in two stages. The approach is 
quite general and it requires simply the probability of a process characteristic being moni-
tored to fall into each of finitely partitioned zones to construct a transition matrix for the 
imbedded Markov chain. The distribution of warning state(s) of the first stage acting as a 
mechanism to initiate the second stage of the control process is also necessary, in addition 
to carefully determined probability for each possible initial state of the imbedded Markov 
chain of the second stage. Another advantage of this approach is that it allows one to con-
sider a partition of the warning zone in a way that each of the multiple rules being used to 
give out a warning signal when observations appear in one or multiple of the subzones may 
lead to a different second-stage process control corresponding to that particular rule. Apart 
from the possibility to consider multiple warning rules, the condition met by a process for 
it to be considered out-of-control can also be defined by more than one runs-rule as an 
extension to such rather straightforward example.

When a single-stage chart is supplemented with rules as additional ways to signal (out-
of-control), there may be a general theory which allows one to investigate the probability 
of a false alarm set off by each rule when instead the same set of rules is used as a way  
to give warnings (not an out-of-control signal) in the first stage and to start off the sec-
ond stage of a two-stage control process which eventually suggests the overall process to 
be in control. With some diligence in this line of work one may bring answers to such 
question to light that could be of interest to some readers. Furthermore, we anticipate that 
the method presented here can be applied easily to the case shall action lines and warning 
states are to be set in a chart to signal about possible shift of a process away in the above or 
below from a target. When additionally a cost model is available as a function of the state  
space of imbedded Markov chains, economic feasibility of a chart design can also be 
studied.
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