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Abstract
This paper investigates the hitting time problems of sticky Brownian motion and their 
applications in optimal stopping and bond pricing. We study the Laplace transform of first 
hitting time over the constant and random jump boundary, respectively. The results about 
hitting the constant boundary serve for solving the optimal stopping problem of sticky 
Brownian motion. By introducing the sharpo ratio, we settle the bond pricing problem 
under sticky Brownian motion as well. An interesting result shows that the sticky point is 
in the continuation region and all the results we get are in closed form.
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1  Introduction

We denote by ( Ω , F  , � ) a complete probability space throughout this paper and the filtra-
tion {Ft}t≥0 is assumed to satisfy the usual conditions1. For a Markov process X = {Xt}t≥0 , 
the notation ( Xt , Ft ) signifies that X = {Xt}t≥0 is adapted to the filtration {Ft}t≥0 . For 
parameter (sticky coefficient) � ≥ 0 , we define the sticky Brownian motion ( Xt , Ft ) as a 
weak solution to

(1)
{

Xt = x + ∫ t

0
1{Xs≠0}Ws,∫ t

0
1{Xs=0}

ds = 𝜅L̂X
t
(0),
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1  A filtration {F
t
}
t≥0 is said to satisfy the usual conditions if it is right-continuous and F

0
 contains all the �

-negligible events in F .
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where W is a standard Brownian motion on the probability space ( Ω , F  , � ) and L̂X(0) is the 
symmetric local time of X at 0 (for symmetric local time, we refer the readers to Revuz and 
Yor (1999)). The aim of this paper is to investigate hitting time problems of sticky Brown-
ian motion and the its application to optimal stopping problem.

Since the sticky boundary behaviour of diffusion processes was discovered by Feller in 
his 1952 paper Feller (1952) (see also Feller (1954, 1957)), many researchers have been 
interested in sticky diffusions satisfying certain stochastic differential equations (SDEs) 
that has a sticky point. Skorokhod conjectured that the SDE has no strong solution and 
Chitashvili published a technical report Chitashvili (1997) in 1989 claiming a proof (the 
paper was published after his death in 1997). In the same year, Warren (1997, 1999) fur-
ther investigated solutions to (1) demonstrating that the process X is not adapted to the fil-
tration generated by W and has some “extra randomness”. More general results on the non-
cosiness of filtrations appeared in Watanabe (1999). Recently, Engelbert and Peskir (2014) 
and Bass (2014) proved that weak existence and weak uniqueness hold, but that pathwise 
uniqueness does not hold nor does a strong solution exist, respectively. In addition, Engel-
bert and Peskir considered the system of sticky Brownian motion with one-sided reflec-
tion boundary, and their results thus provide a new proof of those of Chitashvili. Besides, 
Nie and Linetsky (2020) focused on the sticky reflecting Ornstein-Uhlenbeck diffusions. 
It is worth noticing that Salins and Spiliopoulos (2017) proposed delayed process to study 
the sticky boundary and corresponding occupation times. Actually, the process with spatial 
delay in their paper seems to be similar to sticky process. The extension is that the authors 
studied a general class of Markov process where both skew and sticky behaviors exist. 
Besides, a most recent work by Zhang and Jiang (2020) studied the construction, time 
change and transition densities of sticky skew Brownian motion but with no applications.

From the definition on Chapter VII in Revuz and Yor (1999), we know that the sticky point 
is slowly reflecting. Here we emphasize the slowly reflecting, i.e. 0 ≠ ∫ t

0
1{Xs=0}

ds = 𝜅L̂X
t
(0) . 

Consider a standard Brownian motion W and define 𝜏W
𝛿

∶= inf{t > 0 ∶ |Wt| > 𝛿}, then we 
know

But for the sticky Brownian motion X, again define 𝜏X
𝛿
∶= inf{t > 0 ∶ |Xt| > 𝛿} , it fol-

lows that

which means that the sticky Brownian motion spends much more time in a �-neighborhood 
of 0 than standard Brownian motion. In particular, the sticky Brownian motion reduces to 
standard Brownian motion when � = 0.

By the seminal work of Feller (1957), we know that virtually any one dimensional, 
homogeneous, continuous Markov process can be uniquely characterized via its infinitesi-
mal generator and the definition domain of the generator, and vice versa. We remark two 
recent optimal stopping work by Mordecki and Salminen (2019a, b) based on generalized 
Brownian motion, being oscillating Brownian motion and Brownian motion with broken 
drift, respectively. To our knowledge, there exists some of classical papers concerned  

lim
�↓0

E0(�
W
�
) = 0.

lim
�↓0

1

�
E0(�

X
�
) = �,
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with the construction and basic properties of sticky Brownian motion which are significant 
to be explored. In our paper, we first compute some meaningful properties of first hitting 
time over a constant boundary and a random jump boundary, respectively. Laplace trans-
form and strong Markov property play an important role when dealing with these prob-
lems. Second, we turn to investigating the applications in optimal stopping and bond pric-
ing of sticky Brownian motion. The results of first hitting time over constant boundary and 
sharpo ratio are essential.

The rest of our paper is organized as follows. In Section 2, we focus on the first hit-
ting time problems over two kinds of boundaries: a constant boundary and a random jump 
boundary, respectively. Section  3 studies the applications in optimal stopping and bond 
pricing under sticky Brownian motion. By the results about hitting the constant boundary, 
we solve the optimal stopping problem; By introducing the sharpo ratio, we get the bond 
price. All the results we get are closed-form. Section 4 concludes.

2 � First Hitting Time of Sticky Brownian Motion

In this section, we explore the basic first hitting time problems for sticky Brownian motion 
X defined by (1) over a constant boundary and a random jump boundary, respectively.

2.1 � First Hitting Time Over the Constant Boundary

Set a constant level l ≥ 0 and define the first hitting time of X for touching l by

The Laplace transform of �l is

where X0 = x ≥ 0 is the initial point of X and 𝜃 > 0 . Then we have the following theorem 
about the Laplace transform of the first hitting time.

Theorem 1  The Laplace transform of the first hitting time of sticky Brownian motion X is

where

and

(2)�l ∶= inf{t ≥ 0;Xt = l}.

(3)L(�;x, l) ∶= �x[e
−��l ],

(4)L(𝜃;x, l) =

⎧
⎪⎨⎪⎩

f (x)

f (l)
, x ≤ l,

g(x)

g(l)
, x > l,

(5)f (y) =

�
ey

√
2𝜃 , y ≤ 0,

a1e
y
√
2𝜃 + a2e

−y
√
2𝜃 , y > 0,

(6)g(y) =

�
b1e

y
√
2𝜃 + b2e

−y
√
2𝜃 , y ≤ 0,

e−y
√
2𝜃 , y > 0,
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with the coefficients ai and bi (i = 1, 2) given by

Proof  It is easy to show that f is an increasing continuous function satisfying the boundary 
conditions

and g is a descreasing continuous function satisfying the boundary conditions

The boundary conditions come from the infinitesimal generator and the definition 
domain of the generator of sticky Brownian motion. Furthermore, for arbitrary z ≠ 0 , both 
f and g satisfy the Sturm-Liouville equation (h represents f or g)

Applying Itô-Tanaka formula (see, Revuz and Yor (1999)) to e−�th(Xt) , we have

By the optional stopping theorem, for any t > 0

Then, we get

When h ∶= f  (case x ≤ l ), we have X�l∧t
≤ l . Since f is increasing, it implies that

As a result, both

and

hold as t → ∞ by the dominated convergence theorem. A similar argument for the case 
when h = g leads to

(7)a1 = b2 = 1 +
�

2

√
2�, a2 = b1 = −

�

2

√
2�.

(8)f ∈ C2(ℝ) ⧵ {0}, f
�

(0+) = f
�

(0−) + 2��f (0),

(9)g ∈ C2(ℝ) ⧵ {0}, g
�

(0+) = g
�

(0−) + 2��g(0).

(10)Ah(z) =
1

2
h
��

(z) = �h(z).

(11)

e−𝜃th(Xt) =h(x) + �
t

0

e−𝜃s(
1

2
h
��

(Xs) − 𝜃h(Xs))ds + �
t

0

e−𝜃sh
�

(Xs)1{Xs≠0}dWs

+
1

2
[h

�

(0+) − h
�

(0−) − 𝜅h
��

(0)]�
t

0

e−𝜃sdL̂X
s
(0)

=h(x) + �
t

0

e−𝜃sh
�

(Xs)1{Xs≠0}dWs.

�x[e
−�(�l∧t)h(X�l∧t

)] = h(x).

h(x) = �x[e
−𝜃(𝜏l∧t)h(X𝜏l∧t

)]

= �x[e
−𝜃(𝜏l∧t)h(X𝜏l∧t

)1{𝜏l<∞}] + �x[e
−𝜃(𝜏l∧t)h(X𝜏l∧t

)1{𝜏l=∞}].

|f (X�l∧t
)| ≤ f (l).

�x[e
−𝜃(𝜏l∧t)f (X𝜏l∧t

)1{𝜏l<∞}] → �x[e
−𝜃𝜏l f (X𝜏l

)1{𝜏l<∞}]

�x[e
−�(�l∧t)f (X�l∧t

)1{�l=∞}] → 0
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and we end this proof.

Remark 1  It should be noted that the definition domain of function h in (10) is actually 
z ∈ (−∞,∞) containing 0 which is explained by (11). Intuitively, the construction of sticky 
Brownian motion can be viewed as a combination of continuous part and discontinuous 
part (symmetric local time, in our paper). Naturally, h��

(z) makes sense at 0 and takes the 
form of h��

(0) = 2�h(0) according to (11). This fact can also come from the definition 
domain of infinitesimal generator of delayed process appeared in Salins and Spiliopoulos 
(2017), i.e., Ah ∈ C(ℝ) but h ∈ C(ℝ) ∩ C2(ℝ) ⧵ {0}.

By virtue of the above theorem, we have the following corollary describing the mean 
time of sticky Brownian motion for first hitting l.

Corollary 1  The mean time of sticky Brownian motion for first hitting l are ∞ , i.e.

Proof  Because

then a straightforward calculation by using the L’Hôpital’s rule produces the result.

Remark 2  It is obvious that �x[�l] = ∞ , because there exists no limited boundaries which 
guarantees the trajectory of sticky Brownian motion not far away from the hitting level l.

In addition, if we set a ≤ x ≤ l and define

we acquire the next useful corollary.

Corollary 2  The two-sided exit identities are

Proof  By the strong Markov property, we adopt

and

Then, the proof is finished by solving the equations.

g(x) = �x[e
−𝜃𝜏l g(X𝜏l

)1{𝜏l<∞}] = g(l)�x[e
−𝜃𝜏l ]

�x[�l] = ∞.

�x[�l] = lim
�→0+

1 − L(�;x, l)

�
= lim

�→0+

h(l) − h(x)

�h(l)
,

𝜙1(𝜃;x, a, l) ∶= �x[e
−𝜃𝜏a1{𝜏a<𝜏l}] and 𝜙2(𝜃;x, a, l) ∶= �x[e

−𝜃𝜏l1{𝜏l<𝜏a}],

�1(�;x, a, l) =
g(x)f (l) − f (x)g(l)

g(a)f (l) − f (a)g(l)
, �2(�;x, a, l) =

f (x)g(a) − g(x)f (a)

g(a)f (l) − f (a)g(l)
.

�x[e
−𝜃𝜏a ] = �x[e

−𝜃𝜏a1{𝜏a<𝜏l}] + �x[e
−𝜃𝜏a1{𝜏l<𝜏a}]

= 𝜙1(𝜃;x, a, l) + �x[�x[e
−𝜃𝜏a1{𝜏l<𝜏a}|F𝜏l

]]

= 𝜙1(𝜃;x, a, l) + 𝜙2(𝜃;x, a, l)�l[e
−𝜃𝜏a ],

�x[e
−��l ] = �2(�;x, a, l) + �1(�;x, a, l)�a[e

−��l ].
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Next, we provide a direct result for the Laplace transform representation of first exit 
time which follows from the above corollary. In addition, the proof of next corollary paral-
lels with Corollary 3.7 in Li and Zhou (2013), hence we omit it. Suppose that a < 0 < l , 
then we provide the following corollary.

Corollary 3  The Laplace transform of the occupation time of X satisfies

where

and

with the coefficients specified in Theorem 1.

2.2 � First Hitting Time Over the Random Jump Boundary

In this subsection, we explore the joint Laplace transform problem for first hitting time 
over a random jump boundary, which is associated with an exponential random variable. 
Let us first introduce some notations and definitions used in this subsection.

Define a random jump boundary by

where l > 0 , H denotes a positive jump with distribution function F, and � is an exponential 
random variable with parameter � . In addition, H, � and the sticky Brownian motion X are 
independent. Now define

Obviously, 𝜏l = 𝜏l when t < 𝜂 , and 𝜏l = 𝜏l+H when t ≥ � . We focus on the joint Laplace 
transform

where x < l.

Proposition 1  The joint Laplace transform �(�1, �2;x) admits the following decomposition:

where L(�;x, l) is defined in (3).

�a[e
−� ∫ ∞

0
1{a≤Xs≤l}ds] =

M(a, l, �)

N(a, l, �)
and �b[e

−� ∫ ∞

0
1{a≤Xs≤l}ds] =

2a1

N(a, l, �)
,

M(a, l, �) =b1a1

√
2�e(a+l)

√
2� + (1 − b1a2)

√
2�e(a−l)

√
2�

+ b2a1

√
2�e−(a−l)

√
2� + (1 − b2a2)

√
2�e−(a+l)

√
2�

N(a, l, �) =b1a1(1 −
√
2�)e(a+l)

√
2� + [1 − a

√
2� − (1 −

√
2�)b1a2]e

(a−l)
√
2�

+ b2a1(1 +
√
2�)e−(a−l)

√
2� + [1 + a

√
2� − (1 +

√
2�)b2a2]e

−(a+l)
√
2�

Jt ∶= l + H1{�≤t},

𝜏l ∶= inf{t ≥ 0;Xt = Jt}.

𝜂(𝜃1, 𝜃2;x) ∶= �x[e
−𝜃1X𝜏l

−𝜃2𝜏l ],

(12)𝜂(𝜃1, 𝜃2;x) = e−𝜃1lL(𝜃2 + 𝜆;x, l) + e−𝜃1l�x[e
−𝜃1H−𝜃2𝜂1{𝜏l≥𝜂}L(𝜃2;X𝜂 , l + H)],
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Proof  We decompose �(�1, �2;x) as

Recalling the definitions (2) and (3), we have

and

Noticing that �x[e
−𝜃2(𝜏l−𝜂)|F𝜂] = �X𝜂

[e−𝜃2𝜏l+H ] holds for the strong Markov property of X 
and the memoryless property of � , we finish the proof.

3 � Applications: Optimal Stopping and Bond Pricing Under Sticky 
Brownian Motion

3.1 � Optimal Stopping

Throughout this subsection, � is replaced with r in the expressions (5) and (6). We will 
show that the sticky point is in continuation region and we also obtain the value of opti-
mal stopping problem for sticky Brownian motion. For an excellent exposition on optimal 
stopping problem, see for instance Taylor (1968), Salminen (1985), Christensen and Irle 
(2011), Crocce and Mordecki (2014), Alvarez and Salminen (2017) and references therein. 
Optimal stopping problem is to look for a stopping time �∗ such that

where r > 0 denotes the prevailing discount rate and G ∶ ℝ → ℝ+ is the pay-off function 
satisfying that G is continuous, twice differentiable, non-decreasing, non-negative, and has 
finite left and right derivatives.

𝜂(𝜃1, 𝜃2;x) = �x[e
−𝜃1X𝜏l

−𝜃2𝜏l1{𝜏l<𝜂}] + �x[e
−𝜃1X𝜏l

−𝜃2𝜏l1{𝜏l≥𝜂}]
=∶ I1 + I2.

I1 = �x(e
−𝜃1X𝜏l

−𝜃2𝜏l1{𝜏l<𝜂})

= e−𝜃1l�x[e
−𝜃2𝜏l1{𝜏l<𝜂}]

= e−𝜃1l�x[e
−𝜃2𝜏l (∫

∞

𝜏l

𝜆e−𝜆𝜂d𝜂)]

= e−𝜃1l�x[e
−𝜃2𝜏l

⋅ e−𝜆𝜏l ]

= e−𝜃1lL(𝜃2 + 𝜆;x, l)

I2 = �x[e
−𝜃1X𝜏l

−𝜃2𝜏l1{𝜏l≥𝜂}]
= e−𝜃1l�x[e

−𝜃1H−𝜃2𝜏l1{𝜏l≥𝜂}]
= e−𝜃1l�x[�x(e

−𝜃1H−𝜃2(𝜂+𝜏l−𝜂)1{𝜏l≥𝜂}|F𝜂)]

= e−𝜃1l�x[e
−𝜃1H−𝜃2𝜂1{𝜏l≥𝜂}�x[e

−𝜃2(𝜏l−𝜂)|F𝜂]]

= e−𝜃1l�x[e
−𝜃1H−𝜃2𝜂1{𝜏l≥𝜂}�X𝜂

[e−𝜃2𝜏l+H ]]

= e−𝜃1l�x[e
−𝜃1H−𝜃2𝜂1{𝜏l≥𝜂}L(𝜃2;X𝜂 , l + H)].

V(x) ∶= sup
�

�x[e
−r�G(X� )] = �x[e

−r�∗G(X�∗ )],
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As is known from the literature on optimal stopping, V is the smallest r-excessive majorant 
of G (Theorem 1 on pp. 124 of Shiryaev (1978)). As usual, we call S ∶= {x ∶ V(x) = G(x)} 
the stopping region and C ∶= {x ∶ V(x) > G(x)} the continuation region.

Theorem 2  Assume that G��

(0) > 0 , i.e. G is convex. Then for sticky Brownian motion X 
defined by (1), the sticky point 0 is in the continuation region C.

Proof  Denote by (dG−∕dS) and (dG+∕dS) the left and the right scale derivatives of G, 
respectively. Thanks to the fact (dG+∕dS)(0) − (dG−∕dS)(0) = m({0})AG(0) in Engelbert 
and Peskir (2014), we obtain (dG+∕dS)(0) − (dG−∕dS)(0) = �AG(0) in our paper, where 
AG(0) = (1∕2)G

��

(0) and m is the speed measure.
Assume that 0 ∈ S . Then following the results in Alvarez and Salminen (2017), we 

obtain

On the other hand, according to Corollary 3.7 in Shiryaev (1978), for any r-excessive 
function H it follows that

Because V is the smallest r-excessive majorant of G, we get the contradiction. Hence, 
0 ∈ C.

Recalling the result on speed measure m of sticky Brownian motion X in Bass (2014), 
the scale function for X is computed by

Moreover, the so-called Wronskian

is independent of x.
Now introduce for a differential function F

and

d−V

dS
(0) −

d+V

dS
(0) ≤ d−G

dS
(0) −

d+G

dS
(0) = −𝜅

1

2
G

��

(0) < 0.

d−H

dS
(0) ≥ d+H

dS
(0).

S(x) = x.

(13)�� ∶=
g(x)f

�

(x)

S
�
(x)

−
f (x)g

�

(x)

S
�
(x)

,

(Lf F)(x) ∶=
f 2(x)

S
�
(x)

d

dx
[
F(x)

f (x)
]

=

⎧⎪⎪⎨⎪⎪⎩

1

S
�
(x)

[a1e
x
√
2r(F

�

(x) −
√
2rF(x))

+a2e
−x

√
2r(F

�

(x) +
√
2rF(x))], x > 0,

1

S
�
(x)

[ex
√
2r(F

�

(x) −
√
2rF(x))], x < 0,
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where the coefficients a1 and a2 are defined by (7). Let

be the set of points at which the ratio G/f is maximized. Next we introduce a useful lemma 
which provides a candidate strategy to verify the optimization in the optimal stopping prob-
lem. This is exactly a corollary in Shiryaev (1978), and the proof also appears in Alvarez  
and Salminen (2017).

Lemma 1  Let A ⊂ B be a nonempty Borel subset of B and �A ∶= {t ≥ 0 ∶ Xt ∈ A} . Assume 
that the function

is r-excessive and dominates g. Then V = V̂  and �A is an optimal stopping time. Morever, 
�A is finite almost surely.

Then we state the main theorem.

Theorem 3  (A) Let x∗ ∈ M . Then, (−∞, x∗) ⧵M ⊂ C.

(B) Assume that M = {x∗} , where x∗ > 0 , and the pay-off function G satisfies the prop-
erty G��

− 2rG(x) ≤ 0 for all x ≥ x∗.

Then, �x∗ ∶= inf{t ≥ 0 ∶ Xt ≥ x∗} is an optimal stopping time and the value reads as

Proof  Let V̂  denote the proposed value function on the right hand side of (14). Clearly, 
V ≥ V̂  . To show that V = V̂  , we apply Lemma 1 and proof that V̂  is an r-excessive majo-
rant of G. Since x∗ ∈ M , it follows that V̂(x) ≥ G(x) for all x ∈ ℝ . Select x0 > x∗ such that 
G(x0) > 0 and define H(x) ∶= V̂(x)∕V̂(x0) = V̂(x)∕G(x0) . To show that H is r-excessive, let 
for x ≥ x0

and for x ≤ x0

(LgF)(x) ∶=
g2(x)

S
�
(x)

d

dx
[
F(x)

g(x)
]

=

⎧⎪⎪⎨⎪⎪⎩

1

S
�
(x)

[e−x
√
2r(F

�

(x) +
√
2rF(x))], x > 0,

1

S
�
(x)

[a1e
−x

√
2r(F

�

(x) +
√
2rF(x))

+a2e
x
√
2r(F

�

(x) −
√
2rF(x))], x < 0,

M ∶= argmax
x∈�

{
G(x)

f (x)
}

V̂(x) ∶= �x[e
−r�Ag(X�A

)]

(14)V(x) = �x[e
−r𝜏x∗G(X𝜏x∗

)] =

⎧⎪⎨⎪⎩

G(x), x > x∗,

f (x)
G(x∗)

f (x∗)
, x < x∗.

�H
x0
((x,∞]) ∶=

f (x0)

��G(x0)S
�
(x)

(V̂
�

(x)g(x) − V̂(x)g
�

(x)) =
f (x0)

��G(x0)
(LgG)(x),
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Firstly, the monotonicity and the non-negativity of G imply that (LgG)(x) ≥ 0 for x ≥ x∗ , 
i.e. �H

x0
((x,∞]) ≥ 0 for x ≥ x0 . Moreover, the property of G in (B) guarantees

for all x ≥ x∗ implying that x ↦ �H
x0
((x,∞]) is non-increasing. Secondly, Since x∗ ∈ M , 

then (LfG)(x∗) = 0 . Again by the property of G in (B), we have

and thus (LfG)(x) ≤ 0 for x ≥ x∗ , i.e. �H
x0
([−∞, x)) ≥ 0 for x ≤ x0 , and x ↦ �H

x0
([−∞, x)) is 

non-decreasing. Thirdly, it follows, recalling the definition (13) of the Wronskian, that

Based on the calculation above and setting �H
x0
({x0}) = 0 lead that �H

x0
 constitutes a prob-

ability measure on [−∞,∞] . Then, �H
x0

 induces via the Martin representation an r-excessive 
function (Salminen (1985) and Shiryaev (1978)) which coincides with H. Since 
V̂(x) = V̂(x0)H(x) the proposed V̂  is excessive as well. Combining Lemma 1 finishes the 
proof.

Remark 3  In our paper, the increasing fundamental solution f satisfies the sticky bound-
ary condition (see, (8)). Differently, the increasing fundamental solution �r(x) satisfies the 
skew boundary condition (�� �

r
(0+) = (1 − �)�

�

r
(0−)) in Alvarez and Salminen (2017).

3.2 � Bond Pricing

In this subsection, we study the bond pricing problem under sticky Brownian motion Xt . 
Suppose that the financial market is arbitrage-free and the default-free bond price at time 
t is denoted by B(Xt, �) or B(t,T ,Xt) , where T is the maturity and � = T − t is the bond’s 
term. Let B(t,T ,Xt) be the bond price based on Xt with the maturity T at time t. By Itô for-
mula (see Revuz and Yor (1999)), we have for Xt ≠ 0,

𝜎H
x0
([−∞, x)) ∶ =

g(x0)

𝜔𝜃G(x0)S
�
(x)

(�V(x)f
�

(x) − �V
�

(x)f (x))

=

{
−

g(x0)

𝜔𝜃G(x0)
(LfG)(x), x

∗ < x ≤ x0,

0, x ≤ x∗.

(LgG)
�

(x) =
G

��

(x)g(x) − G(x)g
��

(x)

S
�
(x)

≤ 0

(LfG)
�

(x) =
G

��

(x)f (x) − G(x)f
��

(x)

S
�
(x)

≤ 0,

�H
x0
([−∞, x0)) + �H

x0
((x0,∞])

=
f (x0)

��G(x0)
(
G

�

(x0)

S
�
(x0)

g(x0) −
g
�

(x0)

S
�
(x0)

G(x0))

−
g(x0)

��G(x0)
(
G

�

(x0)

S
�
(x0)

f (x0) −
f
�

(x0)

S
�
(x0)

G(x0))

=
1

��

(
g(x0)f

�

(x0)

S
�
(x0)

−
f (x0)g

�

(x0)

S
�
(x0)

)

=1.
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where

What follows next is our main result about the bond price under sticky Brownian 
motion.

Theorem 4  Suppose that the underlying zero coupon interest rate satisfies (1) and � is the 
sharpe index in the modern market which is arbitrage-free. Then the bond price B(t,T ,Xt) 
of the zero coupon interest rate with the maturity time T is represented by

with the coefficients

Proof  In the bond pricing theory, if a bond market is arbitrage-free, the sharpe ratio of trad-
ing bonds with different terms should be equal. Thanks to Vasicek (1997), we let sharpo 
ratio be � for Xt ≠ 0 , and derive the same pricing problem by

With the displays of (15), (16) and (17), we establish

To solve the pricing problem, we suppose that the solution to (18) takes the form of

with �(0) = �+(0) + �−(0) = 0. Taking the partial derivatives for B results in

dB(t,T ,Xt) =
�B

�t
dt +

�B

�X
dX +

1

2

�2B

�X2
dt

= �B(t,Xt)Bdt + �B(t,Xt)BdWt,

(15)�B(t,Xt)B ∶=
�B

�t
+

1

2

�2B

�X2
,

(16)�B(t,Xt)B ∶=
�B

�X
.

B(t, T ,Xt) = exp{𝛼(𝜏) + 𝛽+(𝜏)1{Xt>0}
Xt + 𝛽−(𝜏)1{Xt<0}

Xt + 𝛽(𝜏)1{Xt=0}
Xt}

= exp{𝛼(𝜏) + 𝛽+(𝜏)1{Xt>0}
Xt + 𝛽−(𝜏)1{Xt<0}

Xt}

�(�) =
1

6
�3 +

1

2
��2,

�(�) = − �,

�+(�) = −
1

2
� +

1

2
��2,

�−(�) = −
1

2
� −

1

2
��2.

(17)
�B(t,Xt) − Xt

�B(t,Xt)
= �.

(18)1

2

�2B

�X2
+

�B

�t
− �

�B

�X
− BX = 0.

B(t, T ,Xt) = exp{𝛼(𝜏) + 𝛽+(𝜏)1{Xt>0}
Xt + 𝛽−(𝜏)1{Xt<0}

rt + 𝛽(𝜏)1{Xt=0}
Xt},
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Substitute them into (18), then we obtain

which holds for arbitrary Xt ≠ 0 . It suggests that

Recalling the infinitesimal generator and its domain for B in Remark 1, it follows that

where the last equation comes from (18). Obviously, we get

After solving the equations, we complete this proof.

Next, we will provide some numerical results for the bond price under sticky Brownian 
motion with different sticky coefficients � . More precisely, we set � = 0.5 as the common 
parameter. Noted that 0 is the sticky point which later causes some interesting analysis for 
sticky phenomenon. In addition, in the following three figures, the bond’s � is considered 
with respect to three different conditions, respectively. In each of three figures, different 
sticky coefficients are further discussed.

Figure 1 shows the displays of the bond price in the case of � = 0.3 . Usually, bond price 
decreases as underlying interest rate increases. The red line represents the classical bond 
price with respect to sticky coefficient � = 0 . It is interesting to see that around sticky 
point 0, the bond prices exhibit different behaviors. With a bigger sticky coefficient � , the 
underlying interest rate will spend more time at 0, leading to an aggregation phenomenon 
and such phenomenon obviously influences the bond price which decreases weakly with 
respect to the “aggregated” interest rate.

�B

��
=
(
�

�

(�) + (�+(�) + �−(�))
�

Xt

)
B,

�B

�X
=
(
�+(�) + �−(�)

)
B,

�2B

�X2
=
(
�+(�) + �−(�)

)2
B.

Xt(−(�
+(�) + �−(�))

�

− 1)

+ [
1

2
(�+(�) + �−(�))2 − �(�+(�) + �−(�)) − �

�

(�)]

= 0,

{
−(�+(�) + �−(�))

�

− 1 = 0,
1

2
(�+(�) + �−(�))2 − �(�+(�) + �−(�)) − �

�

(�) = 0.

1

2

�B

�X

||||Xt=0+

−
1

2

�B

�X

||||Xt=0−

= �AB||{Xt=0}

= �

[
�
�B

�X

||||{Xt=0}

+
�B

��

||||{Xt=0}

]
,

�(�) =
1

6
�3 +

1

2
��2,

�+(�) + �−(�) = − � =∶ �(�),

�+(�) − �−(�) =��2.
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As Bass (2014) said that for a corporation having a takeover offer at 10. The stock 
price is then likely to spend a great deal of time precisely at 10 but is not constrained 
to stay at 10. Thus 10 would be a sticky point for the solution of the stochastic differ-
ential equation that describes the stock price. For interest rate, we also take sticky phe-
nomenon into consideration. Suppose an interest rate is modelled by the sticky Brown-
ian motion. Then it is possible for bond price to have more choice at the sticky point 
because the underlying interest rate will spend more time at such fascinating point. 
But once interest rate passing sticky point, the bond price will exhibit normal principle 
immediately regardless of the sticky phenomenon. Similar analysis applies to Figs. 2 
and 3 for � = 0.5 and � = 0, 7 , respectively.

For different bond’s term � , we can learn from Figs. 1, 2 and 3 that the bond price 
decreases as the bond’s term increases. This coincides with the classical results in 
bond pricing theory.

Fig. 1   Bond price under sticky 
CIR process with different sticky 
coefficients � when � = 0.3 . The 
red, blue, green lines represent 
� = 0 , � = 0.5 , � = 1 , respec-
tively

Fig. 2   Bond price under sticky 
CIR process with different sticky 
coefficients � when � = 0.5 . The 
red, blue, green lines represent 
� = 0 , � = 0.5 , � = 1 , respec-
tively
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4 � Conclusion

In this work, we have studied the Laplace transform of the first hitting time of sticky 
Brownian motion and their applications in optimal stopping and bond pricing. The first 
hitting time problems and related properties of sticky Brownian motion have been acquired 
by Laplace transform, strong Markov properties and the definition domain of its genera-
tor. It should be noticed that our method for solving first hitting time problems is applica-
ble to other models (different boundary conditions). In optimal stopping application, we 
have solved the problem about which region sticky point belongs to, and as a corollary of 
result in Alvarez and Salminen, we have obtained the value function of the optimal stop-
ping problem. To derive the bond price under sticky Brownian motion, by introducing the 
sharpo ratio, we calculate the closed-form solution. More explanations about the sticky 
phenomenon are shown by the numerical results. In the future study, it is significant for us 
to pursue: (1) Investigate the explicit value of optimal stopping based on sticky Brownian 
motion under more weak assumptions; (2) Extend our results under other sticky processes 
like sticky OU, sticky CIR; (3) Consider the option pricing of American styles, which 
needs to find the exact stopping time to maximize the value function.
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article.
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