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Abstract

In this paper, first- and second-order discrete-time semi-Markov systems are considered
with their finite state space divided into three subsets as perfect functioning states, imper-
fect functioning states and failure states, respectively. The counting processes for one-step
increasing transitions, one-step equivalent transitions and one-step decreasing transitions
in working/failure periods are defined and investigated in detail. Formulas for related
distributions, joint distributions, expectations, generating functions and joint generation
functions are derived in their Z-transforms. Numerical examples are presented to illustrate
the results established. Extended discussions on related reliability measures are also con-
sidered. Finally, some concluding remarks and discussions are presented. Applications of
the results presented here can be found in different fields such as seismology, reliability,
biology and finance.
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1 Introduction

In recent years, multi-state systems are attracting more and more attention since many real-
world systems are composed of multi-state components that have various effects on the
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performance of the entire system with different performance levels and failure modes. As
mentioned by Lisnianski et al. (2010), there are many multi-state systems in practice, such
as a power supply system consisting of generating and transmitting facilities (each gener-
ating unit can function at different levels of capacity), a wireless communication system
consisting of transmission stations (each station can have a different number of subsequent
stations covered in its range), a task processing system (for example, a control system, a
data processing system or a manufacturing system) and many others. Tools or methods that
contribute to modeling of multi-state systems include, but are not limited to, stochastic pro-
cesses such as Markov and semi-Markov processes, statistical analysis, universal generating
function methods, combined methods, coherent system theory, multidimensional spectra
and multi-state signature, and many different kinds of algorithms (Lisnianski et al. 2010;
Lisnianski and Frenkel 2011; Natvig 2011). Recently, research on multi-state systems is
being carried out extensively as can be seen in Yi and Cui (2017), Yi et al. (2018), Barbu
and Vergne (2019), Wu et al. (2019).

For multi-state systems, the concept of state aggregation was first presented by Burke
and Rosenblatt (1957) based on the assumption that an experimenter can only observe a
derived process Y (n) = f (X (n)) rather than the underlying stochastic process X (n). (Note
that the derived process may no longer be Markov or semi-Markov processes after the state
aggregation.) The problem of state aggregation subsequently received great attention in the
area of single ion channel in biology. As we know, there are plenty of channels on cell
membrane for materials like ions to get through. Biologists are always interested in the
behaviors (open, closed) of those ion channels, especially single ones. However, experi-
mental data can only show current levels of electricity of a single ion channel, which is not
sufficient for describing the underlying mechanism since behaviors with the same current
level are not distinguishable from the data. Colquhoun and Hawkes (1977, 1981, 1982) pro-
posed a general aggregated Markov process model, which changed the way biologists dealt
with experimental data on single ion channels. Compared with traditional Markov process,
state space of the aggregated Markov process is divided into different subsets according
to the performance levels of the system, which make the model more general by taking
indistinguishable states into consideration. For systems with no indistinguishable state, the
aggregated Markov processes will degenerate to traditional Markov processes. Since then,
many generalizations and extensions have been discussed in the area of single ion channel
(Hawkes et al. 1990; Ball 1997; The and Timmer 2006).

Aggregated stochastic processes also have important applications and developments in
the context of reliability. Rubino and Sericola (1989) first discussed the reliability of an
aggregated stochastic process and also presented an application of a fault-tolerant system
with several buffer states. Cui et al. (2007) investigated aggregated Markov processes by
considering history-dependent states (changeable states whose performances depend on the
immediately preceding state of the system evolution process), and derived reliability indices
such as availability. Hawkes et al. (2011) studied the evolution of aggregated Markov pro-
cesses under alternative environments and obtained results for the system availability and
probability distributions for uptimes. Liu et al. (2014) developed an aggregated Markov pro-
cess model with repair time omission, and derived reliability indices such as availability,
interval reliability and interval unreliability. Cui et al. (2016) considered aggregated stochas-
tic processes with cyclic multiple mission periods, and obtained closed-form solutions for
some reliability indices and sojourn time distributions. Recently, aggregated stochastic pro-
cesses have also been used in the study of new reliability indices (Yi et al. 2018), phase-type
models (Wu et al. 2020) and balanced systems (Fang and Cui 2021).
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Most of existing research on aggregated stochastic processes are for continuous time
systems, but there are also plenty of discrete-time systems in practice; for example,
data obtained from laboratory experiments are often discrete-time ones. The discussions
on discrete-time aggregated stochastic processes are far few as compared to those on
continuous ones. For example, Yi et al. (2018) developed a discrete-time semi-Markov
aggregated process, and discussed some stochastic properties and reliability measures. Yi
and Cui (2017) considered a discrete-time second-order aggregated semi-Markov system,
and derived some distributions and availabilities of the system. Actually, the calculation
issue is much more complex for continuous-time aggregated stochastic processes when it
comes to the essential step of inverse Laplace transform. In this paper, we consider discrete-
time aggregated semi-Markov systems since semi-Markov processes break the memoryless
requirement of Markov processes. That is quite reasonable in practice; see Limnios and
Oprisan (2003) for a review of semi-Markov processes and to Janssen and Manca (2006),
Barbu and Limnios (2008, 2004) for additional related discussions. Also, second-order
aggregated semi-Markov systems are considered since evolutions of many real-world sys-
tems depend not only on their present states, but also on some previous states; see (D’ Amico
etal. 2013; 2015a; 2015b) for more discussions on higher-order Markov and semi-Markov
models and related applications to wind speed prediction.

Some basic assumptions in this paper are similar to those in Yi and Cui (2017) and Yi
et al. (2018); for example, states of the system are divided into three subsets <7, %, &
corresponding to perfect functioning states, imperfect functioning states and failure states,
respectively; a working period is defined as a duration that the system is in functioning states
(including perfect functioning states and imperfect functioning states), which starts from the
moment of transition to a perfect functioning state from a failure state directly or through
some imperfect functioning states, and ends at the moment of transition from a perfect
functioning state to a failure state directly or through some imperfect functioning states;
and a failure period is the duration of time between two consecutive working periods. As
mentioned above, in this paper, we define the split of state space and working/failure periods
in a traditional way so that any misunderstanding caused by the complexity of modeling
can be avoided to some extent and that the method developed can also be discussed in
clear terms. For practical systems whose state space is divided into more subsets and whose
working periods/failure periods are defined in a different way, the results developed here can
be generalized without much technical difficulty, and so the related discussions are omitted
in this paper for brevity.

In the field of reliability, counting processes are often used to describe the arrivals and
repairs of different types of shocks, which do impact greatly on the performance of the sys-
tem in different ways. Moreover, properties of counting processes are attracting increasing
attention both theoretically and practically (Howard 1964, 1971; Mode and Peckins 1988),
and possible applications can be found in such diverse areas as queuing theory, wireless
communication systems, software error detection, health science and many others (Badia
and Sangiiesa 2017; Michael and Eutichia 2020; Nuel 2019). For a discrete-time semi-
Markov process with finite state space, Csenki (1995) derived a closed-form expression for
the cumulative distribution function of the number of visits to a subset of its state space, and
explained that this number served as an useful tool for analyzing dependability character-
istics. Based on a continuous-time semi-Markov model with finite state space, Votsi et al.
(2012) estimated the expected number of earthquake occurrences with a real data set from
Northern Aegean Sea in Greece. In their work, model states were classified by earthquake
magnitude, and fault orientation was also taken into account. For general time-homogeneous
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Markov processes with general state space, Landriault et al. (2017) presented an unified
approach for the first passage time of their drawdown/drawup processes.

For continuous-time Markov process, Cui et al. (2021) considered the split of state
space into m ordered subsets and then studied counting processes of one-step increas-
ing/equivalent/decreasing transitions with durations longer/shorter than a pre-specified
threshold. In the present work, we consider first- and second-order discrete-time semi-
Markov processes with finite state space Q@ = &/ U B U Z. Transitions from states in &
to states in &7 U £ or from states in & to states in .7 are called one-step increasing tran-
sitions as they correspond to repairs of the system. Transitions from states in 27 to states
in U 2 or from states in A to states in & are called one-step decreasing transitions as
they correspond to degradations of the system. Also, other transitions from subset <7 or %
or Z to themselves are called one-step equivalent transitions. Here, we are interested in all
three different kinds of transitions in working periods and failure periods, which leads to
the following counting processes:

(1) Let N,W(n), N,?/ (n), va)v (n) be the number of one-step increasing transitions, one-
step equivalent transitions and one-step decreasing transitions in working periods by
time n, respectively;

(2) LetN [F (n), N g (n), N g (n) be the number of one-step increasing transitions, one-step
equivalent transitions and one-step decreasing transitions in failure periods by time n,
respectively;

3) LetNY(n), NF(n), N(n) be the number of all one-step transitions in working periods,
in failure periods and in all of them by time #, respectively. This means NW (n) =
NY m)+NY m)+NJ (), NF(n) = NF)+NEm)+NE®n) and N(n) = NV (n)+
NE®m).

It is not easy to investigate counting processes defined above since whether a system is in
a working period or a failure period depends not only on its present state, but also on history
of its previous states. However, it is of great interest to consider this problem since tran-
sitions, including ones-step increasing/equivalent/decreasing ones, have different costs and
benefits in working periods and failure periods. Applications of this paper can be found in
many fields, including seismology, reliability, biology, finance and many others. For exam-
ple, as in Votsi et al. (2012), the occurrences of earthquake can be modeled by a first-order
semi-Markov model, and states of the system can be divided into three subsets according
to magnitudes (eg. <7 for [0, 4.4], % for [4.5,5.9] and Z for [6.0, 10.0]). Consider the fact
that earthquakes with magnitudes greater than a given threshold (4.4, say) will lead to some
financial loss and earthquakes with magnitudes greater than another given threshold (5.9,
say) will lead to serious casualties, we can use the concepts of working period and fail-
ure period introduced before to distinguish whether there is risk of life for human beings
in different periods. Then, we are interested in the counting processes for one-step increas-
ing/equivalent/decreasing in the two types of periods, respectively, since losses in them
are not estimated in the same degree of importance and we need different post-earthquake
reconstruction strategies for them.

Take a generating unit as another example, as in Billinton and Allan (1996), in which
performance rates (namely, the power generating capacities) can be 50 MW (perfect func-
tioning), 30 MW (imperfect functioning) and 0 MW (failure), respectively, which means
the state space can be divided into subsets <7, % and 2 mentioned above. Considering the
fact that each sojourn in the failure subset & will cause serious economic losses, machine
damage and long shutdown period, the generating unit system is regarded to be in good

@ Springer



Methodology and Computing in Applied Probability (2022) 24:1849-1875 1853

condition only when it functions perfectly or imperfectly without any breakdown into fail-
ure states. Then, we can use the concepts of working period and failure period introduced
before to distinguish whether the system is in a good condition or not. Besides, state changes
cause different results when the system is in different conditions, and we are therefore inter-
ested in the counting processes mentioned before to evaluate possible maintenance costs
and machine damage losses in different system conditions.

The rest of this paper is organized as follows. In Sections 2 and 3, stochastic proper-
ties of related counting processes are discussed for first- and second-order discrete-time
aggregated semi-Markov processes, respectively; formulas for some distributions, joint dis-
tributions, expectations, generating functions and joint generation functions are presented
by their Z-transforms. [llustrative examples are presented in Section 4 to explain the results
established in preceding sections and to give some intuitive understanding of the results.
Some extended discussions on related reliability measures are considered in Section 5.
Finally, some conclusions and related discussions are made in Section 6.

2 First-order Discrete-Time Semi-Markov System

Consider the time-homogenous first-order semi-Markov chain {Z(n),n = 0,1, ...}, as in
Yi et al. (2018), with discrete time and finite state space 2 = {1, ..., kq}. The state that the
system jumps to at the kth transition time Sy is denoted by Ji (k = 1, 2, .. .), and the initial
state at time So = 0 is denoted by Jy. Let Xo = 0, and the sojourn time in state J;_ between
the (k — 1)th and kth transitions be expressed as Xy = Sy — Sx—1 (k =1, 2, ...). Then, the
semi-Markov kernel of the related Markov renewal chain can be defined as follows:

Q1) := (Qij(n))kgxke
= (P{is1=J, X141 = Si41 — St = n—J; = iDigxke
= (P{N1=j,X1 =8-S0 =n—Jo =i}kgxke-

With the state space 2 divided into three subsets <7, % and Z, the semi-Markov kernel
can be divided correspondingly as follows:

Qo) Q) Qyp0n)
0n)=| Qzysm) Qzzrn) OQzgyn)
Q950 Qgzn) Qg990n)

Here, the subsets &7, 8 and Z consist of perfect functioning states, imperfect functioning
states and failure states, respectively. Besides, there are k., ks and kg states in the subsets
o, P and P, respectively, namely, o = {1, ..., ky}, B =1k +1,..., ko + k) and
D=tk +ka+1,... kg +kp+kgpl)

As in the discussions in Yi et al. (2018), sojourns in subset % contribute to working
periods if and only if the system is in 27 right before it enters % and right after it leaves %,
which implies that they contribute to failure periods otherwise. Obviously, sojourns in subset
&/ contribute to working periods and sojourns in subset & contribute to failure periods.
For studying properties of the semi-Markov system, a new stochastic process { Y (n),n =
0,1, ...} is defined as follows:

Y(n) = 1, the system is in a working period at time n,
0, the system is in a failure period at time 7.

Note that Y (n) is a right-continuous function, which means its value at a transition time
depends on whether the sojourn after transition contributes to a working period or not.
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Besides, a transition is said to be in a working period if the system is in a working period
when the transition starts, and in a failure period if the system is in a failure period when
the transition starts.

Denote the conditional probability that the system stays in subset X in time interval [0, )
and jumps to state j in another subset Y at time 7, given the initial state i in subset X at time
0, by gi)](.y(n), where (X,Y) € {(, B), (A, D), (B, %), (B, D), (D, ), (D, B));
that is,

gy =PSi=nJi=jJo..... i1 eX|Jh=i}ieX jey,

where no self-transition is allowed.
In matrix form, let us denote

0 Goyz(n) Goygn)
Gn)=| Gzzn) 0 Gzon) |,
Ggog(n) Gogp(n) 0

where Gxy (n) = (gf](.Y(n), ieX, je Y)k o kx and ky denote the numbers of states in
X XKy
subsets X and Y, respectively, and 0 is a zero matrix of suitable dimension, whose elements

are all 0. Define I as an unit matrix of suitable dimension, and the Z-transform of G xy (n)
can be represented as Gy, (z) = [I — Q% @17! 0%y (2); see Yietal. (2018) for the proof.

For this first-order semi-Markov system, there are 9 different types of transitions to be
considered for Z(n), namely, transitions & — &/, o/ — B, A - D, B — o, B —
BB~ D,9 > o, 9 — $Band Y — 2. Obviously, transitions from L to <&
(% — <) are one-step increasing transitions in working periods if and only if the system is
in subset &7 before it enters subset %, and they are one-step increasing transitions in failure
periods if and only if the system is in subset & before it enters subset Z. To identify the
two different cases of transitions, namely, to identify whether a transition is in a working
period or in a failure period when it is from subset %, we define a new semi-Markov chain
{Zo(n),n =0, 1, ...} with state space Qy = &/ U B U %, U D, where

A ={1,... k), B =k +1,... ko + ka},
B =k +kaz+1,... kg +2ka},
D =tk +2kz +1,... ke +2kz + ko).

Note that subsets %8| and %, can be regarded as a “copy” of subset 4. The most important
property of Zy(n) is that Zg(n) = Z(n) for Z(n) € o/ or Z(n) € % with the system
being in subset .7 beforing entering subset A, and Zy(n) = Z(n) + kg for Z(n) € & or
Z(n) € % with the system being in subset & beforing entering subset %, which makes it
possible to identify whether the system is in a working period or in a failure period when the
system state Z(n) is in subset . Then, the new semi-Markov kernel and its Z-transform
can be presented as follows:

Q™) Qzn) 0 0.9@0n)
Doy = | L) Cazm) 0 Qg
sz@{(n) 0 Q,@gg(") Q,@@(") ’
Qg9ym) 0 Q920N Qgq90)
Q@) Qup@ 0 Qyy0
D*(z) = QT@%(Z) Q@@(Z) . 0 Qég@(z)
0.2 0 Q@@(Z) 029 (2)
05,0 0 Q550 045
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Assume that the initial probability vector of Zp(n) can be denoted as @ =
(Tor, TB) s W Bys Tp) = (T1s .., Wy +2ky+hey)» Where mp = P{Zp(0) = i}, for
i =1,...,ke + 2kz + kg, is the probability that the initial state of Zy(n) is state i. To
investigate the transition rules, some notations for one-step increasing/equivalent/decreasing

transitions in working/failure periods are defined as follows:

0 000 0 0 0 0
won_ | Q@000 Fon 0o 0 0 0
PrO=17% 000 1O aL,0 0 0
0 000 05,0 Q%) 0
0, 0 00 00 0 0
W _ 0 Quz00 Foy_ |00 0 0
Pr@ = 0 0 00| PE@= 000,00 o
0 0 00 00 0  0,,0
00.,,20 Q.,,2 000 0
wo. o 0 0 o Fo 00005,
Po@=1y o 0o o - Po@ =144y 0.,
0o 0 0 0 000 0

Note that P}V (z) + P (z) + P}y (2) + P¥ () + PL(2) + P (z) = D*(2). In addition, let

DY () = D*(z) — PY (2). DY (2) = D*(z) — P (), X e {I, E, D},
PV, () =PY¥ @)+ P} (), PLy(2) = PR (2) + PL(2), (X,Y) € (U, E), U, D), (E, D)},
DY, (z) = D*(z) — P¥,(2), D%y (2) = D*(2) — P%y(2), (X, Y) € {(I, E), (I, D), (E, D)}.

Further, let PV (z) = P} (2) + P¥ (2) + P} (2), P¥(z) = PF(2) + PE(2) + PL(z) and

uy — Q)

P = 2 — 1)1 | ##— Qp@)
(2) =z(z—1) Uop — Qég(z)
ug — 052
Ugy — [Q%d(z)uﬁ + Q;@(Z)u@ + Q;@(Z)u@]
= 2(z — 1)—1 uzp — [Q?Q{(Z)ud + Q:,g@(z)u% + Q?@(Z)u@]
Uugp — [Q@Q{(Z)ud + Qzu(Duz + Q;@@(Z)”@] '

uy — [0y, Dty + Qopu@uz + Quy(Dug)

where u ./, up,uqy are column vectors of dimension k., kg, kg, respectively, whose
elements are all ones.

Then, the distributions of counting processes N IW (n), Ngv(n), N lV)V (n) are presented
in Theorem 2.1 for the one-step increasing/equivalent/decreasing transitions in working
periods together with the distribution of their summation NV (n).

Theorem 2.1 Denote the distributions of counting processes N }‘(V (n),X € {I,E, D} and
NY (n) in working periods by

oY (n, k) = P(NY (n) =k}, ¢V (n,k):=PINY(n) =k},
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fork =0,1,....Then, they can be given by their Z-transforms as follows:
oY (2. k) = m{lI - DY 1" PY @I — DY ()17 P(2).
oV (2. k) = 7{[I — PF @I 'PV (I — PV (217 P(2).

Proof The proof can be presented for NIW (n), N}E'V (n), NLV)V (n), NV (n), respectively, in (1)-
(4) as follows.

(1) For counting process N ,W (n), denote the conditional probability ¢;;(n,k) =
P{N,W (n) = k|Zp(0) =i} by ¢>{i(n, k) when i € Y, namely, when the initial state i of
semi-Markov process Zo(n) is in subset Y € {of, %1, %>, Z}. Specifically, for i € o,
there are four cases to consider: O

Case 1: The system stays in state i in interval [0, n], which means the first transition
from state i happens attime u (u =n+1,n+2,...);
Case 2: The system jumps to another state j (j # i) in subset <7 at time u (u =

1, ..., n) from the initial state i € <7, which is a one-step equivalent transition in a working
period that will not contribute to N IW (n);
Case 3: The system jumps to state j in subset Z at time u (u = 1,...,n) from the

initial state i € <7, which is a one-step decreasing transition in a working period that will
not contribute to N ,W (n);

Case 4: The system jumps to state j in subset & attime u (u = 1, ..., n) from the initial
state i € o7, which is also a one-step decreasing transition in a working period that will not
contribute to N [W (n).

Then, due to the conditional independence of events, for i € o7, we have

¢, 0) = Y Z Qi+ > ZQU(M)aﬁ,,(n ,0)

je/{i} u=n+1 jedd /it u=1
+> ZQ,,<u>¢, L —u,0) + ZZQ,,ww?,(n ,0),
jeAB u=1 j€e2 u=1
¢rin ) = Y ZQl,(u)d),,(n wk)+ Y ZQ,,(W (i —u, k)
jedd /{i} JjeEB u=1

+3 N 0w —uk), k=1

Jj€ED u=1

Upon taking the Z-transform, we have

70 =z2-D7MI = > 0@+ Y. 05@e7F(z.0)
JjeQ/i} jed /{i}
+ Y 05@e @0+ Y 0671 (. 0),
jE€PB jeo
Pk = Y 05@e7 @+ Y 057 @ k)
jed i} Jj€%
+Y05@¢75 @ k), k=1,
jED
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In matrix form, these formulas can be expressed as
07(2,0) = 2z — ) uw — Q@1+ 0L, (D7 (2,0) + QL 52D (2,0)
+0.,52)97(z,0),
07 (k) = Q1,7 (2, k) + QL) p(D®7 (2. k) + Qlyy (BT (2, k), k> 1.

As in the above discussion, for i € %), we also have four cases to consider, and the only
difference is that the transition from i € % to j € <7 will contribute to N ,W (n). This means

¢ .0 =3 3 0@+ Y D 05w —u. 0+ Y > 0@ —u.0).

JjE€Qu=n+1 jeRB, u=1 jeED u=1
n n
B . B
¢k = > Y0 —u k=1 + Y > Qi) (n—u k)
jed /i) u=1 jeRB u=1

+3°) 0w —u k), k=1

j€eDu=1
Then, we obviously have
071(2,0) = 2z — D7 g — Q%D+ Q%@ (2,0) + @y, ()97 (2,0),
71 (k) = 0%, @87 (2. k- D)+ Q5007 (2, k) + 0%, (D07 (2. k), k= 1.

Similarly, for i € %,, we have

‘p}%z(z’ 0) =z2z— D ug — Q@1+ @y, P (z,0) + Q’;m(z)q)[gg1 (z,0)
+0%5,2)®7 (2,0),

0722, k) = 05,7 (2,5 + 055072 (2, k) + 0%, @7 (2, k), k=1,
and fori € 9, we have

@7 (2,0) = 22— )7 'ug — Q51+ 04y (07 (2,00 + 0558 (2,0)

+05,5@®7(z,0),

D7 (2, k) = 00, DD (2. 5) + Q5587 (2, k) + 00y (@7 (2. k), k= 1.
o7 (2, k)
@, (z. k)
(2, k)
o7 (z, k)

From all the above expressions, with difv(z, k) = , we can conclude that

@) (2,00 = P(2) + D} ()9} (z,0)=[I - D} ()1 ' P(2),

oV (2, k) = PY (@@} (2. k—1)+ D} (@) (. k)
= -DY1'P)@®) . k-1
={I-D) @I 'P} )Y@} (.0
={I-D) @I '"P} U -D}@1'PG). k=1
This means that the distribution ¢1W (n,k),k = 0,1,..., of counting process N,W (n) can

be given by its Z-transform as

¢/ (2, k) =m{I = DY @17 P} )1 — DY ()17 P(2).
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(2) The detailed discussions and associated notations for N EV (n) are similar to (1), and are
therefore omitted. For i € 7, based on the conditional independence of events, we have

07 (2,0 = 22— D uy — Q5,@1+ 0%, @87 (2,0) + Q% ,()BY (2, 0),
D7 (2. k) = 0%, P @k =D+ 0% @97 @ k) + 05,97 @ k)., k=1
fori € A, we have
712,00 =2z — D g — Q@1+ Q% P (2,0) + 055,87 (2,0),
071 (1,k) = 0%, BT (2, 1) + @y (DL (2, k — 1) + @y (DOL (2, k), k= 1;
fori € %>, we have
072(2,0) = 2z — 1) uz — Q%@+ 0%, (2,0) + 04272 (z,0)
+0%52)®Z(z,0),
D2, k) = Qyy (DPE (2 k) + QP2 (2. k) + Qe DPL (2 k), k= 1;
fori € 9, we have
07(2,0) = 2z — )7 '[ug — Q5@+ 05, ()®F (2,0) + Q% 5(2) @7 (2, 0)
+0%55 % (2,0),
07(2,k) = 0%, QP (2, k) + QL)L (2, k) + 0Ly ()®F (2. k), k> 1.

Then, similar to (1), the distribution qﬁgv(n, k),k = 0,1,..., of counting process NZ,V (n)
can be given by its Z-transform as

oV (2, k) = w{I = DY @)1 'PY @) — DY ()17 P(2).

(3) The detailed discussions and associated notations for N[V)V (n) are similar to (1), and are
therefore omitted. For i € <7, based on the conditional independence of events, we have

D7 (2.0) = 2 — D7y — Q@1+ Q% (DT (2.0,
o5 (k) = 0, QP @k + 05,587 (2. k— D+ 05,5, DT (@ k—1), k=1;
fori € A, we have
071(2,0) = 2z — )7 uz — Q%] + 0%, ()T (2,0) + Q) d7 (2,0)
+ Q%597 (2, 0),
D7 (2. k) = 0l (DT (2. k) + QPN (2, k) + Qly()PF(z, k), k> 1;
fori € 9,, we have
D52(2,0) = 2z~ D)7 uz — Q5@+ Q5 (DPF (2. 0) + Q)@ 5> (2. 0)
+0%,2)®%(z,0),
(2. k) = 0%, (PF (2. )+ Oy k) + 0y (PG (2 b, k= 1;
fori € 9, we have
7(2,0) = 2z — D7 ug — Q5@+ Q% ()PF (2,0) + QL5 ()P (2, 0)
+0%5,(2)97(z,0),
DYz k) = 05,@DPF @ k) + 05 5@ (2 k) + 05y @@ k), k> 1.
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Then, similar to (1), the distribution ¢X)V (n,k),k =0,1,..., of counting process va)v (n)
can be given by its Z-transform as

ON*(z k) =x{I = DY DI 'PY @I - P ()17 ' P(2).

(4) The detailed discussions and associated notations for N% (n) are similar to (1), and are
therefore omitted. For i € o7, based on the conditional independence of events, we have

27 (2,0) = 2(z — D7 ugy — 0%, (2],
D7 (2,k) = Q%) D7 (2 k— D)+ Q%507 (2.k — 1) + 0%, 5,97 (. k — 1), k= 1;

fori € A;, we have

271(2,0) = 2 — D)7 '[ug — Q@]+ @iy (97 (2. 0),
P12,k = Q%P7 (2. k— 1)+ Q@07 (2, k — D)+ Q5,07 (2, k), k= 1;

fori € %,, we have

D72(2,0) = z2(z— D7 uz — Q@)1+ Oy (D7 (2,0) + Q) P72(2,0)
+0%5,2)®7(z,0),
D72(2,k) = 0%, DD (2,5 + Q%5297 (2, k) + Qe ()7 (2,k), k> 1;

fori € 9, we have

07(2,0) = 2z — ) ug — Qu @]+ 0%, (297 (z,0) + Q% 4(2) %2 (2, 0)
+0%55 @97 (z,0),
07(z2,k) = Q5,2 P7 (2, 5) + Q522 ®72 (2, k) + Q)97 (2, k), k> 1.

Then, similar to (1), the distribution d)W(n, k),k = 0,1,..., of counting process NY )
can be given by its Z-transform as

¢"* (2, k) =={ll — PP @17 PV @)1 - PP ()17 P(2).
As in Theorem 2.1, the distributions of counting processes N IF (n), N g (n), N 5 (n) are
presented in Theorem 2.2 for the one-step increasing/equivalent/decreasing transitions in

failure periods together with the distribution of their summation N (n).

Theorem 2.2 Denote the distributions of counting processes N )f (n), X € {I, E, D}, and
NF(n) in failure periods by

¢x(n.k) = P(Nx () =k}, ¢"(n.k):= PINT () = k),
fork =0,1,....Then, they can be given by Z-transforms as follows:

¥ (2, k) = m{lI — DX @1 ' PE@Y U — DE@)17'P(2).
¢T*(z, k) = m{[I — PV 17" P @I - PV ()17 P(2).
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Proof The proof is similar to Theorem 2.1, and is therefore not presented here for
conciseness. O

With the results presented in Theorems 2.1 and 2.2, expectations and generating
functions of these derived counting processes are derived in Theorem 2.3.

Theorem 2.3 (1) The Z-transforms of expectations of N)V(V (n), N)f (n), X € {1, E, D}, and
NY ), N (n) are as follows:

E'INY ()] =2z — )" 'z[I = D*@]'PY Dug,.

E'[N{ @] =z(z— D) 'z[I - D*2)] ' P{(Dug,.

E'INY @)1=z - D)zl — D*@1 ' PV (2)ug,,

E'INF(@)] =2 —1D)7'xlI - D*@) ' P (Qug,.

whereug, = ( 1,...,1 )T;

kg +2kg+kg
(2) The Z-transforms of the generating functions of N;V (n), N)f (n), X € {I,E, D}, and
NY (),
NF(n) are as follows:

hY*(z,x) ==l — PY (2)x — DY ()] P(2),
hE*(z, x) = =[I — PE(2)x — DY) P(2),
Wz, x) == — PV (2)x — PP (2)]7' P(2),
Wz, x) =n[l — PP ()x — PV ()17 ' P(2).

Proof We only consider NIW (n) since the results for other cases can be established similarly.
(1) Expectation of N)V(n) is E[N)Y(n)] = mE[N)'(n)], where E[N)'(n)] =

o0
kdi}”(n, k), can be given by its Z-transform as follows:
k=1

E'IN@1=) k] (z.k)

k=1
=Y kP} (@) .k—1)+ D} @)@} (z.k)]
k=1

PY@IY (k=@ @ k—1)+Y & k—DI+D]@) ) ko] (k)
k=1 k=1 k=1

P ({E*IN) D1+ 2z — D 'ug,) + DY (2) E* [N} (2)]
2z— D' = PY () - DY @17 PY (2ug,
2z = D7 = D*@17' P} (ugy;
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(2) Generating function of NIW(n) is h}”(n,x) = Jth}”(n,x), where h;v(n,x) =
o0

d’}y (n, k)xk , can be given by its Z-transform as follows:
k=0

o0
h 2 x)=@) 2,00+ ) @]z, bx*
k=1

0.0+ [PV @@} (z.k—1)+ D} @] bl

k=1
o0 oo
=00+ P @x)Y &) k— D'+ DY @D @) . bx* - @)z, 0)]
k=1 k=0

= [P} (@x+ D} @1h)*@.x)+ I - D} ()19} (z,0)
= -P}@x-D)@1I'I - D} @)19] (z.0)
= -P)@x-D) @I 'P@.

Then, some joint distributions of NIW (n), N;V (n), N I‘SV (n) are presented in Theorem 2.4,
and similarly some joint distributions of N ,F (n), N g (n), N g (n) are presented in Theorem
2.5. O

Theorem 2.4 Denote the joint distribution of N [W (n), Ngv(n), Ng/(n) and the joint
distributions of Ny (n), Ny’ (n), (X,Y) € {(I, E), (I, D), (E, D)}, by

¢" (n, ki, ko, k3) == {N}¥ (n) = ki, N} (n) = ka, N} (n) = k3},
oYy (n, ki, k2) == (NY (n) = k1, Ny (n) = ka},

forky, ky, ks € {0, 1,...}). Then, they can be given by their Z-transforms as
OV (2, ki, ko, k3) = @V (2, ki, ko, K3), by (2, ki, ko) == m @Yy (2, ki, Ka),
where, for ®"V (z, k1, ko, k3), we have

9% (2,0,0,0) = =[I — P (2)]"'P(2),
oV (z, ki, ko, k3) = I — PE @I [P) (@Y (2, ki — 1, ko, k3) + PR ()@Y (2, ki, ko — 1, k3)
+PY@)@" (2. ki ko ks — D], (k1. ka, k3) # (0,0, 0),

and for (P)v}/Y (z, k1, k2), we have

&Y, (z,0,0)
&Y, (z, ki, k)

(I - DY, @1 ' P(),
(I - DY, I ' [PY@®Ny(z k1 — 1, ko) + PY ()@ Yy (2. ki, ko — D],
(k1. k2) # (0,0).
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Proof Take ¢V (n, k1, ko, k3) as an example. Then, as in Theorem 2.1, we have
2"(2,0,0,0) = P(2) + PT()®" (z,0,0,0) = [I — PF ()17 P(2),
oV (2, ki ko, k3) = PF ()@Y (2, ki, ko, k3) + P ()@Y (2, k1 — 1, k2, k3)
+PE (0" (2, ki ka — 1, k3) + P ()@Y (2, ki, ko, k3 — 1)
=[I - Pr@I '[PV ()@ (z, ki — 1, k2, k3)
+PY ()Y (2, ki, ko — 1, k3) + Py (2)®" (z, k1, k2, k3 — 1],
which completes the proof. O
Theorem 2.5 Denote the joint distribution of N IF (n), N g (n), N 5 (n) and the joint distri-
butions of N¥ (n), Nl (n), (X, Y) € {U, E), (I, D), (E, D)}, by
¢" (n, k1, ka, k3) := {Nf (n) = ki, Ni (n) = ka, N, (n) = k3},
Dy (n, ki, ko) == (N§ (n) = ki, Nf (n) = ka},
forky, ka, k3 € {0, 1, ...}). Then, they can be given by their Z-transforms as
oMz ki ko k) =@ (2. ki koo k3), oy (2o ki ko) = @y (2. ki k),
where, for ¢F(z, ki, ka, k3), we have
07(2,0,0,00 = x[I - PV )17 'P(2),
o5 (2 ki ko, k3) = [l — PV (@17 [P ()@ (2, ki — 1, ko, k3) + PE@ ST (2, k1, ko — 1,k3)
+PE@®F (2. ki ko ks — DI, (ki ko, k3) # (0,0,0),
and for ¢§Y(z, ki, kp), we have
®%,(2,0,0) = [I - D5y (217" P(2).

oL (2 ki k) = I - DYy 17 PR @@4y (2 ki — 1, k) + PL ()@ %y (2, ki, ko — D],
(k1, k2) # (0, 0).

Proof The proof is similar to that of Theorem 2.4, and is therefore not presented here for
the sake of conciseness. O

Based on the results in Theorems 2.4 and 2.5, the joint generating functions of N IW (n),
N};V (n), NB/ (n) and NIF (n), Ng (n), Ng (n) are presented next in Theorem 2.6.

Theorem 2.6 (1) The joint generating function of NIW (n), N;V (n), NIV)V (n) can be given
by its Z-transform as gV*(z, x1, x2, x3) = wgV*(z, x1, X2, x3), where
" (@ x1,x0,x3) =1 = PP (@) = P} (9)x1 — P @)x2 — P (D)x3] ' P(2);

(2) The joint generating function of N;:,V (n), N;V n),(X,Y) e {U E),U,D),(E, D)}

can be given by its Z-transform as g)vy;‘ (z,x1,x2) = Jrg?(/;,‘ (z, x1, x2), where

Wiz, x1,x0) = [I — D¥,(2) — PY¥ (2)x1 — P (2)x2] ' P(2);

(3) The joint generating function of NIF(n), Ng(n), Ng(n) can be given by its Z-
transform as g7 (z, x1, x2, x3) = wgF*(z, x1, X2, x3), where

g @ x1x.x3) =1 — PV (2) — PV (9x) — PE(D)xy — PE(2)x3] ' P(2):
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(4) The joint generating function of N¥ (n), Nf (n), (X,Y) € {(I, E), (I, D), (E, D)},
can be given by its Z-transform as g?‘; (z, x1,x2) = ng;;’; (z, x1, x2), where

gyy (@ x1,x0) = [I — D%y (2) — PX(2)x1 — PY(2)xa] ' P(2).

Proof Take (1) as an example. Then, as in Theorem 2.3, we have
o0

g x) = Y V(@ ki ke ka)xyxyiay
ki .k2 ,k3=0
o]
=0V 0,00+ -P @I P)@) Y @Yk -1k ks)x}'xpx}
k1,k2,k3=0
[e ]
+PY @) Y 0V (e ki ke — 1 ka)xy s
ky,kp,k3=0
o0
+PR @ Y 0V @k ka ks — D) R ad ]
ky,ky,k3=0

= -P QI"'P@+ I - PF@1 '[P} ()x1 + PY (2)x2 + P (D)x31g"* (2, x1, x2, x3)
=U-P'@)— P} @xi — PY@x— P) (17 P(2).
O

3 Second-Order Discrete-Time Semi-Markov System

Consider the time-homogenous second-order semi-Markov chain {Z(n),n = 0,1, ...}, as
in Yi and Cui (2017), with discrete time and finite state space Q2 = {1, ..., kq}. The state
that the system jumps to at the kth transition time Sy is denoted by J; (k = 1,2, ...), and
the system enters the initial recorded state Jy at time Sp = O from a known state J_;. Let
Xop = 0, and the sojourn time in state Ji_; between the (k — 1)th and kth transitions can
be expressed as Xy = Sy — Sk—1 (k = 1,2, ...). Then, the second-order (in state) semi-
Markov kernel of the related second-order (in state) semi-Markov chain can be defined as
0 = (Ql-*j*(n))kﬂzxkﬂz, where Q2 = {(, Jj) i, j € K} is the state space whose
elements are state pairs (Jx—1, Jx) = (i, j) of the original chain {J;,k =0, 1, ..., 0o} and

Qi*j*(") = Qik,hj(n)
=Plhi=hJis1=j,Xis1 =n—Ji1=i,J; =k}
=Pllho=hJ1i=j,X1=n—J_1 =i, Jo=k}
=P{hh=jXi=n—J_1 =i, Jo=k} 1=k

With the state space 2 divided into three subsets <7, % and &, the second-order (in
state) semi-Markov kernel can be divided correspondingly as follows:

Qo2 2 Quyet ot BW) Quot ot et 9 () o o o o o o

o o o Qo BBt N Loy .25 M) Qoy 8,89 M o o o

o o o o o Rt 92924 Qet 928" et p. 22
QB ot ot ) LBt ot B QBot ot D) o o o o

Qm= o o QaBBd() Qg2 g2 Qpm B2 M o 0 o

o o o o o o Qw24 Qrw22"W Qe .29™
Qoct cdat W Qoct .z Qoat o) o o o o o

o o Qoyz B4 Qo znn) Qpn.z9 ™M o 0 0

o o o o o o Q99,924 Qo920 Qg 50

Here again, the subsets 7, % and ¥ consist of perfect functioning states, imperfect
functioning states and failure states, respectively. Besides, there are k., kg and k¢ states in
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the subsets .7, 4 and 9, respectively, namely, o = {1, ..., ky}, B = {koy+1, ... ks +
kg, D=tk +ka+1,... . kg +kap+ kgl

As in Section 2, sojourns in subset 4 contribute to working periods if and only if the
system is in <7 right before it enters % and right after it leaves %8, which implies that
they contribute to failure periods otherwise. Obviously, sojourns in subset &7 contribute to
working periods and sojourns in subset & contribute to failure periods. For discussing the
properties of the semi-Markov system, a new stochastic process { Y (n),n = 0,1, ...} is
defined as follows:

Y () = 1, the system is in a working period at time n,
" 10, the system is in a failure period at time n.

Note that Y (n) is a right-continuous function, which means its value at a transition time
depends on whether the sojourn after transition contributes to a working period or not.
Besides, a transition is said to be in a working period if the system is in a working period
when the transition starts, and in a failure period if the system is in a failure period when
transition starts.

Denote the conditional probability that the system stays in subset Y in time interval [0, n)
and jumps to state j in another subset Z at time n, given the initial state { in subset X at
time —1 and state k in subset Y at time O, where

XY, 2)e (A, B, A (A, B,D A, D, A), (A, D, B), (B, A, B), (B, A, D),
(B, 2,9),(B. D, B), (D, A, B), (D, A, D), (D, B, H), (D, B, D)},

by gl.)f:;;fz(n). This implies, fori € X, k,h € Y, j € Z, we have

Gt f)y =Pl =hJy=j. S =nJ1, 0., i1 €Y ] =i, Jo=k},

where no self-transition is allowed.

In matrix form, denote Gxyyz(n) = (g.),%;)./z(n),i eX,k,heY, je Z) ,
’ ey kxky xkykz
where ky, ky, kz denote the numbers of states in subsets X, Y, Z, respectively, and denote

0 as a matrix whose elements are all O of suitable dimension. Then, as mentioned in Yi and
Cui (2017), the Z-transform of G xy yz(n) can be represented as

Gyyz() = Qkyyy@U — Q2 1217 @3y y2() + Qv y2 (),

where I is an unit matrix of suitable dimension. As in the discussion in Section 2, we
then have a new semi-Markov chain {Zy(n),n = 0, 1, ...} with state space Qp = &/ U
P U PBr U Z and the semi-Markov kernel in Z-transform as

D*(5)

Q2 o Rt s Vet ot v o o o o o o o
2280 Vg 39 o o o o o o
o o o o o o Q9 9a?) Lo oz Luaaald)
Qopat,dt® Vbt 80 Vgt .t 2 o o o o o o
D Qs s o o o o o o
° ° o o o o o o o P99+ Qw992 Vz9.92)
Qi ot © LVpt ct 8O gt .t 2 o o o o o o o o
o o o Qupmma Vgt 520 Vamp.aosl) o o o
o o o ) o o o o o Q9940 Vno.oa® Vag.ga@
Rttt Dt .t BC) VYt cd 90 o o o o o o o
o o o o o o Qua.ma") Von.02") Va8 o o o
o o o o o o o o o Q2,940 Vo259 Vg 20

Assume that the initial probability vector of Zy(n) can be denoted by

=2, Wy B, d D, B A » T g2 KB D Wyt s T 2 By D R D s WD B T p2),
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where its element ; y = P{Zy(—1) = i, Zo(0) = k} is the probability that the initial state
pair of Zo(n) is (i, k). To investigate the transition rules, some notations are defined for
one-step increasing/equivalent/decreasing transitions in working/failure periods as follows:

000 o 06010001000 ooo|o000 0 oo o o 0
0o00|Q" J00|000[000 0001000 0 00 9
ot B,8.28 D 0ooo0|oo0o0 o 00[Q% 0 0@ Uy pm 0
000 00]000]000 ooofoo0o0 o 00 dﬁojd deoﬁj )
000 0 0o0j0007000 ooofloo0o0 o 00 o (o] o
. R
000 Qypyp gy 00]0001000 000|000 0 00| Q%0 0w Vo gzl O
PV 000 0 00]000]000 | pfi)~(Go0f000 5] 0 0 0 0 0
000 0 00|00O0O|0O0O 0o0o0|o00o0|Q* @oo o o °
000 o oo|ooo0|l000O BRB,PBA . N
000 o 0oo|oo00|[00O0O ooojooo 00| Q%y 9y Qyyp pal) O
oo0oo ) Oo0o|ooo0|f0O0O ooofooo o 00 o o )
000 o oo|ooo|loo0o0 000[000|QYy 4,00 o o o
0oo0o0 o 0Oo0O|0O0OO|O0OO0O ooo0o|loo0o0 0 00 Qf@@@%(:) Qb@@[ﬁ?}(:> )
QZﬂQyZ(‘")OOD o o/looo|oo0o0 ooo|looo0|oO o oloo o
L . B ooo|ooo|o o oloo 0
o 000 Qppe 0000000 000|(000|0 0 0|00 Q" ©
o oolo 0 olooo|ooo soolooolo 5 oo LEEL
Quaes ooy 0010 0 ojo0o0o0joo00 ooo|ooo0|o0 0 oloo 0
o 0o0|o0 ng_%z(:) 0jlooo|oo0o0 ooo|looo0]|o0 o 0|00 Qizy 590
Pl ()= o oo|o 0 olooo|ooo|Pf-|000[000][0 0 0[0o0 0
Qs gy 000 0 0/[000[000 000[000[0 Q, 1 0[00 0
§ ssls o ojoseless|  |esslooolo " olooouggen
£ oOoofooo0|oO o oo o
QQYet g ey@ 00[0 o ojooojooo 000[000|0 QY4450 0|00 o
) 0oo0|o0 o ojlooo|loo0O0 “ - *
o oofo o ojooofooo0 0o00joo0o0jo 0100 Qg
* z o (2
0Q /s Qo yp)|000|000]|000 ooojloo o |00 o ooo
o o o ooo|looo0|0o0O0 000(00Q ;5 55|00 o 0o0o0
0 0 o ooo0|/0oo0o0|000 oooloo 0 0o 0 0ooo
0Q%.y g2 Qpy g0 |[000[000[000 00000 0 oo 0 000
o o o ooo|looo|looo 00000 Qg zyk|00 o 000
PY=|2 o 000/000/000]| ,p ) [000]00 0 00 o 000
()= 5 ~ = ~ Pp (@)=
0 Q% 770 Rpyyy@|000[000[000 000[00 ) 00 0 000
[¢] [} o ooolooo|looo0 ooofoo o 00 Qyuyupyl|000
0 o 0 0O0O0O|l0OOO|O0O0O 0o0o0|O0O o 00 o 000
0 QY wzd VQppoyyp® |[000[000[000 000|000 0 00 . ] 000
o 0o o ooo|ooo|o0o0o0 0oojoo o 00 Qypxzpyp 000
0 0 o ooo|oo0o0|000 ooofoo 0 0o 0 ooo

Note that P}V (z)+ P} (z)+ P}y (2)+ PF (2) + PE(2)+ PL (z) = D*(z). In addition, let

DY (z) = D*(z) — PY (2), D%(z) = D*(z) — P¥(2), X e {I, E, D),
Py, () =PY @)+ P} (), PLy(2) = PR () + PL(2), (X, Y) € (U, E), U, D), (E, D),
DY, (z) = D*(z) — P¥y(2), D%y (2) = D*(2) — P%y(2), (X, Y) € (I, E), (I, D), (E, D)}.

Further, let PV (z) = P}V (2) + PY (2) + P}y (2), PP (2) = PY (2) + PE(2) + PE(2) and

Ut QR 2O o YRy of oy BV A B R o ot 9t D)
Uit B Qg 3,580 VBt * Ry 8,358 28+ g 8. 39 V29
vt 2Ry 9 9t V2 * Ry 9 93428+ Vg 9 994 22)
Bt QB ot of ot Vst ot T QB ot ot 8Vt B VBt ot 9 Vst D)
vB% Qpm B0 By T Qg 52 Vun2+ Vg5 089289
v29 Q%9 90 9a + Qpy 9595+ 9 .99 v99)
U Bl T QP ot ot ot Vit ot Y Rip oy o Bt BY R cq et D)

)

Yot of = Qi oy
“d@*Qéygg
Y9 Qe
U Bt~ Qo
wmm Rz

oa

sETa

GG

2 v Qpp BB QR v BB+ g0 5982
’ )) v29 Q3990025+ Vpa0a 928+ RE9.99 99
) v9of (RYet ot ot N A VR Yty 8Vt BY R oy oy 9t D)
Uy - Qg0 w93~ Qom0 B+ Lpp.pe v n8+ 95 89 2]

*

v99 Q99 9w 94+ 99 98098+ Q) 4 vgg]
where uxy, X, Y € {of, B, &}, are column vectors of dimension kyky whose elements
are all ones.

Then, the distributions of counting processes N IW (n), Ngv(n), N lV)V (n) are presented

in Theorem 3.1 for the one-step increasing/equivalent/decreasing transitions in working
periods together with the distribution of their summation NV (n).
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Theorem 3.1 Denote the distributions of counting processes N }V(V (n), X € {1, E, D}, and
N (n) in working periods by

¢x (0. k) = PINY () =k}, ¢" (n, k) := PINY (n) =k},
fork =0,1,....Then, they can be given by their Z-transforms as follows:

¢x *(z.k) = 7{[I - DY @I PY @)1 — DY 1" P(2),

¢"*(z. k) =m{lI — PF @17 ' PV ) I — PP ()17 P(2),

Proof Take ¢,W (n, k) as an example. Then, the proof is similar to that of Theorem 2.1.
Consider the initial state pair (Zo(—1), Zo(0)) = (i, k), fori € o/ and k € <. Then, we
have

7Y (2,0) = 2z — D Nt — Q') (2] + Q;2‘d2(2)¢}af@f(z’ 0)
0.y z@®] 72,00 + Q%) s @977 (2,0),
77 (2, k) = Q. p@O77 (2, k) + Qs @@ 7 (2, k)
+Q;d,d@(z)¢§@(z, k);
fori € o/ and k € %4,
‘P}Q{%(Z,O) =z2z- D MNuws — Q;%(z)] + Q;gg”@%(z)¢}@'@'(z, 0)
+Q;@,@@(Z)¢}%9(Z,0),
7P (k) = Q) DO (L k= 1)+ 0y 5 @BTI P (2, )
+Q;@”@@(Z)¢}%1@(z,k);
fori € &/ andk € 9,
277(2,0) = 2z~ D) uwo — Qlyo@+ Qg 0w (@77 (2,0)
+000.0502] @0+ Qg 00 @977 (2.0),
D772 k) = Q10 00 @P77 @)+ Q005 ®] P (2. k)
10,159 09@P77 . k)
fori € #) andk € 7,
277 (2,0) = 2z = D Uz — QD1+ Qpr oy (T 7 (2,0)
+050. 0 D] @ 0) + Qg (T (2,0),
&7 (00 = Qo s DT (@) + Qs s a BT 7 (2 K)
+05. 00 @O®7 7 (@ k)
fori € A and k € A,
‘I’}@'“@1 (2,0) = 2z = ) uzz — Qpa()]+ Q*@zwg(z)qﬁ‘,@“%" (z.0)
+ 055 5507 (2,0),
72 k) = Qp 0P (k=1 + Q*QZ’%Z(Z)¢'?1331 (2. k)

* B9
+0 %% 29@P; " (2,k);
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fori € B andk € 9,

772,00 = 2~ ) umg — Q@]+ Q30 00 (77 (2.0)

105005087 7(2.0) + 00 50077 (2,0),
@ k) = Q59 9077 @ k) + 0y 05297 P22, k)
+0%9.99 @77 (2. k)

fori € B and k € o7,

gél.@

2,7 (2,0) = 2~ D Nz — Q@1+ @y oy oy P (2,0)

405 a7 (0 + @y (BT 7 (2,0),
@h) = Qs (DT (2, ) + Q;g{,d@(z)(b}d‘%'(zak)
+0%. 00 @®7 7 (2, k)

fori € %, and k € %,,

JQQ{

(1)332332(2 0) = z2(z— D Nuzz — Quu)] + Q@Q JQ{(Z)¢£2Q{(Z, 0)
+000 P72 (2,00 + Qi 25977 (2,0),

®2 (k) = Q;%,%m@‘p?zd@a k) + ngz,ggz(z)d’,%%(z,k)
+Q%@,@@(Z)¢?29(Z, k);

fori € %, andk € 9,

272,00 = 2z~ D ugo — Qo]+ 0uo 0n P77 (2,0)
1050905007 72.0) + 00 50077 (2,0),

@K = 05399077 @ k) + 0y 0z29] P22,k
+0%9.99 @77 (2. k)

%2@

fori € Yandk € o7,

(I)?M(Z,O) =2z - D Mugy — Q*@d(z)] + Q*@mmd(z)‘l’?{d(zﬁ)
+Q*@g¢,dgg(z)¢f7@1(z,o)+ Q;d,ﬂ@(z)d"}i@(z, 0).

@7 (z.k) = Q*@g{,dgi(z)¢§{d(2,k)+ Q*@d,g{@(z)qﬁf{‘%l (2. k)
+Q;d,m@(Z)¢'Id@(z,k);

fori € Y and k € %,,
@2(1 0) =2z — D Hugs — Q@@(z)] + Q@gg ggg{(z)¢uﬁzd(z’ 0

+Q@<@,<@<@(Z)¢f2 #2(2,0) + Q@{@“@@(Z)fpl 2(2,0).

7@k = 055,550 @0 + Q0 0u® @ 0
+Q*@@,@_@(Z)¢}%‘@(z, k);
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fori €e Yandk € 9,
772,00 = 2z = D) g9 — Q9@+ 099 9., (@77 (2. 0)
+050.02@9] @0+ 01, (P77 (2.0),
2772,k = Q59 00 @QP77 (@ 0 + Q5 057 (2, k)
+000 @772 k).
From all the above expressions, as in the proof of Theorem 3.1, the distribution
qbyv (n,k),k =0,1,..., of counting process NIW (n) can be given by its Z-transform as
01"z k) =n{I - D} 1" P} @Y1 = D} ()] ' P(2).
O

As in Theorem 3.1, the distributions of counting processes N IF (n), N g (n), N 5 (n) are
presented in Theorem 3.2 for the one-step increasing/equivalent/decreasing transitions in
failure periods together with the distribution of their summation N (n).

Theorem 3.2 Denote the distributions of counting processes N )f (n),X € {l,E, D}, and
NF(n) in failure periods by

¢%(n, k) := PIN{ (n) =k}, ¢"(n,k):= PINF(n) =k},
fork =0,1,.... Then, they can be given by their Z-transforms as follows:

o% (2, k) = m{[I — DX 1" PL@I(I — DE@17'P(2).

o™ (2, k) = n{lI — PV @)1 'PF (I — PV ()17 P(2).

Proof The proof is similar to that of Theorem 3.1, and is therefore not presented here for
the sake of conciseness. O

Furthermore, other theorems in Section 2 can all be presented here in the same form, but
are omitted for brevity.

4 lllustrative Eexamples

To illustrate and verify the results established in the preceding sections, two examples are
presented here. In Example 4.1. we consider the case when a power generating system
follows a time-homogenous first-order semi-Markov chain. To accommodate that future
states of the system may depend not only on its present state, but also on its immediately
preceding state, in Example 4.2, we consider the case when it follows a time-homogenous
second-order semi-Markov chain.

Example 1 Consider a power generating system that follows a time-homogenous first-order
semi-Markov chain {Z(n), n = 0, 1, ...} with state space Q = FURBUY, where of = {1},
A = {2,3} and ¥ = {4} consist of a perfect functioning state (with a power generating
capacity of 50 MW), two imperfect functioning states (with the power generating capacity
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of 30 MW and different functioning modes) and a failure state (with a power generating
capacity of 0 MW), respectively. Assume that the system starts from state 1 at time O and
the semi-Markov kernel can then be presented as follows:

0 [0.1x08" 04x06" | 0
Qoror M) Qovs () Qs (m) Ax0F T 0 0Ix08 [ Tx07
e =\ Qo) Quu®) Quo() | =| 05,06 |01x08" 0 |02x06"
Qou ™ Loz Qoo 0 [45x0.1" 2x02" 0

For this system, a working period is defined as a period of time that the system is in per-
fect/imperfect functioning states which starts with a sojourn in the perfect functioning state
and ends with a sojourn in the perfect functioning state, and a failure period is defined as
a period of time between two consecutive working periods. Then, the expected numbers of
one-step increasing transitions, one-step equivalent transitions, one-step decreasing transi-
tions and all one-step transitions in working periods and in failure periods in time interval
[0, n] are all plotted in Fig. 1, respectively, for n = 0, ..., 30. The comparisons of all
one-step transitions in working periods and in failure periods are displayed in Fig. 2.

As seen in Fig. la, E[NIW(n)], E[Ngv(n)], E[Ng/(n)], E[NY (n)] are all increasing
functions of n. Besides, it is seen that

E[N} (0)] ~ E[NY (0)] ~ E[N}) (0)] ~ E[N" (0)] ~ 0,
E[N}) ()] + EINY ()] + EINY (m)] =~ E[NY (n)].

Similarly, in Fig. 1b, E[N[F(n)], E[Ng(n)], E[Ng(n)], E[NF )] are also increasing
functions of n, and it is seen that

E[Nf (0)] ~ E[Nf (0)] ~ E[Nf(0)] ~ E[N* (0)] ~ 0,

EINF )1+ EINEm)] + EINEm)1 ~ EINT (n)].

5 8
44
6.
54
34
4
2 00°°”’ 5 .
69 ] i
u°°o g o
oc.°° ‘ 609
. bo0o® il +* 00
50 2 ) w2 olo
1 00 300
o 58°
o= L BT e e 1 . )
..... + 44 °?
. gl §es BT G'°°
s ?
0haost . ohastd . .
0 10 20 30 0 10 20 30
n n
+ Curvel Curve2 © Curved -+  Curved + Curvel Cuve2 © Curve3 - Curved
(@) (b)

Fig.1 a N}V (n) (Curve 1), N (n) (Curve 2), NJ¥ (n) (Curve 3), N¥ (n) (Curve 4) (Left); b NF (n) (Curve
1), NE (n) (Curve 2), NE(n) (Curve 3), N (n) (Curve 4) (Right)
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Fig.2 N" () (Curve 1), NF (n) 12
(Curve 2), N(n) (Curve 3)
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In Fig. 2, E[N(n)] = E[NY(n)] + E[NF (n)] is almost a linear increasing function of
n. Also, E[NW(n)] > E[INFm)] forn = 1,...,11 and E[INY ()] < E[NF(n)] for
n = 12,13, ..., which is reasonable since the system is in a working state at first.

Suppose an one-step increasing transition corresponds to 3 units of maintenance costs in
a working period and 5 units of maintenance costs in a failure period, an one-step equivalent
transition corresponds to no loss and no cost no matter which period it is in, and an one-step
decreasing transition corresponds to 2 units of machine damage losses in a working period
and 10 units of machine damage losses in a failure period. Then, the expected total costs
needed in intervals [0, 10), [10, 20) and [20, 30) can be evaluated as follows:

$(0,10) = 3E[N}Y (10)] + SE[N] (10)] + 2E[N}Y (10)] + 10E[Nf (10)]
3% 0.3002 45 x 0.7928 + 2 x 1.2134 + 10 x 0.7937
15.2284,

R

A

5(10,20) = 3E[N})Y (20)] + SE[N] (20)] + 2E[N}} (20)] + 10E[NE (20)] — 5(0, 10)
~ 3% 0.4991 4+ 5 x 1.9939 4+ 2 x 1.7131 + 10 x 1.7210 — 15.2284
~ 16.8746,
5(20,30) = 3E[N}Y (30)] + 5E[NF (30)] + 2E[N}Y (30)] + 10E[NE (30)] — 5(0, 10) — $(10, 20)

%

3x0.6724 45 x 32113 +2 x 2.1859 4- 10 x 2.6416 — 15.2284 — 16.8746
16.7585,

X

which means the expected total costs in interval [10, 20) is a little more than in interval
[20, 30) and also more than in interval [0, 10).

Example 2 Consider a power generating system that follows a time-homogenous second-
order (in state) semi-Markov chain {Z(n),n = 0, 1, ..., co} with state space Q = &/ U
BU D, where of = {1}, B = {2,3} and ¥ = {4} consist of a perfect functioning state
(with a power generating capacity of 50 MW), two imperfect functioning states (with the
power generating capacity of 30 MW and different functioning modes) and a failure state
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(with a power generating capacity of 0 MW), respectively. Assume that the system jumps
to state 2 from state 1 at time 0 and the second-order (in state) semi-Markov kernel can then
be presented as follows:

0000 0 00 0 00 0 0 0 0 00
0000 0.4x0.5" 00 0.8x0.2"000.1x0.8"0 0 0 00
0000 0 00 0 00 0 0 0 0 00
0000 0 00 0 00 0 0 0.4x0.2" 0.9x0.5" 00
00.1x0.8"00.6x0.5" 0 00 0 0 0 0 0 0 0 00
0 0 0 0 0 00 0 0 0 0 0 0 0 00
0 0 0 0 0 00 0 0 0 0 0 0 0 00
10 0 0 0 0 00 0 05" 0 0 0 0 0 00
Qn) = 0 0 0 0 0.8x0.2" 00 04x05" 0 00.1x0.8"0 0 0 00
0 0 0 0 0 00 0 0 0 0 0 0 0 00
0 0 0 0 0 00 0 00 0 0 09x0.5" 04x02"00
0 0 0 0 0 00 0 0 0 0 0 0 0 00
00.6x0.5" 00.1x0.8" 0 00 0 00 0 0 0000
0 0 0 0 0.8x0.2" 00 0.8x0.2" 00 0.6x0.5" 0 0000
0 0 0 0 0 00 0 00 0 0 0000
0 0 0 0 0 00 0 00 0 0 0000

For this system, a working period is defined as a period of time that the system is in per-
fect/imperfect functioning states which starts with a sojourn in the perfect functioning state
and ends with a sojourn in the perfect functioning state, and a failure period is defined as
a period of time between two consecutive working periods. Then, the expected numbers of
one-step increasing transitions, one-step equivalent transitions, one-step decreasing transi-
tions and all one-step transitions in working periods and in failure periods in time interval
[0, n] are plotted in Fig. 3, respectively, forn = 0, ..., 30. The comparisons of all one-step
transitions in working periods and in failure periods are displayed in Fig. 4.

'S

0 © +
o ° 34 + 7
o ® +
©
2 00°
° o
o-:~° 21 Oo°°°
° 00
0® % & 00°°
1 Ooo o v 14 Oooo
. o e R ¥ + [
g? 4400
., 8° 3 89
248 o o ®
6 2 ?
04 T T 042 T T
0 10 20 3¢ 0 10 20 30
n n
+ Curvel Curve2 © Curve3 -+  Curved + Curvel Curve2 © Curve3 -+ Curved
() (b)

Fig.3 a N}V (n) (Curve 1), N (n) (Curve 2), NJ¥ (n) (Curve 3), N¥(n) (Curve 4) (Left); b NF(n)
(Curve 1), NE (n) (Curve 2), NE (n) (Curve 3), NT (n) (Curve 4) (Right)
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Fig.4 N"n) (Curve 1), Nf (n)
(Curve 2), N(n) (Curve 3)

Curve 1 Cuve2 © Curvel

30

AsseeninFig. 3, E[N}¥ (n)], E[N) ()], E[N} ()], EIN" (n)] are all increasing func-
tions of n, and E[NIF n)], E[Ng(n)], E[Ng(n)], E[NF )] are also increasing functions

of n. Besides, it is seen that

E[N}Y (0)] ~ E[N} (0)] ~ E[N} (0)] ~ E[N" (0)] ~ 0,
E[N{ (0)] ~ E[Nf (0)] ~ E[N/(0)] ~ E[N*(0)] ~ 0,
E[N)" 1+ EINY 1+ EINY (m)] ~ EINY ()],
E[N] )]+ E[Nf ()] + E[NJ(m)] ~ E[NT (n)].

In Fig. 4, E[N(n)] = E[NY(n)] + E[NF (n)] is almost a linear increasing function of n.
Also, we have E[NY (n)] > E[NF(n)]forn =1, ..., 16 and E[NY (n)] < E[NF (n)] for
n = 17,18, ..., which is reasonable since the system is in a working period in the beginning.

Suppose an one-step increasing transition corresponds to 3 units of maintenance costs in
a working period and 5 units of maintenance costs in a failure period, an one-step equivalent
transition corresponds to no loss and no cost no matter which period it is in, and an one-step
decreasing transition corresponds to 2 units of machine damage losses in a working period
and 10 units of machine damage losses in a failure period. Then, the expected total costs
needed in intervals [0, 10), [10, 20) and [20, 30) can be evaluated as follows:

8(0,10) = 3E[N}(10)] + SE[N] (10)] + 2E[N}Y (10)] 4+ 10E[N 5 (10)]

X

1%

15.4781,

5(10, 20)

R

Q

16.1142,

$(20,30) = 3E[N} (30)] + SE[N] (30)] + 2E[N}Y (30)] + 10E[N; (30)] — (0, 10) — S(10, 20)
3 x 1.1138 45 x 3.5957 + 2 x 2.9739 + 10 x 2.0509 — 15.4781 — 16.1142

R

1%

16.1844,
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3 x 0.5839 + 5 x 1.0004 + 2 x 0.8702 + 10 x 0.6984

3E[N} 20)] + 5E[NF 20)] + 2E[N}Y (20)] 4+ 10E[NE (20)] — $(0, 10)
3 x 0.8541 4+ 5 x 2.2860 + 2 x 1.9210 + 10 x 1.3758 — 15.4781
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which means the expected total costs needed in interval [20, 30) is a little more than in
interval [10, 20) and also more than in interval [0, 10).

5 Extended Discussions on Related Reliability Measures

The key step in Sections 2 and 3 is to define a new first/second-order semi-Markov
chain {Zo(n),n = 0,1, ...} based on the orginal first-/second-order semi-Markov chain
{Z(n),n = 0,1, ...} to distinguish whether the system is in a working period or a fail-
ure period. In this section, some extended discussions are presented to obtain reliability
measures for the two semi-Markov systems in Sections 2 and 3.

AsinYietal. (2018) and Yi and Cui (2017) , reliability measures such as reliability, point
availability and interval availability can be definded for the first-/second-order semi-Markov
system in Sections 2 and 3 by correspongding stochastic process {Y (n),n = 0,1, ...} as
follows:

(1) Reliability: the probability that the system is always in working periods before time n,

namely,
Rm)y=PY())=---=Ym) =1}
(2) Point availability: the probability that the system is in a working period at time n,
namely,

A(n) = P{Y(n) = 1;
(3) Interval availability: the probability that the system is always in working periods in
time interval [a, b], namely,
Ala,b] = P{Y(a)=---=Y (D) =1}

In existing research like Yi et al. (2018) and Yi and Cui (2017), explicit formulas of
these reliability measures have been given by an analysis of possible transitions. Here, with
the new first-/second-order semi-Markov chain {Zy(n),n = 0, 1, ...} defined in Sections 2
and 3, they can be presented in a new and simple way. Assume that the first-/second-order
semi-Markov system is at the beginning of a working period at time 0. Then, smiliar to the
discussions in Yi et al. (2018), reliability R(n) of the system can be given by its Z-transform
as

z
R*(Z) = Z_iln[ufzo - G?VF(Z)qu]s

with 7, ug,, PV (z), P¥(z) as defined in Sections 2 and 3 and
wr@ =1 - P 1" PF ().
Point availability A(n) of the original system can be given by its Z-transform as
A*(2) = 7l = Gy p()Ghy (17 R*(2),
where G}y, (2) = [I — PF(2)]7' PV (2) and
R*() = —lug, — Giyp(2u, )
Interval availability A[a, b] of the original system can be given in a recursive way as

Ala, bl = Ala, b], where

Ala.b]=R(®)+ Y fwrWAla —u,n—ul,
u=0
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and fy (1) can be given by its Z-transform as f, »(u) = G}y () Gy (2).

With the disucssions in this section and in Sections 2 and 3, some optimization problems
can be considered to obtain best reliability performance under constraints like costs and
benifits of transitions, which may be useful in practice. Note that this method can also be
applied to other reliability measures in a similar way, and definitions of working/failure
periods can also be considered in different ways by changing the split of state spaces or by
taking issues such as time interval omission into consideration.

6 Conclusions

In this paper, we have defined several kinds of derived counting processes for first-
and second-order discrete-time aggregated semi-Markov systems; for example, one-step
increasing/equivalent/decreasing transitions in working/failure periods. Stochastic proper-
ties of these counting process are studied, and related distributions, joint distributions,
expectations, generating functions and joint generation functions are derived and presented
in their Z-transforms. Some numerical examples are finally presented to illustrate the estab-
lished results. Extended discussions on related reliability measures have also been made.
Applications of the results developed in this work can be found in seismology, reliability,
biology, finance and others fields. In the future, some other indices and their properties
can be considered for semi-Markov systems, and further results can be presented for new
high-order models as well.

Data Availability No datasets were generated or analysed during the current study.
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