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Abstract
In this paper, first- and second-order discrete-time semi-Markov systems are considered
with their finite state space divided into three subsets as perfect functioning states, imper-
fect functioning states and failure states, respectively. The counting processes for one-step
increasing transitions, one-step equivalent transitions and one-step decreasing transitions
in working/failure periods are defined and investigated in detail. Formulas for related
distributions, joint distributions, expectations, generating functions and joint generation
functions are derived in their Z-transforms. Numerical examples are presented to illustrate
the results established. Extended discussions on related reliability measures are also con-
sidered. Finally, some concluding remarks and discussions are presented. Applications of
the results presented here can be found in different fields such as seismology, reliability,
biology and finance.

Keywords Semi-Markov system · First-order · Second-order ·
Imperfect functioning state · Counting process
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1 Introduction

In recent years, multi-state systems are attracting more and more attention since many real-
world systems are composed of multi-state components that have various effects on the

This work is supported by the National Natural Science Foundation of China (No. 72001016 and No.
71631001).

� He Yi
yihe@mail.buct.edu.cn

1 School of Economics and Management, Beijing University of Chemical Technology, Beijing, China
2 College of Quality and Standardization, Qingdao University, Qingdao, Shandong, China
3 Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada

Published online: 30 September 2021

Methodology and Computing in Applied Probability (2022) 24:1849–1875

http://crossmark.crossref.org/dialog/?doi=10.1007/s11009-021-09896-0&domain=pdf
http://orcid.org/0000-0003-0799-2471
mailto: yihe@mail.buct.edu.cn


performance of the entire system with different performance levels and failure modes. As
mentioned by Lisnianski et al. (2010), there are many multi-state systems in practice, such
as a power supply system consisting of generating and transmitting facilities (each gener-
ating unit can function at different levels of capacity), a wireless communication system
consisting of transmission stations (each station can have a different number of subsequent
stations covered in its range), a task processing system (for example, a control system, a
data processing system or a manufacturing system) and many others. Tools or methods that
contribute to modeling of multi-state systems include, but are not limited to, stochastic pro-
cesses such as Markov and semi-Markov processes, statistical analysis, universal generating
function methods, combined methods, coherent system theory, multidimensional spectra
and multi-state signature, and many different kinds of algorithms (Lisnianski et al. 2010;
Lisnianski and Frenkel 2011; Natvig 2011). Recently, research on multi-state systems is
being carried out extensively as can be seen in Yi and Cui (2017), Yi et al. (2018), Barbu
and Vergne (2019), Wu et al. (2019).

For multi-state systems, the concept of state aggregation was first presented by Burke
and Rosenblatt (1957) based on the assumption that an experimenter can only observe a
derived process Y (n) = f (X(n)) rather than the underlying stochastic process X(n). (Note
that the derived process may no longer be Markov or semi-Markov processes after the state
aggregation.) The problem of state aggregation subsequently received great attention in the
area of single ion channel in biology. As we know, there are plenty of channels on cell
membrane for materials like ions to get through. Biologists are always interested in the
behaviors (open, closed) of those ion channels, especially single ones. However, experi-
mental data can only show current levels of electricity of a single ion channel, which is not
sufficient for describing the underlying mechanism since behaviors with the same current
level are not distinguishable from the data. Colquhoun and Hawkes (1977, 1981, 1982) pro-
posed a general aggregated Markov process model, which changed the way biologists dealt
with experimental data on single ion channels. Compared with traditional Markov process,
state space of the aggregated Markov process is divided into different subsets according
to the performance levels of the system, which make the model more general by taking
indistinguishable states into consideration. For systems with no indistinguishable state, the
aggregated Markov processes will degenerate to traditional Markov processes. Since then,
many generalizations and extensions have been discussed in the area of single ion channel
(Hawkes et al. 1990; Ball 1997; The and Timmer 2006).

Aggregated stochastic processes also have important applications and developments in
the context of reliability. Rubino and Sericola (1989) first discussed the reliability of an
aggregated stochastic process and also presented an application of a fault-tolerant system
with several buffer states. Cui et al. (2007) investigated aggregated Markov processes by
considering history-dependent states (changeable states whose performances depend on the
immediately preceding state of the system evolution process), and derived reliability indices
such as availability. Hawkes et al. (2011) studied the evolution of aggregated Markov pro-
cesses under alternative environments and obtained results for the system availability and
probability distributions for uptimes. Liu et al. (2014) developed an aggregated Markov pro-
cess model with repair time omission, and derived reliability indices such as availability,
interval reliability and interval unreliability. Cui et al. (2016) considered aggregated stochas-
tic processes with cyclic multiple mission periods, and obtained closed-form solutions for
some reliability indices and sojourn time distributions. Recently, aggregated stochastic pro-
cesses have also been used in the study of new reliability indices (Yi et al. 2018), phase-type
models (Wu et al. 2020) and balanced systems (Fang and Cui 2021).
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Most of existing research on aggregated stochastic processes are for continuous time
systems, but there are also plenty of discrete-time systems in practice; for example,
data obtained from laboratory experiments are often discrete-time ones. The discussions
on discrete-time aggregated stochastic processes are far few as compared to those on
continuous ones. For example, Yi et al. (2018) developed a discrete-time semi-Markov
aggregated process, and discussed some stochastic properties and reliability measures. Yi
and Cui (2017) considered a discrete-time second-order aggregated semi-Markov system,
and derived some distributions and availabilities of the system. Actually, the calculation
issue is much more complex for continuous-time aggregated stochastic processes when it
comes to the essential step of inverse Laplace transform. In this paper, we consider discrete-
time aggregated semi-Markov systems since semi-Markov processes break the memoryless
requirement of Markov processes. That is quite reasonable in practice; see Limnios and
Oprisan (2003) for a review of semi-Markov processes and to Janssen and Manca (2006),
Barbu and Limnios (2008, 2004) for additional related discussions. Also, second-order
aggregated semi-Markov systems are considered since evolutions of many real-world sys-
tems depend not only on their present states, but also on some previous states; see (D’Amico
et al. 2013; 2015a; 2015b) for more discussions on higher-order Markov and semi-Markov
models and related applications to wind speed prediction.

Some basic assumptions in this paper are similar to those in Yi and Cui (2017) and Yi
et al. (2018); for example, states of the system are divided into three subsets A ,B,D
corresponding to perfect functioning states, imperfect functioning states and failure states,
respectively; a working period is defined as a duration that the system is in functioning states
(including perfect functioning states and imperfect functioning states), which starts from the
moment of transition to a perfect functioning state from a failure state directly or through
some imperfect functioning states, and ends at the moment of transition from a perfect
functioning state to a failure state directly or through some imperfect functioning states;
and a failure period is the duration of time between two consecutive working periods. As
mentioned above, in this paper, we define the split of state space and working/failure periods
in a traditional way so that any misunderstanding caused by the complexity of modeling
can be avoided to some extent and that the method developed can also be discussed in
clear terms. For practical systems whose state space is divided into more subsets and whose
working periods/failure periods are defined in a different way, the results developed here can
be generalized without much technical difficulty, and so the related discussions are omitted
in this paper for brevity.

In the field of reliability, counting processes are often used to describe the arrivals and
repairs of different types of shocks, which do impact greatly on the performance of the sys-
tem in different ways. Moreover, properties of counting processes are attracting increasing
attention both theoretically and practically (Howard 1964, 1971; Mode and Peckins 1988),
and possible applications can be found in such diverse areas as queuing theory, wireless
communication systems, software error detection, health science and many others (Badı́a
and Sangüesa 2017; Michael and Eutichia 2020; Nuel 2019). For a discrete-time semi-
Markov process with finite state space, Csenki (1995) derived a closed-form expression for
the cumulative distribution function of the number of visits to a subset of its state space, and
explained that this number served as an useful tool for analyzing dependability character-
istics. Based on a continuous-time semi-Markov model with finite state space, Votsi et al.
(2012) estimated the expected number of earthquake occurrences with a real data set from
Northern Aegean Sea in Greece. In their work, model states were classified by earthquake
magnitude, and fault orientation was also taken into account. For general time-homogeneous
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Markov processes with general state space, Landriault et al. (2017) presented an unified
approach for the first passage time of their drawdown/drawup processes.

For continuous-time Markov process, Cui et al. (2021) considered the split of state
space into m ordered subsets and then studied counting processes of one-step increas-
ing/equivalent/decreasing transitions with durations longer/shorter than a pre-specified
threshold. In the present work, we consider first- and second-order discrete-time semi-
Markov processes with finite state space � = A ∪ B ∪ D . Transitions from states in D
to states in A ∪ B or from states in B to states in A are called one-step increasing tran-
sitions as they correspond to repairs of the system. Transitions from states in A to states
in B ∪ D or from states in B to states in D are called one-step decreasing transitions as
they correspond to degradations of the system. Also, other transitions from subset A or B
or D to themselves are called one-step equivalent transitions. Here, we are interested in all
three different kinds of transitions in working periods and failure periods, which leads to
the following counting processes:

(1) Let NW
I (n),NW

E (n),NW
D (n) be the number of one-step increasing transitions, one-

step equivalent transitions and one-step decreasing transitions in working periods by
time n, respectively;

(2) Let NF
I (n),NF

E (n),NF
D(n) be the number of one-step increasing transitions, one-step

equivalent transitions and one-step decreasing transitions in failure periods by time n,
respectively;

(3) Let NW(n), NF (n),N(n) be the number of all one-step transitions in working periods,
in failure periods and in all of them by time n, respectively. This means NW (n) =
NW

I (n)+NW
E (n)+NW

D (n),NF (n) = NF
I (n)+NF

E (n)+NF
D(n) and N(n) = NW (n)+

NF (n).

It is not easy to investigate counting processes defined above since whether a system is in
a working period or a failure period depends not only on its present state, but also on history
of its previous states. However, it is of great interest to consider this problem since tran-
sitions, including ones-step increasing/equivalent/decreasing ones, have different costs and
benefits in working periods and failure periods. Applications of this paper can be found in
many fields, including seismology, reliability, biology, finance and many others. For exam-
ple, as in Votsi et al. (2012), the occurrences of earthquake can be modeled by a first-order
semi-Markov model, and states of the system can be divided into three subsets according
to magnitudes (eg. A for [0, 4.4], B for [4.5, 5.9] and D for [6.0, 10.0]). Consider the fact
that earthquakes with magnitudes greater than a given threshold (4.4, say) will lead to some
financial loss and earthquakes with magnitudes greater than another given threshold (5.9,
say) will lead to serious casualties, we can use the concepts of working period and fail-
ure period introduced before to distinguish whether there is risk of life for human beings
in different periods. Then, we are interested in the counting processes for one-step increas-
ing/equivalent/decreasing in the two types of periods, respectively, since losses in them
are not estimated in the same degree of importance and we need different post-earthquake
reconstruction strategies for them.

Take a generating unit as another example, as in Billinton and Allan (1996), in which
performance rates (namely, the power generating capacities) can be 50 MW (perfect func-
tioning), 30 MW (imperfect functioning) and 0 MW (failure), respectively, which means
the state space can be divided into subsets A , B and D mentioned above. Considering the
fact that each sojourn in the failure subset D will cause serious economic losses, machine
damage and long shutdown period, the generating unit system is regarded to be in good
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condition only when it functions perfectly or imperfectly without any breakdown into fail-
ure states. Then, we can use the concepts of working period and failure period introduced
before to distinguish whether the system is in a good condition or not. Besides, state changes
cause different results when the system is in different conditions, and we are therefore inter-
ested in the counting processes mentioned before to evaluate possible maintenance costs
and machine damage losses in different system conditions.

The rest of this paper is organized as follows. In Sections 2 and 3, stochastic proper-
ties of related counting processes are discussed for first- and second-order discrete-time
aggregated semi-Markov processes, respectively; formulas for some distributions, joint dis-
tributions, expectations, generating functions and joint generation functions are presented
by their Z-transforms. Illustrative examples are presented in Section 4 to explain the results
established in preceding sections and to give some intuitive understanding of the results.
Some extended discussions on related reliability measures are considered in Section 5.
Finally, some conclusions and related discussions are made in Section 6.

2 First-order Discrete-Time Semi-Markov System

Consider the time-homogenous first-order semi-Markov chain {Z(n), n = 0, 1, . . .}, as in
Yi et al. (2018), with discrete time and finite state space � = {1, . . . , k�}. The state that the
system jumps to at the kth transition time Sk is denoted by Jk (k = 1, 2, . . .), and the initial
state at time S0 = 0 is denoted by J0. Let X0 = 0, and the sojourn time in state Jk−1 between
the (k − 1)th and kth transitions be expressed as Xk = Sk − Sk−1 (k = 1, 2, . . .). Then, the
semi-Markov kernel of the related Markov renewal chain can be defined as follows:

Q(n) := (Qij (n))k�×k�

= (P {Jl+1 = j,Xl+1 = Sl+1 − Sl = n—Jl = i})k�×k�

= (P {J1 = j,X1 = S1 − S0 = n—J0 = i})k�×k� .

With the state space � divided into three subsets A ,B and D , the semi-Markov kernel
can be divided correspondingly as follows:

Q(n) =
⎛
⎝

QA A (n) QA B(n) QA D(n)

QBA (n) QBB(n) QBD(n)

QDA (n) QDB(n) QDD(n)

⎞
⎠ .

Here, the subsets A ,B and D consist of perfect functioning states, imperfect functioning
states and failure states, respectively. Besides, there are kA , kB and kD states in the subsets
A ,B and D , respectively, namely, A = {1, . . . , kA },B = {kA + 1, . . . , kA + kB} and
D = {kA + kB + 1, . . . , kA + kB + kD}.

As in the discussions in Yi et al. (2018), sojourns in subset B contribute to working
periods if and only if the system is in A right before it enters B and right after it leaves B,
which implies that they contribute to failure periods otherwise. Obviously, sojourns in subset
A contribute to working periods and sojourns in subset D contribute to failure periods.
For studying properties of the semi-Markov system, a new stochastic process { Y (n), n =
0, 1, . . .} is defined as follows:

Y (n) =
{

1, the system is in a working period at time n,

0, the system is in a failure period at time n.

Note that Y (n) is a right-continuous function, which means its value at a transition time
depends on whether the sojourn after transition contributes to a working period or not.
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Besides, a transition is said to be in a working period if the system is in a working period
when the transition starts, and in a failure period if the system is in a failure period when
the transition starts.

Denote the conditional probability that the system stays in subset X in time interval [0, n)

and jumps to state j in another subset Y at time n, given the initial state i in subset X at time
0, by gXY

ij (n), where (X, Y ) ∈ {(A ,B), (A ,D), (B,A ), (B,D), (D,A ), (D,B)};
that is,

gXY
ij (n) = P {Sl = n, Jl = j, J0, . . . , Jl−1 ∈ X |J0 = i }, i ∈ X, j ∈ Y,

where no self-transition is allowed.
In matrix form, let us denote

G(n) =
⎛
⎝

0 GA B(n) GA D(n)

GBA (n) 0 GBD(n)

GDA (n) GDB(n) 0

⎞
⎠ ,

where GXY (n) =
(
gXY

ij (n), i ∈ X, j ∈ Y
)

kX×kY

, kX and kY denote the numbers of states in

subsets X and Y , respectively, and 0 is a zero matrix of suitable dimension, whose elements
are all 0. Define I as an unit matrix of suitable dimension, and the Z-transform of GXY (n)

can be represented as G∗
XY (z) = [I − Q∗

XX(z)]−1Q∗
XY (z); see Yi et al. (2018) for the proof.

For this first-order semi-Markov system, there are 9 different types of transitions to be
considered for Z(n), namely, transitions A → A ,A → B,A → D,B → A ,B →
B,B → D,D → A ,D → B and D → D . Obviously, transitions from B to A
(B → A ) are one-step increasing transitions in working periods if and only if the system is
in subset A before it enters subset B, and they are one-step increasing transitions in failure
periods if and only if the system is in subset D before it enters subset B. To identify the
two different cases of transitions, namely, to identify whether a transition is in a working
period or in a failure period when it is from subset B, we define a new semi-Markov chain
{Z0(n), n = 0, 1, . . .} with state space �0 = A ∪ B1 ∪ B2 ∪ D , where

A = {1, . . . , kA },B1 = {kA + 1, . . . , kA + kB},
B2 = {kA + kB + 1, . . . , kA + 2kB},
D = {kA + 2kB + 1, . . . , kA + 2kB + kD}.

Note that subsets B1 and B2 can be regarded as a “copy” of subset B. The most important
property of Z0(n) is that Z0(n) = Z(n) for Z(n) ∈ A or Z(n) ∈ B with the system
being in subset A beforing entering subset B, and Z0(n) = Z(n) + kB for Z(n) ∈ D or
Z(n) ∈ B with the system being in subset D beforing entering subset B, which makes it
possible to identify whether the system is in a working period or in a failure period when the
system state Z(n) is in subset B. Then, the new semi-Markov kernel and its Z-transform
can be presented as follows:

D(n) =

⎛
⎜⎜⎝

QA A (n) QA B(n) 0 QA D(n)

QBA (n) QBB(n) 0 QBD(n)

QBA (n) 0 QBB(n) QBD(n)

QDA (n) 0 QDB(n) QDD(n)

⎞
⎟⎟⎠ ,

D∗(z) =

⎛
⎜⎜⎝

Q*
A A (z) Q*

A B(z) 0 Q*
A D(z)

Q*
BA (z) Q*

BB(z) 0 Q*
BD(z)

Q*
BA (z) 0 Q*

BB(z) Q*
BD(z)

Q*
DA (z) 0 Q*

DB(z) Q*
DD(z)

⎞
⎟⎟⎠ .
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Assume that the initial probability vector of Z0(n) can be denoted as π =
(πA ,πB1 ,πB2 , πD) = (π1, . . . , πkA +2kB+kD ), where πi = P {Z0(0) = i}, for
i = 1, . . . , kA + 2kB + kD , is the probability that the initial state of Z0(n) is state i. To
investigate the transition rules, some notations for one-step increasing/equivalent/decreasing
transitions in working/failure periods are defined as follows:

P W
I (z) =

⎛
⎜⎜⎝

0 0 0 0
Q*

BA (z) 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , P F

I (z) =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0

Q*
BA (z) 0 0 0

Q*
DA (z) 0 Q*

DB(z) 0

⎞
⎟⎟⎠ ,

P W
E (z) =

⎛
⎜⎜⎝

Q*
A A (z) 0 0 0
0 Q*

BB(z) 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , P F

E(z) =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 Q*

BB(z) 0
0 0 0 Q*

DD(z)

⎞
⎟⎟⎠ ,

P W
D (z) =

⎛
⎜⎜⎝

0 Q*
A B(z) 0 Q*

A D(z)

0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , P F

D(z) =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 Q*

BD(z)

0 0 0 Q*
BD(z)

0 0 0 0

⎞
⎟⎟⎠ .

Note that P W
I (z) + P W

E (z) + P W
D (z) + P F

I (z) + P F
E(z) + P F

D(z) = D∗(z). In addition, let

DW
X (z) = D∗(z) − P W

X (z), DF
X(z) = D∗(z) − P F

X(z), X ∈ {I, E,D},
P W

XY (z) = P W
X (z) + P W

Y (z), P F
XY (z) = P F

X(z) + P F
Y (z), (X, Y ) ∈ {(I, E), (I, D), (E, D)},

DW
XY (z) = D∗(z) − P W

XY (z), DF
XY (z) = D∗(z) − P F

XY (z), (X, Y ) ∈ {(I, E), (I,D), (E, D)}.
Further, let P W (z) = P W

I (z) + P W
E (z) + P W

D (z), P F (z) = P F
I (z) + P F

E(z) + P F
D(z) and

P (z) = z(z − 1)−1

⎛
⎜⎜⎝

uA − Q*
A (z)

uB − Q*
B(z)

uB − Q*
B(z)

uD − Q*
D(z)

⎞
⎟⎟⎠

= z(z − 1)−1

⎛
⎜⎜⎝

uA − [Q*
A A (z)uA + Q*

A B(z)uB + Q*
A D(z)uD ]

uB − [Q*
BA (z)uA + Q*

BB(z)uB + Q*
BD(z)uD ]

uB − [Q*
BA (z)uA + Q*

BB(z)uB + Q*
BD(z)uD ]

uD − [Q*
DA (z)uA + Q*

DB(z)uB + Q*
DD(z)uD ]

⎞
⎟⎟⎠ ,

where uA ,uB,uD are column vectors of dimension kA , kB, kD , respectively, whose
elements are all ones.

Then, the distributions of counting processes NW
I (n),NW

E (n),NW
D (n) are presented

in Theorem 2.1 for the one-step increasing/equivalent/decreasing transitions in working
periods together with the distribution of their summation NW(n).

Theorem 2.1 Denote the distributions of counting processes NW
X (n),X ∈ {I, E,D} and

NW (n) in working periods by

φW
X (n, k) := P {NW

X (n) = k}, φW (n, k) := P {NW(n) = k},
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for k = 0, 1, . . . . Then, they can be given by their Z-transforms as follows:

φW∗
X (z, k) = π{[I − DW

X (z)]−1P W
X (z)}k[I − DW

X (z)]−1P (z).

φW∗(z, k) = π{[I − P F (z)]−1P W (z)}k[I − P W (z)]−1P (z).

Proof The proof can be presented for NW
I (n),NW

E (n),NW
D (n),NW (n), respectively, in (1)-

(4) as follows.
(1) For counting process NW

I (n), denote the conditional probability φI,i(n, k) :=
P {NW

I (n) = k |Z0(0) = i } by φY
I,i(n, k) when i ∈ Y , namely, when the initial state i of

semi-Markov process Z0(n) is in subset Y ∈ {A ,B1,B2,D}. Specifically, for i ∈ A ,
there are four cases to consider:

Case 1: The system stays in state i in interval [0, n], which means the first transition
from state i happens at time u (u = n + 1, n + 2, . . .);

Case 2: The system jumps to another state j (j �= i) in subset A at time u (u =
1, . . . , n) from the initial state i ∈ A , which is a one-step equivalent transition in a working
period that will not contribute to NW

I (n);
Case 3: The system jumps to state j in subset B at time u (u = 1, . . . , n) from the

initial state i ∈ A , which is a one-step decreasing transition in a working period that will
not contribute to NW

I (n);
Case 4: The system jumps to state j in subset D at time u (u = 1, . . . , n) from the initial

state i ∈ A , which is also a one-step decreasing transition in a working period that will not
contribute to NW

I (n).
Then, due to the conditional independence of events, for i ∈ A , we have

φA
I,i (n, 0) =

∑
j∈�/{i}

∞∑
u=n+1

Qij (u) +
∑

j∈A /{i}

n∑
u=1

Qij (u)φA
I,j (n − u, 0)

+
∑

j∈B1

n∑
u=1

Qij (u)φ
B1
I,j (n − u, 0) +

∑
j∈D

n∑
u=1

Qij (u)φD
I,j (n − u, 0),

φA
I,i (n, k) =

∑
j∈A /{i}

n∑
u=1

Qij (u)φA
I,j (n − u, k) +

∑
j∈B1

n∑
u=1

Qij (u)φ
B1
I,j (n − u, k)

+
∑
j∈D

n∑
u=1

Qij (u)φD
I,j (n − u, k), k ≥ 1.

Upon taking the Z-transform, we have

φA ∗
I,i (z, 0) = z(z − 1)−1[1 −

∑
j∈�/{i}

Q∗
ij (z)] +

∑
j∈A /{i}

Q∗
ij (z)φ

A ∗
I,j (z, 0)

+
∑

j∈B1

Q∗
ij (z)φ

B1∗
I,j (z, 0) +

∑
j∈D

Q∗
ij (z)φ

D∗
I,j (z, 0),

φA ∗
I,i (z, k) =

∑
j∈A /{i}

Q∗
ij (z)φ

A ∗
I,j (z, k) +

∑
j∈B1

Q∗
ij (z)φ

B1∗
I,j (z, k)

+
∑
j∈D

Q∗
ij (z)φ

D∗
I,j (z, k), k ≥ 1.
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In matrix form, these formulas can be expressed as

ΦA
I (z, 0) = z(z − 1)−1[uA − Q*

A (z)] + Q*
A A (z)ΦA

I (z, 0) + Q*
A B(z)Φ

B1
I (z, 0)

+Q*
A D(z)ΦD

I (z, 0),

ΦA
I (z, k) = Q*

A A (z)ΦA
I (z, k) + Q*

A B(z)Φ
B1
I (z, k) + Q*

A D(z)ΦD
I (z, k), k ≥ 1.

As in the above discussion, for i ∈ B1, we also have four cases to consider, and the only
difference is that the transition from i ∈ B1 to j ∈ A will contribute to NW

I (n). This means

φ
B1
I,i (n, 0) =

∑
j∈�

∞∑
u=n+1

Qij (u) +
∑

j∈B1

n∑
u=1

Qij (u)φ
B1
I,j (n − u, 0) +

∑
j∈D

n∑
u=1

Qij (u)φD
I,j (n − u, 0),

φ
B1
I,j (n, k) =

∑
j∈A /{i}

n∑
u=1

Qij (u)φA
I,j (n − u, k − 1) +

∑
j∈B1

n∑
u=1

Qij (u)φ
B1
I,j (n − u, k)

+
∑
j∈D

n∑
u=1

Qij (u)φD
I,j (n − u, k), k ≥ 1.

Then, we obviously have

Φ
B1
I (z, 0) = z(z − 1)−1[uB − Q∗

B(z)] + Q∗
BB(z)Φ

B1
I (z, 0) + Q∗

BD (z)ΦD
I (z, 0),

Φ
B1
I (z, k) = Q∗

BA (z)ΦA
I (z, k − 1) + Q∗

BB(z)Φ
B1
I (z, k) + Q∗

BD (z)ΦD
I (z, k), k ≥ 1.

Similarly, for i ∈ B2, we have

Φ
B2
I (z, 0) = z(z − 1)−1[uB − Q∗

B(z)] + Q∗
BA (z)ΦA

I (z, 0) + Q∗
BB(z)Φ

B1
I (z, 0)

+Q∗
BD(z)ΦD

I (z, 0),

Φ
B2
I (z, k) = Q∗

BA (z)ΦA
I (z, k) + Q∗

BB(z)Φ
B2
I (z, k) + Q∗

BD(z)ΦD
I (z, k), k ≥ 1,

and for i ∈ D , we have

ΦD
I (z, 0) = z(z − 1)−1[uD − Q*

D(z)] + Q*
DA (z)ΦA

I (z, 0) + Q*
DB(z)Φ

B2
I (z, 0)

+Q*
DD(z)ΦD

I (z, 0),

ΦD
I (z, k) = Q*

DA (z)ΦA
I (z, k) + Q*

DB(z)Φ
B2
I (z, k) + Q*

DD(z)ΦD
I (z, k), k ≥ 1.

From all the above expressions, with ΦW
I (z, k) =

⎛
⎜⎜⎝

ΦA
I (z, k)

Φ
B1
I (z, k)

Φ
B2
I (z, k)

ΦD
I (z, k)

⎞
⎟⎟⎠, we can conclude that

ΦW
I (z, 0) = P (z) + DW

I (z)ΦW
I (z, 0) = [I − DW

I (z)]−1P (z),

ΦW
I (z, k) = P W

I (z)ΦW
I (z, k − 1) + DW

I (z)ΦW
I (z, k)

= [I − DW
I (z)]−1P W

I (z)ΦW
I (z, k − 1)

= {[I − DW
I (z)]−1P W

I (z)}kΦW
I (z, 0)

= {[I − DW
I (z)]−1P W

I (z)}k[I − DW
I (z)]−1P (z), k ≥ 1.

This means that the distribution φW
I (n, k), k = 0, 1, . . . , of counting process NW

I (n) can
be given by its Z-transform as

φW∗
I (z, k) = π{[I − DW

I (z)]−1P W
I (z)}k[I − DW

I (z)]−1P (z).
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(2) The detailed discussions and associated notations for NW
E (n) are similar to (1), and are

therefore omitted. For i ∈ A , based on the conditional independence of events, we have

ΦA
E (z, 0) = z(z − 1)−1[uA − Q∗

A (z)] + Q∗
A B(z)Φ

B1
E (z, 0) + Q∗

A D (z)ΦD
E (z, 0),

ΦA
E (z, k) = Q∗

A A (z)ΦA
E (z, k − 1) + Q∗

A B(z)Φ
B1
E (z, k) + Q∗

A D (z)ΦD
E (z, k), k ≥ 1;

for i ∈ B1, we have

Φ
B1
E (z, 0) = z(z − 1)−1[uB − Q∗

B(z)] + Q∗
BA (z)ΦA

E (z, 0) + Q∗
BD (z)ΦD

E (z, 0),

Φ
B1
E (z, k) = Q∗

BA (z)ΦA
E (z, k) + Q∗

BB(z)Φ
B1
E (z, k − 1) + Q∗

BD (z)ΦD
E (z, k), k ≥ 1;

for i ∈ B2, we have

Φ
B2
E (z, 0) = z(z − 1)−1[uB − Q∗

B(z)] + Q∗
BA (z)ΦA

E (z, 0) + Q∗
BB(z)Φ

B2
E (z, 0)

+Q∗
BD(z)ΦD

E (z, 0),

Φ
B2
E (z, k) = Q∗

BA (z)ΦA
E (z, k) + Q∗

BB(z)Φ
B2
E (z, k) + Q∗

BD(z)ΦD
E (z, k), k ≥ 1;

for i ∈ D , we have

ΦD
E (z, 0) = z(z − 1)−1[uD − Q∗

D(z)] + Q∗
DA (z)ΦA

E (z, 0) + Q∗
DB(z)Φ

B2
E (z, 0)

+Q∗
DD(z)ΦD

E (z, 0),

ΦD
E (z, k) = Q∗

DA (z)ΦA
E (z, k) + Q∗

DB(z)Φ
B2
E (z, k) + Q∗

DD(z)ΦD
E (z, k), k ≥ 1.

Then, similar to (1), the distribution φW
E (n, k), k = 0, 1, . . . , of counting process NW

E (n)

can be given by its Z-transform as

φW∗
E (z, k) = π{[I − DW

E (z)]−1P W
E (z)}k[I − DW

E (z)]−1P (z).

(3) The detailed discussions and associated notations for NW
D (n) are similar to (1), and are

therefore omitted. For i ∈ A , based on the conditional independence of events, we have

ΦA
D (z, 0) = z(z − 1)−1[uA − Q∗

A (z)] + Q∗
A A (z)ΦA

D (z, 0),

ΦA
D (z, k) = Q∗

A A (z)ΦA
D (z, k) + Q∗

A B(z)Φ
B1
D (z, k − 1) + Q∗

A D (z)ΦD
D (z, k − 1), k ≥ 1;

for i ∈ B1, we have

Φ
B1
D (z, 0) = z(z − 1)−1[uB − Q∗

B(z)] + Q∗
BA (z)ΦA

D (z, 0) + Q∗
BB(z)Φ

B1
D (z, 0)

+Q∗
BD(z)ΦD

D(z, 0),

Φ
B1
D (z, k) = Q∗

BA (z)ΦA
D (z, k) + Q∗

BB(z)Φ
B1
D (z, k) + Q∗

BD(z)ΦD
D(z, k), k ≥ 1;

for i ∈ B2, we have

Φ
B2
D (z, 0) = z(z − 1)−1[uB − Q∗

B(z)] + Q∗
BA (z)ΦA

D (z, 0) + Q∗
BB(z)Φ

B2
D (z, 0)

+Q∗
BD(z)ΦD

D(z, 0),

Φ
B2
D (z, k) = Q∗

BA (z)ΦA
D (z, k) + Q∗

BB(z)Φ
B2
D (z, k) + Q∗

BD(z)ΦD
D(z, k), k ≥ 1;

for i ∈ D , we have

ΦD
D(z, 0) = z(z − 1)−1[uD − Q∗

D(z)] + Q∗
DA (z)ΦA

D (z, 0) + Q∗
DB(z)Φ

B2
D (z, 0)

+Q∗
DD(z)ΦD

D(z, 0),

ΦD
D(z, k) = Q∗

DA (z)ΦA
D (z, k) + Q∗

DB(z)Φ
B2
D (z, k) + Q∗

DD(z)ΦD
D(z, k), k ≥ 1.
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Then, similar to (1), the distribution φW
D (n, k), k = 0, 1, . . . , of counting process NW

D (n)

can be given by its Z-transform as

φW∗
D (z, k) = π{[I − DW

D (z)]−1P W
D (z)}k[I − P W

D (z)]−1P (z).

(4) The detailed discussions and associated notations for NW (n) are similar to (1), and are
therefore omitted. For i ∈ A , based on the conditional independence of events, we have

ΦA (z, 0) = z(z − 1)−1[uA − Q∗
A (z)],

ΦA (z, k) = Q∗
A A (z)ΦA (z, k − 1) + Q∗

A B(z)ΦB1 (z, k − 1) + Q∗
A D (z)ΦD (z, k − 1), k ≥ 1;

for i ∈ B1, we have

ΦB1 (z, 0) = z(z − 1)−1[uB − Q∗
B(z)] + Q∗

BD (z)ΦD (z, 0),

ΦB1 (z, k) = Q∗
BA (z)ΦA (z, k − 1) + Q∗

BB(z)ΦB1 (z, k − 1) + Q∗
BD (z)ΦD (z, k), k ≥ 1;

for i ∈ B2, we have

ΦB2(z, 0) = z(z − 1)−1[uB − Q∗
B(z)] + Q∗

BA (z)ΦA (z, 0) + Q∗
BB(z)ΦB2(z, 0)

+Q∗
BD(z)ΦD(z, 0),

ΦB2(z, k) = Q∗
BA (z)ΦA (z, k) + Q∗

BB(z)ΦB2(z, k) + Q∗
BD(z)ΦD(z, k), k ≥ 1;

for i ∈ D , we have

ΦD(z, 0) = z(z − 1)−1[uD − QD(z)] + Q∗
DA (z)ΦA (z, 0) + Q∗

DB(z)ΦB2(z, 0)

+Q∗
DD(z)ΦD(z, 0),

ΦD(z, k) = Q∗
DA (z)ΦA (z, k) + Q∗

DB(z)ΦB2(z, k) + Q∗
DD(z)ΦD(z, k), k ≥ 1.

Then, similar to (1), the distribution φW (n, k), k = 0, 1, . . . , of counting process NW (n)

can be given by its Z-transform as

φW∗(z, k) = π{[I − P F (z)]−1P W (z)}k[I − P F (z)]−1P (z).

As in Theorem 2.1, the distributions of counting processes NF
I (n),NF

E (n),NF
D(n) are

presented in Theorem 2.2 for the one-step increasing/equivalent/decreasing transitions in
failure periods together with the distribution of their summation NF (n).

Theorem 2.2 Denote the distributions of counting processes NF
X (n),X ∈ {I, E,D}, and

NF (n) in failure periods by

φF
X(n, k) := P {NF

X (n) = k}, φF (n, k) := P {NF (n) = k},

for k = 0, 1, . . . . Then, they can be given by Z-transforms as follows:

φF∗
X (z, k) = π{[I − DF

X(z)]−1P F
X(z)}k[I − DF

X(z)]−1P (z).

φF∗(z, k) = π{[I − P W (z)]−1P F (z)}k[I − P W (z)]−1P (z).
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Proof The proof is similar to Theorem 2.1, and is therefore not presented here for
conciseness.

With the results presented in Theorems 2.1 and 2.2, expectations and generating
functions of these derived counting processes are derived in Theorem 2.3.

Theorem 2.3 (1) The Z-transforms of expectations of NW
X (n),NF

X (n),X ∈ {I, E,D}, and
NW (n),NF (n) are as follows:

E*[NW
X (z)] = z(z − 1)−1π [I − D∗(z)]−1P W

X (z)u�0 ,

E*[NF
X (z)] = z(z − 1)−1π [I − D∗(z)]−1P F

X(z)u�0 ,

E*[NW (z)] = z(z − 1)−1π [I − D∗(z)]−1P W (z)u�0 ,

E*[NF (z)] = z(z − 1)−1π [I − D∗(z)]−1P F (z)u�0 ,

where u�0 = ( 1, . . . , 1︸ ︷︷ ︸
kA +2kB+kD

)T ;

(2) The Z-transforms of the generating functions of NW
X (n),NF

X (n),X ∈ {I, E,D}, and
NW (n),
NF (n) are as follows:

hW∗
X (z, x) = π [I − P W

X (z)x − DW
X (z)]−1P (z),

hF∗
X (z, x) = π [I − P F

X(z)x − DF
X(z)]−1P (z),

hW∗(z, x) = π [I − P W (z)x − P F (z)]−1P (z),

hF∗(z, x) = π [I − P F (z)x − P W (z)]−1P (z).

Proof We only consider NW
I (n) since the results for other cases can be established similarly.

(1) Expectation of NW
I (n) is E[NW

I (n)] = πE[NW
I (n)], where E[NW

I (n)] =
∞∑

k=1
kΦW

I (n, k), can be given by its Z-transform as follows:

E*[NW
I (z)] =

∞∑
k=1

kΦW
I (z, k)

=
∞∑

k=1

k[P W
I (z)ΦW

I (z, k − 1) + DW
I (z)ΦW

I (z, k)]

= P W
I (z)[

∞∑
k=1

(k − 1)ΦW
I (z, k − 1) +

∞∑
k=1

ΦW
I (z, k − 1)] + DW

I (z)

∞∑
k=1

kΦW
I (z, k)

= P W
I (z){E∗[NW

I (z)] + z(z − 1)−1u�0} + DW
I (z)E∗[NW

I (z)]
= z(z − 1)−1[I − P W

I (z) − DW
I (z)]−1P W

I (z)u�0

= z(z − 1)−1[I − D∗(z)]−1P W
I (z)u�0;
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(2) Generating function of NW
I (n) is hW

I (n, x) = πhW
I (n, x), where hW

I (n, x) =
∞∑

k=0
ΦW

I (n, k)xk , can be given by its Z-transform as follows:

hW∗
I (z, x) = ΦW

I (z, 0) +
∞∑

k=1

ΦW
I (z, k)xk

= ΦW
I (z, 0) +

∞∑
k=1

[P W
I (z)ΦW

I (z, k − 1) + DW
I (z)ΦW

I (z, k)]xk

= ΦW
I (z, 0) + P W

I (z)x

∞∑
k=1

ΦW
I (z, k − 1)xk−1 + DW

I (z)[
∞∑

k=0

ΦW
I (z, k)xk − ΦW

I (z, 0)]

= [P W
I (z)x + DW

I (z)]hW∗
I (z, x) + [I − DW

I (z)]ΦW
I (z, 0)

= [I − P W
I (z)x − DW

I (z)]−1[I − DW
I (z)]ΦW

I (z, 0)

= [I − P W
I (z)x − DW

I (z)]−1P (z).

Then, some joint distributions of NW
I (n),NW

E (n), NW
D (n) are presented in Theorem 2.4,

and similarly some joint distributions of NF
I (n),NF

E (n),NF
D(n) are presented in Theorem

2.5.

Theorem 2.4 Denote the joint distribution of NW
I (n),NW

E (n),NW
D (n) and the joint

distributions of NW
X (n),NW

Y (n), (X, Y ) ∈ {(I, E), (I,D), (E,D)}, by

φW (n, k1, k2, k3) := {NW
I (n) = k1, N

W
E (n) = k2, N

W
D (n) = k3},

φW
XY (n, k1, k2) := {NW

X (n) = k1, N
W
Y (n) = k2},

for k1, k2, k3 ∈ {0, 1, . . .}. Then, they can be given by their Z-transforms as

φW∗(z, k1, k2, k3) := πΦW (z, k1, k2, k3), φW∗
XY (z, k1, k2) := πΦW

XY (z, k1, k2),

where, for ΦW (z, k1, k2, k3), we have

ΦW (z, 0, 0, 0) = π [I − P F (z)]−1P (z),

ΦW (z, k1, k2, k3) = π [I − P F (z)]−1[P W
I (z)ΦW (z, k1 − 1, k2, k3) + P W

E (z)ΦW (z, k1, k2 − 1, k3)

+P W
D (z)ΦW (z, k1, k2, k3 − 1)], (k1, k2, k3) �= (0, 0, 0),

and for ΦW
XY (z, k1, k2), we have

ΦW
XY (z, 0, 0) = [I − DW

XY (z)]−1P (z),

ΦW
XY (z, k1, k2) = [I − DW

XY (z)]−1[P W
X (z)ΦW

XY (z, k1 − 1, k2) + P W
Y (z)ΦW

XY (z, k1, k2 − 1)],
(k1, k2) �= (0, 0).
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Proof Take φW (n, k1, k2, k3) as an example. Then, as in Theorem 2.1, we have

ΦW (z, 0, 0, 0) = P (z) + P F (z)ΦW (z, 0, 0, 0) = [I − P F (z)]−1P (z),

ΦW (z, k1, k2, k3) = P F (z)ΦW (z, k1, k2, k3) + P W
I (z)ΦW (z, k1 − 1, k2, k3)

+P W
E (z)ΦW (z, k1, k2 − 1, k3) + P W

D (z)ΦW (z, k1, k2, k3 − 1)

= [I − P F (z)]−1[P W
I (z)ΦW (z, k1 − 1, k2, k3)

+P W
E (z)ΦW (z, k1, k2 − 1, k3) + P W

D (z)ΦW (z, k1, k2, k3 − 1)],
which completes the proof.

Theorem 2.5 Denote the joint distribution of NF
I (n),NF

E (n),NF
D(n) and the joint distri-

butions of NF
X (n),NF

Y (n), (X, Y ) ∈ {(I, E), (I,D), (E,D)}, by
φF (n, k1, k2, k3) := {NF

I (n) = k1, N
F
E (n) = k2, N

F
D(n) = k3},

φF
XY (n, k1, k2) := {NF

X (n) = k1, N
F
Y (n) = k2},

for k1, k2, k3 ∈ {0, 1, . . .}. Then, they can be given by their Z-transforms as
φF∗(z, k1, k2, k3) := πΦF (z, k1, k2, k3), φF∗

XY (z, k1, k2) := πΦF
XY (z, k1, k2),

where, for ΦF (z, k1, k2, k3), we have

ΦF (z, 0, 0, 0) = π [I − P W (z)]−1P (z),

ΦF (z, k1, k2, k3) = π [I − P W (z)]−1[P F
I (z)ΦF (z, k1 − 1, k2, k3) + P F

E(z)ΦF (z, k1, k2 − 1, k3)

+P F
D(z)ΦF (z, k1, k2, k3 − 1)], (k1, k2, k3) �= (0, 0, 0),

and for ΦF
XY (z, k1, k2), we have

ΦF
XY (z, 0, 0) = [I − DF

XY (z)]−1P (z),

ΦF
XY (z, k1, k2) = [I − DF

XY (z)]−1[P F
X(z)ΦF

XY (z, k1 − 1, k2) + P F
Y (z)ΦF

XY (z, k1, k2 − 1)],
(k1, k2) �= (0, 0).

Proof The proof is similar to that of Theorem 2.4, and is therefore not presented here for
the sake of conciseness.

Based on the results in Theorems 2.4 and 2.5, the joint generating functions of NW
I (n),

NW
E (n),NW

D (n) and NF
I (n),NF

E (n),NF
D(n) are presented next in Theorem 2.6.

Theorem 2.6 (1) The joint generating function of NW
I (n),NW

E (n), NW
D (n) can be given

by its Z-transform as gW∗(z, x1, x2, x3) = πgW∗(z, x1, x2, x3), where

gW∗(z, x1, x2, x3) = [I − P F (z) − P W
I (z)x1 − P W

E (z)x2 − P W
D (z)x3]−1P (z);

(2) The joint generating function of NW
X (n),NW

Y (n), (X, Y ) ∈ {(I, E), (I,D), (E,D)},
can be given by its Z-transform as gW∗

XY (z, x1, x2) = πgW∗
XY (z, x1, x2), where

gW∗
XY (z, x1, x2) = [I − DW

XY (z) − P W
X (z)x1 − P W

Y (z)x2]−1P (z);
(3) The joint generating function of NF

I (n),NF
E (n),NF

D(n) can be given by its Z-
transform as gF∗(z, x1, x2, x3) = πgF∗(z, x1, x2, x3), where

gF∗(z, x1, x2, x3) = [I − P W (z) − P F
I (z)x1 − P F

E(z)x2 − P F
D(z)x3]−1P (z);
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(4) The joint generating function of NF
X (n),NF

Y (n), (X, Y ) ∈ {(I, E), (I,D), (E,D)},
can be given by its Z-transform as gF∗

XY (z, x1, x2) = πgF∗
XY (z, x1, x2), where

gF∗
XY (z, x1, x2) = [I − DF

XY (z) − P F
X(z)x1 − P F

Y (z)x2]−1P (z).

Proof Take (1) as an example. Then, as in Theorem 2.3, we have

gW∗(z, x1, x2, x3) =
∞∑

k1,k2,k3=0

ΦW (z, k1, k2, k3)x
k1
1 x

k2
2 x

k3
3

= ΦW (z, 0, 0, 0) + [I − P F (z)]−1[P W
I (z)

∞∑
k1,k2,k3=0

ΦW (z, k1 − 1, k2, k3)x
k1
1 x

k2
2 x

k3
3

+P W
E (z)

∞∑
k1,k2,k3=0

ΦW (z, k1, k2 − 1, k3)x
k1
1 x

k2
2 x

k3
3

+P W
D (z)

∞∑
k1,k2,k3=0

ΦW (z, k1, k2, k3 − 1)x
k1
1 x

k2
2 x

k3
3 ]

= [I − P F (z)]−1P (z) + [I − P F (z)]−1[P W
I (z)x1 + P W

E (z)x2 + P W
D (z)x3]gW∗(z, x1, x2, x3)

= [I − P F (z) − P W
I (z)x1 − P W

E (z)x2 − P W
E (z)x3]−1P (z).

3 Second-Order Discrete-Time Semi-Markov System

Consider the time-homogenous second-order semi-Markov chain {Z(n), n = 0, 1, . . .}, as
in Yi and Cui (2017), with discrete time and finite state space � = {1, . . ., k�}. The state
that the system jumps to at the kth transition time Sk is denoted by Jk (k = 1, 2, . . .), and
the system enters the initial recorded state J0 at time S0 = 0 from a known state J−1. Let
X0 = 0, and the sojourn time in state Jk−1 between the (k − 1)th and kth transitions can
be expressed as Xk = Sk − Sk−1 (k = 1, 2, . . .). Then, the second-order (in state) semi-
Markov kernel of the related second-order (in state) semi-Markov chain can be defined as
Q(n) := (Qi*j*(n))k

�2 ×k
�2 , where �2 = {(i, j) : i, j ∈ �} is the state space whose

elements are state pairs (Jk−1, Jk) = (i, j) of the original chain {Jk, k = 0, 1, . . . , ∞} and

Qi*j*(n) = Qik,hj (n)

= P {Jl = h, Jl+1 = j,Xl+1 = n—Jl−1 = i, Jl = k}
= P {J0 = h, J1 = j,X1 = n—J−1 = i, J0 = k}
= P {J1 = j,X1 = n—J−1 = i, J0 = k} 1{h=k}.

With the state space � divided into three subsets A ,B and D , the second-order (in
state) semi-Markov kernel can be divided correspondingly as follows:

Here again, the subsets A ,B and D consist of perfect functioning states, imperfect
functioning states and failure states, respectively. Besides, there are kA , kB and kD states in
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the subsets A ,B and D , respectively, namely, A = {1, . . . , kA },B = {kA +1, . . . , kA +
kB},D = {kA + kB + 1, . . . , kA + kB + kD}.

As in Section 2, sojourns in subset B contribute to working periods if and only if the
system is in A right before it enters B and right after it leaves B, which implies that
they contribute to failure periods otherwise. Obviously, sojourns in subset A contribute to
working periods and sojourns in subset D contribute to failure periods. For discussing the
properties of the semi-Markov system, a new stochastic process { Y (n), n = 0, 1, . . .} is
defined as follows:

Y (n) =
{

1, the system is in a working period at time n,

0, the system is in a failure period at time n.

Note that Y (n) is a right-continuous function, which means its value at a transition time
depends on whether the sojourn after transition contributes to a working period or not.
Besides, a transition is said to be in a working period if the system is in a working period
when the transition starts, and in a failure period if the system is in a failure period when
transition starts.

Denote the conditional probability that the system stays in subset Y in time interval [0, n)

and jumps to state j in another subset Z at time n, given the initial state i in subset X at
time −1 and state k in subset Y at time 0, where

(X, Y, Z) ∈ {(A ,B,A ), (A ,B,D), (A ,D,A ), (A ,D,B), (B,A ,B), (B,A ,D),

(B,D,A ), (B,D,B), (D,A ,B), (D,A ,D), (D,B,A ), (D,B,D)},

by g
XY,YZ
ik,hj (n). This implies, for i ∈ X, k, h ∈ Y, j ∈ Z, we have

g
XY,YZ
ik,hj (n) = P {Jl−1 = h, Jl = j, Sl = n, J1, J2, . . . , Jl−1 ∈ Y |J−1 = i, J0 = k },

where no self-transition is allowed.
In matrix form, denote GXY,YZ(n) =

(
g

XY,YZ
ik,hj (n), i ∈ X, k, h ∈ Y, j ∈ Z

)
kXkY ×kY kZ

,

where kX, kY , kZ denote the numbers of states in subsets X, Y,Z, respectively, and denote
0 as a matrix whose elements are all 0 of suitable dimension. Then, as mentioned in Yi and
Cui (2017), the Z-transform of GXY,YZ(n) can be represented as

G∗
XY,YZ(z) = Q∗

XY,YY (z)[I − Q∗
Y 2,Y 2(z)]−1Q∗

YY,YZ(z) + Q∗
XY,YZ(z),

where I is an unit matrix of suitable dimension. As in the discussion in Section 2, we
then have a new semi-Markov chain {Z0(n), n = 0, 1, . . .} with state space �0 = A ∪
B1 ∪ B2 ∪ D and the semi-Markov kernel in Z-transform as

Assume that the initial probability vector of Z0(n) can be denoted by

π = (πA 2 ,πA B1 ,πA D ,πB1A ,πB2
1
,πB1D ,πB2A , πB2

2
,πB2D , πDA , πDB2 , πD2),
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where its element π i,k = P {Z0(−1) = i, Z0(0) = k} is the probability that the initial state
pair of Z0(n) is (i, k). To investigate the transition rules, some notations are defined for
one-step increasing/equivalent/decreasing transitions in working/failure periods as follows:

Note that P W
I (z)+P W

E (z)+P W
D (z)+P F

I (z)+P F
E(z)+P F

D(z) = D∗(z). In addition, let

DW
X (z) = D∗(z) − P W

X (z), DF
X(z) = D∗(z) − P F

X(z), X ∈ {I, E,D},
P W

XY (z) = P W
X (z) + P W

Y (z), P F
XY (z) = P F

X(z) + P F
Y (z), (X, Y ) ∈ {(I, E), (I, D), (E, D),

DW
XY (z) = D∗(z) − P W

XY (z), DF
XY (z) = D∗(z) − P F

XY (z), (X, Y ) ∈ {(I, E), (I,D), (E,D)}.
Further, let P W (z) = P W

I (z) + P W
E (z) + P W

D (z), P F (z) = P F
I (z) + P F

E(z) + P F
D(z) and

where uXY , X, Y ∈ {A ,B,D}, are column vectors of dimension kXkY whose elements
are all ones.

Then, the distributions of counting processes NW
I (n),NW

E (n),NW
D (n) are presented

in Theorem 3.1 for the one-step increasing/equivalent/decreasing transitions in working
periods together with the distribution of their summation NW(n).

1865Methodology and Computing in Applied Probability (2022) 24:1849–1875



Theorem 3.1 Denote the distributions of counting processes NW
X (n),X ∈ {I, E,D}, and

NW (n) in working periods by

φW
X (n, k) := P {NW

X (n) = k}, φW (n, k) := P {NW(n) = k},
for k = 0, 1, . . . . Then, they can be given by their Z-transforms as follows:

φW∗
X (z, k) = π{[I − DW

X (z)]−1P W
X (z)}k[I − DW

X (z)]−1P (z),

φW∗(z, k) = π{[I − P F (z)]−1P W (z)}k[I − P F (z)]−1P (z),

Proof Take φW
I (n, k) as an example. Then, the proof is similar to that of Theorem 2.1.

Consider the initial state pair (Z0(−1), Z0(0)) = (i, k), for i ∈ A and k ∈ A . Then, we
have

ΦA A
I (z, 0) = z(z − 1)−1[uA A − Q*

A A (z)] + Q*
A 2,A 2(z)Φ

A A
I (z, 0)

+Q*
A A ,A B(z)Φ

A B1
I (z, 0) + Q*

A A ,A D(z)ΦA D
I (z, 0),

ΦA A
I (z, k) = Q*

A 2,A 2(z)Φ
A A
I (z, k) + Q*

A A ,A B(z)Φ
A B1
I (z, k)

+Q*
A A ,A D(z)ΦA D

I (z, k);
for i ∈ A and k ∈ B1,

Φ
A B1
I (z, 0) = z(z − 1)−1[uA B − Q*

A B(z)] + Q*
A B,BB(z)Φ

B1B1
I (z, 0)

+Q*
A B,BD(z)Φ

B1D
I (z, 0),

Φ
A B1
I (z, k) = Q*

A B,BA (z)Φ
B1A
I (z, k − 1) + Q*

A B,BB(z)Φ
B1B1
I (z, k)

+Q*
A B,BD(z)Φ

B1D
I (z, k);

for i ∈ A and k ∈ D,

ΦA D
I (z, 0) = z(z − 1)−1[uA D − Q*

A D(z)] + Q*
A D,DA (z)ΦDA

I (z, 0)

+Q*
A D,DB(z)Φ

DB2
I (z, 0) + Q*

A D,DD(z)ΦDD
I (z, 0),

ΦA D
I (z, k) = Q*

A D,DA (z)ΦDA
I (z, k) + Q*

A D,DB(z)Φ
DB2
I (z, k)

+Q*
A D,DD(z)ΦDD

I (z, k);
for i ∈ B1 and k ∈ A ,

Φ
B1A
I (z, 0) = z(z − 1)−1[uBA − Q*

BA (z)] + Q*
BA ,A A (z)ΦA A

I (z, 0)

+Q*
BA ,A B(z)Φ

A B1
I (z, 0) + Q*

BA ,A D(z)ΦA D
I (z, 0),

Φ
B1A
I (z, k) = Q*

BA ,A A (z)ΦA A
I (z, k) + Q*

BA ,A B(z)Φ
A B1
I (z, k)

+Q*
BA ,A D(z)ΦA D

I (z, k);
for i ∈ B1 and k ∈ B1,

Φ
B1B1
I (z, 0) = z(z − 1)−1[uBB − Q*

BB(z)] + Q*
B2,B2(z)Φ

B1B1
I (z, 0)

+Q*
BB,BD(z)Φ

B1D
I (z, 0),

Φ
B1B1
I (z, k) = Q*

BB,BA (z)Φ
B1A
I (z, k − 1) + Q*

B2,B2(z)Φ
B1B1
I (z, k)

+Q*
BB,BD(z)Φ

B1D
I (z, k);
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for i ∈ B1 and k ∈ D,

Φ
B1D
I (z, 0) = z(z − 1)−1[uBD − Q*

BD(z)] + Q*
BD,DA (z)ΦDA

I (z, 0)

+Q*
BD,DB(z)Φ

DB2
I (z, 0) + Q*

BD,DD(z)ΦDD
I (z, 0),

Φ
B1D
I (z, k) = Q*

BD,DA (z)ΦDA
I (z, k) + Q*

BD,DB(z)Φ
DB2
I (z, k)

+Q*
BD,DD(z)ΦDD

I (z, k);
for i ∈ B2 and k ∈ A ,

Φ
B2A
I (z, 0) = z(z − 1)−1[uBA − Q*

BA (z)] + Q*
BA ,A A (z)ΦA A

I (z, 0)

+Q*
BA ,A B(z)Φ

A B1
I (z, 0) + Q*

BA ,A D(z)ΦA D
I (z, 0),

Φ
B2A
I (z, k) = Q*

BA ,A A (z)ΦA A
I (z, k) + Q*

BA ,A B(z)Φ
A B1
I (z, k)

+Q*
BA ,A D(z)ΦA D

I (z, k);
for i ∈ B2 and k ∈ B2,

Φ
B2B2
I (z, 0) = z(z − 1)−1[uBB − Q*

BB(z)] + Q*
BB,BA (z)Φ

B2A
I (z, 0)

+Q*
B2,B2(z)Φ

B2B2
I (z, 0) + Q*

BB,BD(z)Φ
B2D
I (z, 0),

Φ
B2B2
I (z, k) = Q*

BB,BA (z)Φ
B2A
I (z, k) + Q*

B2,B2(z)Φ
B2B2
I (z, k)

+Q*
BB,BD(z)Φ

B2D
I (z, k);

for i ∈ B2 and k ∈ D,

Φ
B2D
I (z, 0) = z(z − 1)−1[uBD − Q*

BD(z)] + Q*
BD,DA (z)ΦDA

I (z, 0)

+Q*
BD,DB(z)Φ

DB2
I (z, 0) + Q*

BD,DD(z)ΦDD
I (z, 0),

Φ
B2D
I (z, k) = Q*

BD,DA (z)ΦDA
I (z, k) + Q*

BD,DB(z)Φ
DB2
I (z, k)

+Q*
BD,DD(z)ΦDD

I (z, k);
for i ∈ D and k ∈ A ,

ΦDA
I (z, 0) = z(z − 1)−1[uDA − Q*

DA (z)] + Q*
DA ,A A (z)ΦA A

I (z, 0)

+Q*
DA ,A B(z)Φ

A B1
I (z, 0) + Q*

DA ,A D(z)ΦA D
I (z, 0),

ΦDA
I (z, k) = Q*

DA ,A A (z)ΦA A
I (z, k) + Q*

DA ,A B(z)Φ
A B1
I (z, k)

+Q*
DA ,A D(z)ΦA D

I (z, k);
for i ∈ D and k ∈ B2,

Φ
DB2
I (z, 0) = z(z − 1)−1[uDB − Q*

DB(z)] + Q*
DB,BA (z)Φ

B2A
I (z, k)

+Q*
DB,BB(z)Φ

B2B2
I (z, 0) + Q*

DB,BD(z)ΦBD
I (z, 0),

Φ
DB2
I (z, k) = Q*

DB,BA (z)Φ
B2A
I (z, k) + Q*

DB,BB(z)Φ
B2B2
I (z, k)

+Q*
DB,BD(z)ΦBD

I (z, k);
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for i ∈ D and k ∈ D,

ΦDD
I (z, 0) = z(z − 1)−1[uDD − Q*

DD(z)] + Q*
DD,DA (z)ΦDA

I (z, 0)

+Q*
DD,DB(z)Φ

DB2
I (z, 0) + Q*

D2,D2(z)Φ
DD
I (z, 0),

ΦDD
I (z, k) = Q*

DD,DA (z)ΦDA
I (z, k) + Q*

DD,DB(z)Φ
DB2
I (z, k)

+Q*
D2,D2(z)Φ

DD
I (z, k).

From all the above expressions, as in the proof of Theorem 3.1, the distribution
φW

I (n, k), k = 0, 1, . . . , of counting process NW
I (n) can be given by its Z-transform as

φW∗
I (z, k) = π{[I − DW

I (z)]−1P W
I (z)}k[I − DW

I (z)]−1P (z).

As in Theorem 3.1, the distributions of counting processes NF
I (n),NF

E (n),NF
D(n) are

presented in Theorem 3.2 for the one-step increasing/equivalent/decreasing transitions in
failure periods together with the distribution of their summation NF (n).

Theorem 3.2 Denote the distributions of counting processes NF
X (n),X ∈ {I, E,D}, and

NF (n) in failure periods by

φF
X(n, k) := P {NF

X (n) = k}, φF (n, k) := P {NF (n) = k},
for k = 0, 1, . . . . Then, they can be given by their Z-transforms as follows:

φF∗
X (z, k) = π{[I − DF

X(z)]−1P F
X(z)}k[I − DF

X(z)]−1P (z).

φF∗(z, k) = π{[I − P W (z)]−1P F (z)}k[I − P W (z)]−1P (z).

Proof The proof is similar to that of Theorem 3.1, and is therefore not presented here for
the sake of conciseness.

Furthermore, other theorems in Section 2 can all be presented here in the same form, but
are omitted for brevity.

4 Illustrative Eexamples

To illustrate and verify the results established in the preceding sections, two examples are
presented here. In Example 4.1. we consider the case when a power generating system
follows a time-homogenous first-order semi-Markov chain. To accommodate that future
states of the system may depend not only on its present state, but also on its immediately
preceding state, in Example 4.2, we consider the case when it follows a time-homogenous
second-order semi-Markov chain.

Example 1 Consider a power generating system that follows a time-homogenous first-order
semi-Markov chain {Z(n), n = 0, 1, . . .} with state space � = A ∪B∪D , where A = {1},
B = {2, 3} and D = {4} consist of a perfect functioning state (with a power generating
capacity of 50 MW), two imperfect functioning states (with the power generating capacity

1868 Methodology and Computing in Applied Probability (2022) 24:1849–1875



of 30 MW and different functioning modes) and a failure state (with a power generating
capacity of 0 MW), respectively. Assume that the system starts from state 1 at time 0 and
the semi-Markov kernel can then be presented as follows:

Q(n) =
⎛
⎝

QA A (n) QA B(n) QA D(n)

QBA (n) QBB(n) QBD(n)

QDA (n) QDB(n) QDD(n)

⎞
⎠ =

⎛
⎜⎜⎝

0 0.1 × 0.8n 0.4 × 0.6n 0
0.4 × 0.2n 0 0.1 × 0.8n 2 × 0.2n

0.2 × 0.6n 0.1 × 0.8n 0 0.2 × 0.6n

0 4.5 × 0.1n 2 × 0.2n 0

⎞
⎟⎟⎠ .

For this system, a working period is defined as a period of time that the system is in per-
fect/imperfect functioning states which starts with a sojourn in the perfect functioning state
and ends with a sojourn in the perfect functioning state, and a failure period is defined as
a period of time between two consecutive working periods. Then, the expected numbers of
one-step increasing transitions, one-step equivalent transitions, one-step decreasing transi-
tions and all one-step transitions in working periods and in failure periods in time interval
[0, n] are all plotted in Fig. 1, respectively, for n = 0, . . . , 30. The comparisons of all
one-step transitions in working periods and in failure periods are displayed in Fig. 2.

As seen in Fig. 1a, E[NW
I (n)], E[NW

E (n)], E[NW
D (n)], E[NW (n)] are all increasing

functions of n. Besides, it is seen that

E[NW
I (0)] ≈ E[NW

E (0)] ≈ E[NW
D (0)] ≈ E[NW(0)] ≈ 0,

E[NW
I (n)] + E[NW

E (n)] + E[NW
D (n)] ≈ E[NW (n)].

Similarly, in Fig. 1b, E[NF
I (n)], E[NF

E (n)], E[NF
D(n)], E[NF (n)] are also increasing

functions of n, and it is seen that

E[NF
I (0)] ≈ E[NF

E (0)] ≈ E[NF
D(0)] ≈ E[NF (0)] ≈ 0,

E[NF
I (n)] + E[NF

E (n)] + E[NF
D(n)] ≈ E[NF (n)].

Fig. 1 a NW
I (n) (Curve 1), NW

E (n) (Curve 2), NW
D (n) (Curve 3), NW (n) (Curve 4) (Left); b NF

I (n) (Curve
1), NF

E (n) (Curve 2), NF
D(n) (Curve 3), NF (n) (Curve 4) (Right)
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Fig. 2 NW (n) (Curve 1), NF (n)

(Curve 2), N(n) (Curve 3)

In Fig. 2, E[N(n)] = E[NW (n)] + E[NF (n)] is almost a linear increasing function of
n. Also, E[NW (n)] > E[NF (n)] for n = 1, . . . , 11 and E[NW (n)] < E[NF (n)] for
n = 12, 13, . . ., which is reasonable since the system is in a working state at first.

Suppose an one-step increasing transition corresponds to 3 units of maintenance costs in
a working period and 5 units of maintenance costs in a failure period, an one-step equivalent
transition corresponds to no loss and no cost no matter which period it is in, and an one-step
decreasing transition corresponds to 2 units of machine damage losses in a working period
and 10 units of machine damage losses in a failure period. Then, the expected total costs
needed in intervals [0, 10), [10, 20) and [20, 30) can be evaluated as follows:

S(0, 10) = 3E[NW
I (10)] + 5E[NF

I (10)] + 2E[NW
D (10)] + 10E[NF

D(10)]
≈ 3 × 0.3002 + 5 × 0.7928 + 2 × 1.2134 + 10 × 0.7937

≈ 15.2284,

S(10, 20) = 3E[NW
I (20)] + 5E[NF

I (20)] + 2E[NW
D (20)] + 10E[NF

D(20)] − S(0, 10)

≈ 3 × 0.4991 + 5 × 1.9939 + 2 × 1.7131 + 10 × 1.7210 − 15.2284

≈ 16.8746,

S(20, 30) = 3E[NW
I (30)] + 5E[NF

I (30)] + 2E[NW
D (30)] + 10E[NF

D(30)] − S(0, 10) − S(10, 20)

≈ 3 × 0.6724 + 5 × 3.2113 + 2 × 2.1859 + 10 × 2.6416 − 15.2284 − 16.8746

≈ 16.7585,

which means the expected total costs in interval [10, 20) is a little more than in interval
[20, 30) and also more than in interval [0, 10).

Example 2 Consider a power generating system that follows a time-homogenous second-
order (in state) semi-Markov chain {Z(n), n = 0, 1, . . . , ∞} with state space � = A ∪
B ∪ D , where A = {1}, B = {2, 3} and D = {4} consist of a perfect functioning state
(with a power generating capacity of 50 MW), two imperfect functioning states (with the
power generating capacity of 30 MW and different functioning modes) and a failure state
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(with a power generating capacity of 0 MW), respectively. Assume that the system jumps
to state 2 from state 1 at time 0 and the second-order (in state) semi-Markov kernel can then
be presented as follows:

For this system, a working period is defined as a period of time that the system is in per-
fect/imperfect functioning states which starts with a sojourn in the perfect functioning state
and ends with a sojourn in the perfect functioning state, and a failure period is defined as
a period of time between two consecutive working periods. Then, the expected numbers of
one-step increasing transitions, one-step equivalent transitions, one-step decreasing transi-
tions and all one-step transitions in working periods and in failure periods in time interval
[0, n] are plotted in Fig. 3, respectively, for n = 0, . . . , 30. The comparisons of all one-step
transitions in working periods and in failure periods are displayed in Fig. 4.

Fig. 3 a NW
I (n) (Curve 1), NW

E (n) (Curve 2), NW
D (n) (Curve 3), NW (n) (Curve 4) (Left); b NF

I (n)

(Curve 1), NF
E (n) (Curve 2), NF

D(n) (Curve 3), NF (n) (Curve 4) (Right)
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Fig. 4 NW (n) (Curve 1), NF (n)

(Curve 2), N(n) (Curve 3)

As seen in Fig. 3, E[NW
I (n)], E[NW

E (n)], E[NW
D (n)], E[NW (n)] are all increasing func-

tions of n, and E[NF
I (n)], E[NF

E (n)], E[NF
D(n)], E[NF (n)] are also increasing functions

of n. Besides, it is seen that

E[NW
I (0)] ≈ E[NW

E (0)] ≈ E[NW
D (0)] ≈ E[NW(0)] ≈ 0,

E[NF
I (0)] ≈ E[NF

E (0)] ≈ E[NF
D(0)] ≈ E[NF (0)] ≈ 0,

E[NW
I (n)] + E[NW

E (n)] + E[NW
D (n)] ≈ E[NW (n)],

E[NF
I (n)] + E[NF

E (n)] + E[NF
D(n)] ≈ E[NF (n)].

In Fig. 4, E[N(n)] = E[NW (n)] + E[NF (n)] is almost a linear increasing function of n.
Also, we have E[NW (n)] > E[NF (n)] for n = 1, . . . , 16 and E[NW (n)] < E[NF (n)] for
n = 17, 18, . . ., which is reasonable since the system is in a working period in the beginning.

Suppose an one-step increasing transition corresponds to 3 units of maintenance costs in
a working period and 5 units of maintenance costs in a failure period, an one-step equivalent
transition corresponds to no loss and no cost no matter which period it is in, and an one-step
decreasing transition corresponds to 2 units of machine damage losses in a working period
and 10 units of machine damage losses in a failure period. Then, the expected total costs
needed in intervals [0, 10), [10, 20) and [20, 30) can be evaluated as follows:

S(0, 10) = 3E[NW
I (10)] + 5E[NF

I (10)] + 2E[NW
D (10)] + 10E[NF

D(10)]
≈ 3 × 0.5839 + 5 × 1.0004 + 2 × 0.8702 + 10 × 0.6984

≈ 15.4781,

S(10, 20) = 3E[NW
I (20)] + 5E[NF

I (20)] + 2E[NW
D (20)] + 10E[NF

D(20)] − S(0, 10)

≈ 3 × 0.8541 + 5 × 2.2860 + 2 × 1.9210 + 10 × 1.3758 − 15.4781

≈ 16.1142,

S(20, 30) = 3E[NW
I (30)] + 5E[NF

I (30)] + 2E[NW
D (30)] + 10E[NF

D(30)] − S(0, 10) − S(10, 20)

≈ 3 × 1.1138 + 5 × 3.5957 + 2 × 2.9739 + 10 × 2.0509 − 15.4781 − 16.1142

≈ 16.1844,
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which means the expected total costs needed in interval [20, 30) is a little more than in
interval [10, 20) and also more than in interval [0, 10).

5 Extended Discussions on Related Reliability Measures

The key step in Sections 2 and 3 is to define a new first/second-order semi-Markov
chain {Z0(n), n = 0, 1, . . .} based on the orginal first-/second-order semi-Markov chain
{Z(n), n = 0, 1, . . .} to distinguish whether the system is in a working period or a fail-
ure period. In this section, some extended discussions are presented to obtain reliability
measures for the two semi-Markov systems in Sections 2 and 3.

As in Yi et al. (2018) and Yi and Cui (2017) , reliability measures such as reliability, point
availability and interval availability can be definded for the first-/second-order semi-Markov
system in Sections 2 and 3 by correspongding stochastic process {Y (n), n = 0, 1, . . .} as
follows:

(1) Reliability: the probability that the system is always in working periods before time n,
namely,

R(n) = P {Y (1) = · · · = Y (n) = 1};
(2) Point availability: the probability that the system is in a working period at time n,

namely,
A(n) = P {Y (n) = 1};

(3) Interval availability: the probability that the system is always in working periods in
time interval [a, b], namely,

A[a, b] = P {Y (a) = · · · = Y (b) = 1};
In existing research like Yi et al. (2018) and Yi and Cui (2017), explicit formulas of

these reliability measures have been given by an analysis of possible transitions. Here, with
the new first-/second-order semi-Markov chain {Z0(n), n = 0, 1, . . .} defined in Sections 2
and 3, they can be presented in a new and simple way. Assume that the first-/second-order
semi-Markov system is at the beginning of a working period at time 0. Then, smiliar to the
discussions in Yi et al. (2018), reliability R(n) of the system can be given by its Z-transform
as

R∗(z) = z

z − 1
π [u�0 − G∗

WF (z)u�0 ],
with π , u�0 , P

W (z), P F (z) as defined in Sections 2 and 3 and

G∗
WF (z) = [I − P W (z)]−1P F (z).

Point availability A(n) of the original system can be given by its Z-transform as

A∗(z) = π [I − G∗
WF (z)G∗

FW (z)]−1R∗(z),
where G∗

FW (z) = [I − P F (z)]−1P W (z) and

R∗(z) = z

z − 1
[u�0 − G∗

WF (z)u�0 ].
Interval availability A[a, b] of the original system can be given in a recursive way as
A[a, b] = πA[a, b], where

A[a, b] = R(b) +
a∑

u=0

f WF (u)A[a − u, n − u],
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and f WF (u) can be given by its Z-transform as f ∗
WF (u) = G∗

WF (z)G∗
FW (z).

With the disucssions in this section and in Sections 2 and 3, some optimization problems
can be considered to obtain best reliability performance under constraints like costs and
benifits of transitions, which may be useful in practice. Note that this method can also be
applied to other reliability measures in a similar way, and definitions of working/failure
periods can also be considered in different ways by changing the split of state spaces or by
taking issues such as time interval omission into consideration.

6 Conclusions

In this paper, we have defined several kinds of derived counting processes for first-
and second-order discrete-time aggregated semi-Markov systems; for example, one-step
increasing/equivalent/decreasing transitions in working/failure periods. Stochastic proper-
ties of these counting process are studied, and related distributions, joint distributions,
expectations, generating functions and joint generation functions are derived and presented
in their Z-transforms. Some numerical examples are finally presented to illustrate the estab-
lished results. Extended discussions on related reliability measures have also been made.
Applications of the results developed in this work can be found in seismology, reliability,
biology, finance and others fields. In the future, some other indices and their properties
can be considered for semi-Markov systems, and further results can be presented for new
high-order models as well.

Data Availability No datasets were generated or analysed during the current study.
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