
https://doi.org/10.1007/s11009-021-09864-8

Equilibrium Joining Strategies of Positive Customers
in a Markovian Queue with Negative Arrivals
andWorking Vacations

Gopinath Panda1 ·Veena Goswami2

Received: 1 November 2020 / Revised: 9 April 2021 / Accepted: 14 April 2021 /

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
We study the economic analysis of a single server Markovian queueing system with pos-
itive and negative customers and multiple working vacations. Both positive and negative
customers arrive in the system according to a Poisson process. Upon arrival, positive cus-
tomers acquire some system information and decide whether to join or to balk the system
based on the acquired information and a linear cost-reward structure. Negative customers
on arrival break the server and kill the positive customer in service. The server is immedi-
ately sent for repair, and no customers are allowed during a repair. The server takes multiple
working vacations after serving all the positive waiting customers. We obtain the equilib-
rium strategies and social benefit of positive customers under four different information
situations. Numerical experiments are presented to show the effects of model parameters
and information levels on the equilibrium joining behavior of positive customers.

Keywords Strategic customers · Positive customers · Equilibrium joining ·
Negative arrivals · Queue · Social benefit
Mathematics Subject Classification (2010) 60K25 · 68M20 · 90B22

1 Introduction

In recent years, there is a growing interest among queueing researchers to study the effect
of queue-length information on the decentralized behavior of rational customers. In such
systems, strategic customers receive certain system information at their arrival instants and
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based on the received information and a reward-cost structure, they decide whether to join or
to balk the system. Every customer tries to maximize his/her net benefit based on the reward-
cost structure; that displays their desire for service and dislike for waiting. The decision of a
customer is affected by the decisions made by other customers present in the system, thus,
leading to a symmetric game among the present customers. Such a game-theoretic analysis
in the context of a Markovian queueing system with complete information of queue-length
was initiated by Naor (1969). This work was complemented by Edelson and Hilderbrand
(1975). Burnetas and Economou (2007) introduced the strategic customers’ behavior in
a Markovian queue with server vacations and analyzed the equilibrium joining strategies
under four different information settings. Since then several researchers studied different
variants of the vacation models such as working vacations (Sun and Li 2014; Li and Ba
2016; Lee 2019), Bernoulli scheduled vacation (Liu and Wang 2017; Zhang and Shi 2009;
Panda et al. 2016), adaptive vacations (Sun et al. 2017), variant vacations (Panda et al.
2017), N-policy with vacations (Sun et al. 2016), etc. Extensive bibliographical references
with the fundamental results in the economic analysis of various queueing systems may be
found in the monographs of Hassin and Haviv (2003) and Hassin (2016).

In the past studies, the unavailability of the server is due to its self-removal (vacations).
However, there are scenarios wherein forceful removal results in the server unavailability.
This may be due to unexpected server breakdowns, catastrophes, and the arrival of negative
customers. The strategic behavior of customers in an observable Markovian queueing sys-
tem with server breakdowns and repairs was introduced by Economou and Kanta (2008).
Li et al. (2014) studied the corresponding unobservable model. Several researchers further
extended these works under a Markovian setting with different variants, Wang and Zhang
(2011), Li et al. (2013), Sun et al. (2010), Wang and Zhang (2011), and Yu et al. (2017).

There are studies in which catastrophes or disasters occur as a result of the arrival of neg-
ative customers. This concept, called G-networks, was introduced by Gelenbe (1989) in the
modeling of neural networks, in which the negative customers act as inhibitor signals. This
was subsequently extended to queueing systems by Gelenbe et al. (1991); Gelenbe (1991,
1994); Artalejo, (2000). The positive customers require service and increase the queue-
length, whereas negative customers do not need service. Upon arrival, negative customers
remove the server (breakdown) and kill one or more positive customers in a non-empty sys-
tem according to a predetermined killing strategy. The most distinctive killing mechanisms
are DST (Disaster), RCH (Removal of the Customer at the Head), and RCE (Removal of
the Customer at the End). In DST killing policy, a negative customer’s arrival breaks the
server and kills all the positive customers in the system. This policy has interesting appli-
cations in cloud data services, where negative customers are the hackers and in computer
communication systems, where the negative customer is a virus or malware. Boudali and
Economou (2012, 2013) considered the equilibrium balking strategies in an M/M/1 queue
subject to catastrophes (DST policy). When a catastrophe occurs, the server becomes inop-
erative, and all the customers in the system are forced to leave. In an RCH killing policy, a
negative customer breaks the server and kills the positive customer at the head of the queue
or in service. This has potential applications in the production or manufacturing indus-
tries where negative customers are faulty operations or mishandling by the operator and
in telecommunication systems where negative customers are network failures that lead to
lost calls. Lee (2017) considered the equilibrium behavior of customers and optimal pricing
strategies of the server in an unobservable M/M/1 queue under two pricing schemes. Tian
and Wang (2019) studied the strategic behavior of positive customers in an M/M/1 queue
with working breakdowns under four information scenarios. Sun andWang (2019) analyzed
equilibrium and socially optimal joining strategies in an M/M/1 queue with negative cus-
tomers. In the RCE killing policy, a negative customer kills the positive customer at the end
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of the queue; that is, the most recently joined one whether waiting in a queue or receiving
service. These killing mechanisms are effective in a non-empty system.

Queueing systems with multiple vacations and negative customers are extensively used
to model communication systems. One such situation is a denial of service attack (DoS), in
which the legitimate users (positive customers) are unable to access system devices, infor-
mation systems, or other network resources (server) due to the actions of a malicious cyber
threat actor, CISA (2009). DoS attack is accomplished by flooding the targeted host or net-
work with traffic until the target cannot respond or by sending it information that triggers a
crash. For effective management of a communication system, there is a team of reliability
engineers working to detect and resolve the issue in case of an attack (repair state). After
a DoS attack, the system engineers repair the targeted host or restore the network to peak
performance. Despite the usefulness of vacation queueing systems with negative customers
in the efficient modelling of many real-life systems, few research studies are available in
the economic analysis of G-queues. To the best of our knowledge, there is no work reported
on the strategic behavior of positive customers in a queueing system with multiple working
vacations and negative customers. In this work, we discuss the equilibrium joining strategies
of positive customers in an M/M/1 queue with working vacations and negative customers
under the RCH killing policy. Both positive and negative customers follow a Poisson arrival
process with different arrival rates. The server renders service with two different speeds:
faster service state (normal service mode) and slower service state (working vacation mode).
Positive customers are served individually following a first-come first-served discipline.
When all the positive customers’ services are being served with a faster speed and there are
no more to be served, the server switches to a slower service state. This mechanism is use-
ful in conserving system resources like energy saving in data centers by putting the server
in standby. Upon arrival, negative customers make the server inoperative and kill the pos-
itive customer in service. The broken server is immediately sent for repair and no positive
customers are allowed to join the system during the repair. We consider the system with
four information cases (fully and almost observable, and fully and almost unobservable)
with respect to the level of information available to positive customers before making their
decisions. We analyze the positive customer’s equilibrium joining strategies in each case.

The main contributions of the work are as follows:

– We study the equilibrium joining strategies of positive customers under both observable
and unobservable informational cases. We present the mean sojourn time of a positive
customer when all other positive customers follow a threshold joining strategy.

– We analyze the impact of the information level on the equilibrium joining strategies.
We observe that the thresholds take intermediate values between two extremes; that is,
they obey the follow-the-crowd property in an almost observable system.

– We discuss the practical application of our model in a denial of service attack on web
resources. This study will provide strategic customers with valuable insights regarding
the reward/risk involved in following or avoiding the crowd under various information
policies.

The rest of the paper is organized as follows. In Section 2, we briefly discuss the dynam-
ics of the model and its queueing formulation. Further, the linear reward-cost structure
and the decision making framework is also discussed. In Section 3, we derive the equilib-
rium threshold strategies for the observable cases (fully and almost observable) in which
positive customers are informed about the system state before making their decisions. In
Section 4, we derive the equilibrium mixed strategies in the almost and fully unobservable
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cases. Section 5 depicts some numerical results and discusses the findings of correspond-
ing instances. Section 6 concludes the paper with a few challenging extensions of this
research.

2 Model Description

We consider a single server Markovian queueing system with infinite capacity wherein het-
erogeneous customers arrive according to a Poisson process. Customers are divided into
two categories: positive and negative. Let λ and φ are the arrival rates of positive and neg-
ative customers, respectively. Positive customers are served individually by a single server
following the first-come first-served discipline. The server has two modes of operation: nor-
mal service mode and working vacation mode. A working vacation is a vacation policy in
which the server serves the positive customers at a lower speed during the vacation period
rather than halting the service as in a classical vacation policy. The service times during
the normal service (working vacation) mode are independent and exponentially distributed
random variables with a rate μ (η). If the server finds no positive customers in the sys-
tem after a service completion in the normal service mode, it switches to working vacation
mode. Any positive customers that join the system while the server is in working vacation
are served with a service rate η < μ. If there are no positive customers in the system at
the end of a working vacation, the server takes another working vacation, and the process
continues. Such a working vacation policy is called the multiple working vacation (MWV)
policy. The working vacation times are independent and exponentially distributed with a
rate θ . If the working vacation mode terminates before a service completion, then that pos-
itive customer’s elapsed service is lost and its service restarts in the normal service mode.
Upon arrival, a negative customer breaks down the server and removes the positive customer
in service under both normal and working vacation modes. The broken server is immedi-
ately sent to repair and the repair times are exponentially distributed with rate γ . During the
repair process, positive customers are not allowed to join the system and negative arrivals
do no affect the server. After the server was repaired, it becomes active and remains in the
idle state until the arrival of a positive customer. A negative arrival does not affect the idle
server. All the random variables associated with the model are mutually independent. We
may represent the above queueing system as an M/M/1/MWV queue with strategic positive
customers. We list the following notations associated with the model description.

λ potential arrival rate of positive customers
φ potential arrival rate of negative customers
μ service rate during normal service
η service rate during working vacation
θ working vacation rate
γ repair rate of broken servers
N(t) number of positive customers in the system at time t

ζ(t) state of the server at time t =

⎧
⎪⎨

⎪⎩

0, server is on working vacation mode

1, server is on normal service mode

2, server is on repair mode
R service completion reward
C waiting cost per time unit
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We consider the state of the queueing system at positive customers’ arrival instants. The
system state at time t can be represented by the random variables N(t) and ζ(t), where
N(t) denotes the number of positive customers in the system at time t and ζ(t) is the
state of the server at the same moment. Let ζ(t) = 0, 1, and 2 represent the working
vacation, normal service, and repair state of the server, respectively. The state space of the
random variables N(t) and ζ(t) are {0, 1, 2, . . . , } and {0, 1, 2}, respectively. The deriva-
tion of the system-length process {(N(t), ζ(t)), t ≥ 0} builds a continuous-time Markov
chain with state space {(n, i) : n ≥ 0; i = 0, 1, 2}. The state transition diagram is shown in
Fig. 1.

We discuss some basic concepts related to the game among the strategic players (positive
customers). Game theory is a theoretical framework that deals with the optimal decision-
making of independent and competing rational agents, called players in a strategic setting.
A non-cooperative game is a competition among individual players without making any
coalition or communication with other players. In a symmetric game, the players are indis-
tinguishable; that is, the strategy sets and corresponding payoffs are the same for all players
in the game. Let S be the strategy space (set of available actions) and define F(x, y) be the
payoff of a player that selects a strategy x when others follow the strategy y for x, y ∈ S.
A strategy x∗ is said to be a best response against a strategy y, if F(x∗, y) ≥ F(x, y), for
every x ∈ S. An equilibrium (symmetric Nash) strategy is a best response against itself; that
is, if all players agree to follow it, no one can benefit by altering it. Mathematically, a strat-
egy xe is an equilibrium strategy if F(xe, xe) ≥ F(x, xe), for every x ∈ S. A strategy x1 is
said to weakly dominate strategy x2 if F(x1, y) ≥ F(x2, y), for every y ∈ S and for at least
one y the inequality is strict. A strategy x∗ is said to be weakly dominant if it dominates all
other strategies in S. The notion of a weakly dominant strategy is stronger than the notion
of a Nash equilibrium; that is, every weakly dominant strategy is a Nash equilibrium, but
the converse is not true.

Fig. 1 State transition diagram of the original model
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In this non-cooperative symmetric game setting, our objective is to derive the (Nash)
equilibrium strategies that are best responses against themselves; that is, no player has an
incentive to deviate from such a strategy unilaterally. We assume that after a successful
service completion each positive customer gets a reward of R units and on the other hand,
they are charged a waiting cost of C units per time unit they spend in the system. We define
the net benefit function of a positive customer as

Δ =

⎧
⎪⎨

⎪⎩

μ

μ + φ
R − C T (·), in the observable system,

μ

μ + φ
R − C W(·), in the unobservable system,

(1)

where T (·) and W(·) represent the mean sojourn time of a positive customer who decides to
join the system under the observable case and unobservable case, respectively. The service
of a positive customer will complete if there is no negative arrival during his service; other-
wise he will be removed from the system. Thus, the probability of service completion before
a negative arrival is μ

μ+φ
. Based on this linear cost-reward structure and the acquired system

information, positive customers make a decision only at their arrival instants to maximize
their expected net benefit. One can model the system as a non-cooperative and symmetric
game among positive customers. Since, we assume players (positive customers) to be indis-
tinguishable with respect to the reward-cost structure. We are interested in the equilibrium
joining behavior of positive customers. We assume that their decisions are irrevocable in
the sense that retrials of balking customers and the reneging of waiting customers are not
permissible. Further, zero net benefit is associated with balking customers.

3 Observable Queues with Negative Customers

In this section, we assume that upon arrival, a positive customer is well-informed of the
number in the system and/or the state of the server. If arriving positive customers observe
both the state of the server and the number of positive customers in the system, the model is
said to be a fully observable system. If arriving positive customers observe only the number
in the system, the model is said to be an almost observable system. We will discuss the fully
observable and almost observable systems in the following sections.

3.1 Fully Observable Queue

Here, the positive customers already have the system-length and server status information
on their arrival instants. Thus, the positive customers observe the system state (N(t), ζ(t))

before making decisions whether to join or to balk. The (Nash) equilibrium solution is a pure
strategy (join or balk) of threshold type (Hassin and Haviv 1997), i.e., there exists a positive
integer such that an arriving positive customer will join the system if and only if the system-
length upon arrival is smaller than that value. This pure threshold strategy is a dominant one
in the sense that it is the best response against any other strategies. Here, a pure threshold
strategy is defined by a pair (n0e, n

1
e) and the balking strategy has the form ‘while arriving

at time t , observe the system state (N(t), ζ(t)); enter if N(t) ≤ n
ζ(t)
e and balk otherwise’,

where n0e and n1e are the thresholds followed by the positive customer that finds the server on
working vacation mode and normal service mode, respectively. As the queue builds faster
in case of working vacation than the normal service, due to slower service rate, the relation
among the thresholds will be n0e ≤ n1e . The maximum number of positive customers in the
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system under equilibrium will be n0e + 1 (n1e + 1) in working vacation (normal service)
mode. We present the analysis and computation of equilibrium threshold strategies in the
following theorem.

Theorem 1 In the fully observable M/M/1 queue with working vacations and negative
customers, there exist thresholds

(n0e, n
1
e) =

(

�xe� − 1,

⌊
(μR − C)γ

C(γ + φ)

⌋

− 1

)

, (2)

where xe is the unique root of the equation

R

C
= (μ − η) (η(γ + φ) + φ(θ + φ))

ηγμ(θ + φ)

(

1 −
(

η

η + θ + φ

)x+1
)

+η(γ + φ)(x + 1) − μφ

ηγμ
,

such that the strategy ‘observe (N(t), ζ(t)), join if N(t) ≤ n
ζ(t)
e and balk otherwise’ is a

weakly dominant strategy for the positive customers.

Proof Consider an arbitrary positive customer who observes the system state (n, i) upon
arrival. Since arrivals are not allowed to join during the server’s repair state, we exclude
the system states (n, 2) from the decision making process. So, we only consider the case
where a positive customer observes the system at states (n, 0) and (n, 1). Let T (n, i) be the
sojourn time of a tagged positive customer that finds the system on state (n, i), i = 0, 1
upon arrival. His service will start only after n waiting positive customers are served or
removed and no negative arrival occurs during his service.

We can compute a tagged positive customer’s sojourn time using the first step arguments.
This distinct possibilities are that the first event can be a negative arrival, a service comple-
tion, or a vacation termination. Suppose the tagged positive customer finds the system state
(n, 0) upon arrival. In that case, his sojourn time consists of the sojourn times in the follow-
ing cases: (i) The expected time till an event occurs, 1

η+θ+φ
and (ii) the expected times in the

occurrence of each event. The probabilities of the first event being a WV service completion
or a vacation termination or a negative arrival are η

η+θ+φ
, θ

η+θ+φ
, and φ

η+θ+φ
, respectively.

Thus, the expected sojourn time is

T (0, 0) = 1

η + θ + φ
+ θ

η + θ + φ

1

μ + φ

T (n, 0) = 1

η + θ + φ
+ η

η + θ + φ
T (n − 1, 0) + θ

η + θ + φ
T (n, 1)

+ φ

η + θ + φ

(
1

γ
+ T (n − 1, 1)

)

, n ≥ 1,

Using similar arguments, his expected sojourn time when he encounters the system state
(n, 1) is

T (0, 1) = 1

μ + φ

T (n, 1) = 1

μ + φ
+ μ

μ + φ
T (n − 1, 1) + φ

μ + φ

(
1

γ
+ T (n − 1, 1)

)

, n ≥ 1.

Methodology and Computing in Applied Probability (2022) 24:1439–1466 1445



On successive iteration of T (n, 0), T (n, 1) and using T (0, 0), T (0, 1), we get

T (n, 1) = n(γ + φ) + γ

γ (μ + φ)
, n ≥ 0 (3)

T (n, 0) = Ψn+1 + T (n, 1), n ≥ 0, (4)

where Ψn+1 = (μ−η)(η(γ+φ)+φ(θ+φ))
ηγ (μ+φ)(θ+φ)

(

1 −
(

η
η+θ+φ

)n+1
)

+ φ(η−μ)
ηγ (μ+φ)

. It can be easily

checked that the mean sojourn times, T (n, i) are increasing functions of n for i = 0, 1.
We assume that positive customers upon arrival are encouraged to join an empty system.

It is possible if his net benefit is positive. Thus, we assume R
C

>
μ+θ+φ

μ(η+θ+φ)
in the equilibrium

analysis under each information scenario. Now, the expected net benefit Δf o(n, i) of a
tagged positive customer who decides to join the system state (n, i) can be computed from
Eq. 1. Thus, a tagged positive customer who observes n positive customers in the system
on arrival will join the system if Δf o(n, i) > 0; will balk the system if Δf o(n, i) < 0
and will indifferent between joining and balking if Δf o(n, i) = 0. Hence, the positive

customer arriving at time t will join the system if and only if N(t) ≤ n
j
e , where (n0e, n

1
e) are

obtained by solving Δf o(n, 0) = 0, Δf o(n, 1) = 0. Solving these equations, we get the

equilibrium thresholds of positive customers as n0e = �xe� − 1 and n1e = � (μR−C)γ
C(γ+φ)

� − 1.
This strategy is independent of the other positive customers’ strategies; that is, this strategy
is a best response against all strategies followed by others. Therefore, the strategy is weakly
dominant.

Next, we intend to find the social benefit of positive customers under equilibrium. To
compute the social benefit, we need the steady-state distribution under the equilibrium
threshold strategy. If all the positive customers follow the equilibrium threshold (n0e, n

1
e),

the state of the system can be described by the same Markov chain {(N(t), ζ(t)) : t ≥ 0} on
the state space Ωf o = {(n, 0) : n = 0, 1, . . . , n0e + 1} ∪ {(n, 1) : n = 0, 1, . . . , n1e + 1} ∪
{(n, 2) : n = 0, 1, . . . , n1e}. Figure 2 illustrates the state transition diagram of the Markov
chain.

Fig. 2 State transition diagram of the model when positive customers’ strategy is (n0e , n
1
e)
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The corresponding steady-state distribution πn,i : (n, i) ∈ Ωf o can be computed by
solving the following system of balance equations.

λπ0,1 = γπ0,2, (5a)

(λ + μ + φ)πn,1 = λπn−1,1+μπn+1,1 + γπn,2 + θπn,0, n=1, 2, . . . , n0e + 1,(5b)

(λ + μ + φ)πn,1 = λπn−1,1 + μπn+1,1 + γπn,2, n = n0e + 1, . . . , n1e, (5c)

(μ + φ)πn1e+1,1 = λπn1e ,1
, (5d)

λπ0,0 = μπ1,1 + ηπ1,0, (5e)

(λ + θ + φ + η)πn,0 = λπn−1,0 + ηπn+1,0, n = 1, 2, . . . , n0e, (5f)

(θ + φ + η)πn0e+1,0 = λπn0e ,0
, (5g)

γπn,2 = φπn+1,1 + φπn+1,0, n = 0, 1, . . . , n0e, (5h)

γπn,2 = φπn+1,1, n = n0e + 1, . . . , n1e, (5i)

The above linear system can be solved using several methods available in the literature,
such as difference equation, generating function approach and iterative method. We apply
the iterative method to obtain the solution in closed form, which is analytically simple as
well as computationally efficient. Using the backward substitution scheme recursively on
the system of equations (5e)–(5g), we get

πn,0 = hnπn0e+1,0, n = 0, 1, . . . , n0e + 1,

where the unknown coefficients hn, are given by

hn =

⎧
⎪⎪⎨

⎪⎪⎩

1, n = n0e + 1,
θ+φ+η

λ
, n = n0e,(

1 + θ+φ+η
λ

)
hn+1 − η

λ
hn+2, n = n0e − 1, . . . , 0.

(6)

Similarly, using the backward substitution scheme, the solution to the system of equa-
tions (5b)–(5d) is

πn,1 = tnπn1e+1,1, n = n0e, . . . , n
1
e + 1,

πn,1 = tnπn1e+1,1 + gnπn0e+1,0, n = 0, 1, . . . , n0e − 1,

where the unknowns tn and gn are

tn =
(

μ + φ

λ

)n1e+1−n

, n = 0, 1, . . . , n1e + 1, (7)

gn =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 n = n0e,

−
(

θh
n0e

+φh
n0e+1

λ

)

, n = n0e − 1,
(
1 + μ+φ

λ

)
gn+1 − μ+φ

λ
gn+2 −

(
θhn+1+φhn+2

λ

)
, n = n0e − 2, . . . , 0.

(8)

Finally, the steady-state distribution of the number of positive customers in the system when
the server is under repair is computed from Eq. 5h and Eq. 5i.

πn,2 = φ

γ

(
tn+1πn1e+1,1 + (gn+1 + hn+1)

)
πn0e+1,0, n = 0, 1, . . . , n0e,

πn,2 = φ

γ
tn+1πn1e+1,1, n = n0e + 1, . . . , n1e .
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Substituting the values of Eqs. 6, 7 and 8 in Eq. 5e, we get

πn1e+1,1 = λh0−ηh1−μg1
μt1

πn0e+1,0 = Kπn0e+1,0.

Thus, the steady-state distributions are computed in terms of the only unknown πn0e+1,0,
which can be obtained using the normalization condition

πn0e+1,0 =
⎡

⎣h0 + g0 + Kt0 +
(

1 + φ

γ

)
⎛

⎝

n0e+1∑

n=1

hn + K

n1e+1∑

n=1

tn +
n0e−1∑

n=1

gn

⎞

⎠

⎤

⎦

−1

. (9)

The steady-state distributions can be summarized in the following lemma.

Lemma 1 Consider a fully observable M/M/1 queue with working vacations and neg-
ative customers in which customers follow the threshold policy (n0e, n

1
e). The stationary

probabilities {πn,i : (n, i) ∈ Ωf o} are given by
πn,0 = hnπn0e+1,0, n = 0, 1, . . . , n0e + 1,

πn,1 =
{

(Ktn + gn) πn0e+1,0, n = 0, 1, . . . , n0e − 1,

Ktnπn0e+1,0, n = n0e, . . . , n
1
e + 1,

πn,2 =
{

φ
γ

(Ktn+1 + gn+1 + hn+1) πn0e+1,0, n = 0, 1, . . . , n0e,
φ
γ
Ktn+1πn0e+1,0, n = n0e + 1, . . . , n1e,

where hn, tn, gn and πn0e+1,0 can be obtained from Eqs. 6– 9, respectively.

The average number of positive customers in the system when the server is either on
working vacation or normal service mode is given by

E(Nr) =
n0e+1∑

n=0

nπn,0 +
n1e+1∑

n=0

nπn,1.

Now, the positive customers that find the system either on state (n0e + 1, 0) or (n1e + 1, 1)
are not allowed to join the system and are considered lost. Thus, the probability of balking

or loss probability is equal to Pbalk = πn0e+1,0+πn1e+1,1 +
n1e∑

i=0
πi,2 (due to PASTA property)

and the effective arrival rate of positive customers is λeff = λ(1 − Pbalk). If all positive
customers follow the equilibrium joining threshold strategy (n0e, n

1
e), then the social benefit

per time unit in equilibrium is

Δs(n
0
e, n

1
e) = μλeff

μ + φ
R − CE(Nr).

3.2 Almost Observable Case

In this section, positive customers do not observe the state of the server on arrival, that is,
they can not differentiate whether the server is on a working vacation or normal service
mode before making decisions. They follow a pure threshold strategy ne, which is computed
in a way similar to the fully observable case by taking n0e = n1e = ne and the balking
strategy has the form ‘while arriving at time t , observe only N(t); enter if N(t) ≤ ne and
balk otherwise’. The state space of the Markov chain {(N(t), ζ(t)) : t ≥ 0} is Ωao =
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{(n, i) : n = 0, 1, . . . , ne+1; i = 0, 1}∪{(n, 2) : n = 0, 1, . . . , ne} and the corresponding
state transition diagram is illustrated in Fig. 3.

The steady-state distribution {πn,i : (n, i) ∈ Ωao} in the almost observable queue with
working vacations and negative customers can be derived by solving the following system
of balance equations.

λπ0,1 = γπ0,2, (10a)

(λ + μ + φ)πn,1 = λπn−1,1 + μπn+1,1 + γπn,2

+θπn,0, n = 1, 2, . . . , ne, (10b)

(μ + φ)πne+1,1 = λπne,1 + θπne+1,0, (10c)

λπ0,0 = μπ1,1 + ηπ1,0, (10d)

(λ + θ + φ + η)πn,0 = λπn−1,0 + ηπn+1,0, n = 1, 2, . . . , ne, (10e)

(θ + φ + η)πne+1,0 = λπne,0, (10f)

γπn,2 = φπn+1,1 + φπn+1,0, n = 0, 1, . . . , ne, (10g)

Pursuing the analysis alike to the fully observable case, we obtain the stationary distributions
as

πn,0 = hnπne+1,0, n = 0, 1, . . . , ne + 1,

πn,1 = (Ktn + gn) πne+1,0, n = 0, 1, . . . , ne + 1,

πn,2 = φ

γ
(Ktn+1 + gn+1 + hn+1) πne+1,0, n = 0, 1, . . . , ne,

Fig. 3 State transition diagram of the model with positive customers’ strategy ne
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where K = λh0−ηh1−μg1
μt1

. The hn, tn and gn’s are given by

hn =

⎧
⎪⎪⎨

⎪⎪⎩

1 n = ne + 1
θ+φ+η

λ
, n = ne,(

1 + θ+φ+η
λ

)
hn+1 − η

λ
hn+2, n = ne − 1, . . . , 0,

tn =
(

μ + φ

λ

)ne+1−n

, n = 0, 1, . . . , ne + 1,

gn =

⎧
⎪⎪⎨

⎪⎪⎩

0 n = ne + 1

− θ
λ
, n = ne,(

1 + μ+φ
λ

)
gn+1 − μ+φ

λ
gn+2 −

(
θhn+1+φhn+2

λ

)
, n = ne − 1, . . . , 0.

Now, all the stationary distributions are expressed in terms of the only unknown πne+1,0,
which can be calculated using the normalization condition,

πne+1,0 =
⎛

⎝h0 + g0 + Kt0 +
(

1 + φ

γ

) ne+1∑

n=1

(hn + Ktn + gn)

⎞

⎠

−1

. (11)

Let T (n) be the mean sojourn time of a tagged positive customer who observes n cus-
tomers in the system upon arrival. Conditioning on the state of the server withstand by the
tagged positive customer, we get

T (n) = T (n, 0)P (ζ = 0|N = n) + T (n, 1)P (ζ = 1|N = n),

where P(ζ = i|N = n) is the probability that the tagged positive customer gets the server
at state i, given that there are n customers in the system. Applying the PASTA property, we
have

P(ζ = 0|N = n) = πn,0
πn,0+πn,1

= hn

hn+Ktn+gn
, n = 0, 1, . . . , ne + 1

P(ζ = 1|N = n) = πn,1
πn,0+πn,1

= Ktn+gn

hn+Ktn+gn
, n = 0, 1, . . . , ne + 1.

Substituting the values of the conditional probabilities in T (n), we get

T (n) = n(γ+φ)+γ
γ (μ+φ)

+ hn

hn+Ktn+gn
Ψn+1, n = 0, 1, . . . , ne + 1.

Evidently, T (n) is an increasing function of n, the number of positive customers in the
system. For the tagged positive customer who finds n customers in the system and decides
to join, given that all other positive customers follow a threshold strategy ne, has expected
net benefit

Δne,ao(n) = μ

μ + φ
R−C

n(γ + φ) + γ

γ (μ + φ)
−C

hn Ψn+1

hn + Ktn + gn

, n = 0, 1, . . . , ne +1. (12)

Thus, we have Δne,ao(n) is a decreasing function of n for a fixed threshold strategy ne.
Substituting n = ne and n = ne + 1, respectively into Eq. 12 gives

Δne,ao(ne) = μ

μ + φ
R − C

ne(γ + φ) + γ

γ (μ + φ)
− C

θ + φ + η

φ + η + K(μ + φ)
Ψne+1,

Δne,ao(ne + 1) = μ

μ + φ
R − C

(ne + 1)(γ + φ) + γ

γ (μ + φ)
− C

1 + K
Ψne+2.

Now, to prove the existence of equilibrium threshold strategies and derive the corresponding
thresholds, we define the functions S1(n) and S2(n) such that S1(ne) = Δne,ao(ne) and
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S2(ne + 1) = Δne,ao(ne + 1). One may examine that, S2(n) ≤ S1(n) for n ≥ 1. We have
S1(0) = μ

μ+φ
R − CT (0) > 0, otherwise no positive customer will join an idle server.

Further, lim
n→∞ S1(n) = −∞. Hence, there exists a finite non-negative integer nU such that

S1(0), S1(1), S1(2), . . . , S1(nU ) > 0 and S1(nU + 1) ≤ 0. Since, S2(n) ≤ S1(n) for n ≥ 1,
we have, S2(nU + 1) < S1(nU + 1) ≤ 0. Using the similar arguments for the sequence
S2(n), that is, S2(0) > 0 and S2(nU +1) ≤ 0, we have a finite non-negative integer nL ≤ nU

such that S2(nU + 1), S2(nU ), S2(nU − 1), . . . , S2(nL + 1) ≤ 0 and S2(nL) > 0. Hence,
all pure threshold strategies ‘observe N(t), join if N(t) ≤ ne and balk otherwise’, for
ne ∈ {nL, . . . , nU }, are equilibrium threshold strategies.

If nL < nU , then there are multiple equilibrium threshold strategies {nL, nL +
1, . . . , nU }. We have a ‘Follow-The-Crowd’ (FTC) situation when a player’s best response
to a strategy x adopted by all others increases in x. In our model, the tagged positive cus-
tomer who decides to join the system after observing n positive customers who followed a
threshold strategy ne has expected net benefit Δne,ao(n) given in Eq. 12. If the other positive
customers follow the strategy ne + 1, then his expected net benefit Δne+1,ao(n) equals to
Δne,ao(n) for all n = 0, 1, . . . , ne and Δne+1,ao(ne + 1) > Δne,ao(ne + 1). This is because
of the relation S1(ne + 1) > S2(ne + 1). We observe that the tagged positive customer’s
best response when others adopt the strategy ne + 1 is greater than his best response when
others follow the strategy ne. Thus, the tagged positive customer’s threshold best response
is increasing in the threshold policy followed by other positive customers. Therefore, the
higher the threshold policy adopted by others, the higher is one’s best response; that is, he
adopts others’ behavior. This characterizes an FTC situation in our model.

4 Unobservable Queues with Negative Customers

Now, we consider the unobservable queues wherein positive customers are not aware of
the number in system before making their decisions whether to join or to balk. Based on
the server state information, there are two scenarios: the fully unobservable and almost
unobservable queues with multiple working vacations and negative arrivals.

As the decision of a positive customer depends on the strategies followed by other pos-
itive customers and the positive customers are identical, the situation is like a symmetric
game among the positive customers. Two pure strategies (to join or to balk) and a mixed
strategy (the probability of joining) are available to positive customers. The mixed strategy
is defined by a pair (q0, q1) with q0 denoting the probability of joining the queue when the
server is on working vacation and q1 is the probability of joining the queue when the server
is on normal service. In both cases, the positive customers follow a mixed strategy of join-
ing or balking the system. We analyze the strategic behavior of positive customers under
both scenarios in the following sections.

4.1 Almost Unobservable Queue

Here, the positive customers do not observe the number in the system upon arrival but know
the state of the server. Thus, the positive customers observe the state ζ(t) before making
decisions about whether to join or to balk. They follow a mixed joining strategy to join
the system, i.e., upon arrival they know ζ(t) = i and join with probability qi, i = 0, 1.
Here, the equilibrium joining strategy is given by the pair (q0

e , q1
e ) and the balking strategy

has the form ‘while arriving at time t , observe the server state ζ(t); enter with probability
q

ζ(t)
e and balk otherwise’. Our objective is to derive the equilibrium mixed strategies. To do
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this, we first compute the stationary probability distribution of the system when all positive
customers follow a mixed joining strategy (q0, q1). If all positive customers follow the join-
ing strategy (q0, q1), the evolution of the system length process forms a continuous-time
Markov chain with state space Ωau = {(n, i) : n ≥ 0; i = 0, 1, 2}. The state transi-
tion diagram is depicted in Fig. 4. For the steady-state analysis under the strategy (q0, q1),
we assume the stability condition ρ = λq1/(μ + φ) < 1, otherwise the queueing system
will be unstable. The stationary system length distributions can be obtained by solving the
following set of balance equations.

λq1π0,1 = γπ0,2, (13a)

(λq1 + μ + φ)πn,1 = λq1πn−1,1 + μπn+1,1 + γπn,2 + θπn,0, n ≥ 1, (13b)

λq0π0,0 = μπ1,1 + ηπ1,0, (13c)

(λq0 + θ + φ + η)πn,0 = λq0πn−1,0 + ηπn+1,0, n ≥ 1, (13d)

γπn,2 = φπn+1,1 + φπn+1,0, n ≥ 0 (13e)

Solving the second order linear homogeneous difference equation (13d), we obtain the
representing characteristic equation,

ηr2 − (λq0 + θ + φ + η)r + λq0 = 0, (14)

which has two roots r1 and r2, given by

r1 = (λq0+θ+φ+η)+
√

(λq0+θ+φ+η)2−4λq0η

2η

r2 = (λq0+θ+φ+η)−
√

(λq0+θ+φ+η)2−4λq0η

2η .

Thus, the general solution of the second order difference equation (13d) becomes, πn,0 =
d1r

n
1 + d2r

n
2 for n ≥ 0, where d1 and d2 > 0 are constants. As r1 > 1, so d1 must be zero,

Fig. 4 State transition diagram of the model when uninformed positive customers joining strategy (q0, q1)
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because πn,0, n ≥ 0 are probabilities, otherwise the sum of πn,0 will be infinite. Hence,

πn,0 = d2r
n
2 , n ≥ 0. (15)

Using Eq. 13e in Eq. 13b, then applying shift operator E defined by Emπn,1 = πn+m,1, we
have

[
(μ + φ)E2 − (λq1 + μ + φ)E + λq1

]
πn−1,1 = − (θ + φr2) d2, n ≥ 1. (16)

Let F(z) = (μ + φ)z2 − (λq1 + μ + φ)z + λq1. Then by Rouche’s theorem, there exists
a unique positive real number ξ < 1 such that F(ξ) = 0. Thus, the general solution of the
non-homogeneous linear difference equation (16) is

πn,1 = Aξn − (θ+φr2)r
n+1
2

F(r2)
d2, n ≥ 0, (17)

where A is an unknown to be evaluated from Eq. 13c with the help of Eqs. 15 and 17 and is
given by

A = d2
ξ

[
λq0−ηr2

μ
+ (θ+φr2)r

2
2

F(r2)

]

= Bd2, (18)

with B = λq0−ηr2
μξ

+ (θ+φr2)r
2
2

F(r2)ξ
. Now, using Eqs. 15 and 17 in Eq. 13e, we obtain

πn,2 = d2φ
γ

[

rn+1
2 + Bξn+1 − (θ+φr2)r

n+2
2

F(r2)

]

, n ≥ 0. (19)

We have derived all the steady-state probabilities of the number of positive customers in the
system under different server states in terms of the only unknown d2, which we can compute
from the normalization condition as

d2 =
[

1
1−r2

(
1 + φr2

γ

) (
1 − (θ+φr2)r2

F(r2)

)
+ B

1−ξ

(
1 + φξ

γ

)]−1
.

The results can be summed up in the following lemma.

Lemma 2 In the almost unobservable M/M/1 queue with multiple working vacations and
negative customers in which all positive customers follow a mixed balking strategy (q0, q1),
the stationary probability distributions are

πn,0 = d2r
n
2 , n ≥ 0, (20)

πn,1 = d2

(

Bξn − (θ + φr2) rn+1
2

F(r2)

)

, n ≥ 0. (21)

Let p0 (p1) denote the probability that the server is on working vacation (or busy) and
are given by

p0 =
∞∑

n=0

πn,0 = d2

1 − r2
, (22)

p1 =
∞∑

n=1

πn,1 = d2

(
B

1 − ξ
− (θ + φr2) r2

F(r2)(1 − r2)

)

. (23)
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The average number of positive customers in the system in the almost unobservable queue
can be calculated as

E(N) =
∞∑

n=1

n(πn,0 + πn,1) = d2

[
r2

(1 − r2)2

(

1 − (θ + φr2) r2

F(r2)

)

+ Bξ

(1 − ξ)2

]

.

Now, consider a tagged positive customer who finds the server on state i (i = 0, 1) upon
arrival. The conditional mean sojourn time of the tagged positive customer who decides
to join the system with server state i, given that other positive customers follow the same
mixed joining strategy (q0, q1) is

W(i, q0, q1) =
∑∞

n=0 T (n, i) πn,i

∞∑
n=0

πn,i

, i = 0, 1. (24)

Using Eqs. 4 and 15, we obtain

W(0, q0, q1) = γ + φr2

γ (μ + φ)

[
1

1 − r2
+ μ − η

η(1 − r2) + θ + φ

]

.

Similarly, using Eqs. 3 and 17, we obtain

W(1, q0, q1) = 1

μ + φ − λq1
+ 1

γ (μ + φ − λq1)(1 − r2)
[

(γ + φ)
(
BξF(r2)(1 − r2) − (θ + φr2)r

2
2 (1 − ξ)

)

BF(r2)(1 − r2) − (θ + φr2)r2(1 − ξ)
− λq1(γ + φr2)

(μ + φ)

]

= 1

μ + φ − λq1
− 1

γ (μ + φ − λq1)(1 − r2)

[
λq1(γ + φr2)

(μ + φ)

]

− λq1(γ + φ)
{
(λq0 − ηr2)(1 − r2)

2(μ + φ) + μ(θ + φr2)r
2
2

}

(λq0 − ηr2)(1 − r2)2(μ + φ)2 + μ(θ + φr2)r2(λq1 − (μ + φ)(1 − r2))

]

From Eq. 1, the expected net benefit of a positive customer that finds the server on state i

upon arrival and decides to join the system when all positive customers follow the joining
strategy (q0, q1) is

Δau(0, q0, q1) = μ

μ + φ
R − C W(0, q0, q1), (25)

Δau(1, q0, q1) = μ

μ + φ
R − C W(1, q0, q1). (26)

Consider r2 as a function of q0, its differentiation with respect to q0 is

d r2

dq0
= λ

2η

[
1 − λq0+θ+φ−η√

(λq0+θ+φ+η)2−4λq0η

]
.

Therefore, r2(q0) is strictly increasing for q0 ∈ [0, 1]. Now Δau(0, q0, q1) is strictly
decreasing for r2 ∈ [0, r2(1)], where

r2(1) = (λ + θ + φ + η) −√
(λ + θ + φ + η)2 − 4λη

2η
,

and 0 < r2(1) < 1. Thus, Δau(0, q0, q1) is strictly decreasing for q0 ∈ [0, 1]. Taking the
equation Δau(0, q0, q1) = 0 with Δau(0, q0, q1) given by Eq. 25 and we solve for r2(q0).
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Suppose r2e be the unique solution of equation for r2e < 1 and it is given by

r2e = 1 + (Rμγ+Cφ)(θ+φ)−Cμ(γ+φ)
2μ(Rηγ+Cφ)

−
√

{2μ(Rηγ+Cφ)+(Rμγ+Cφ)(θ+φ)−Cμ(γ+φ)}2−4μγ (Rηγ+Cφ)(Rμ(η+θ+φ)−C(μ+θ+φ))

2μ(Rηγ+Cφ)

The representing unique q0
e is obtained by substituting z = r2e in Eq. 14. Solving this

linear equation for q0, we have

q0
e = r2e [η (1 − r2e) + θ + φ]

λ(1 − r2e)
. (27)

Solving the Eq. 26 for q1, we get the unique solution q1 < 1, as

q1 = m2(r2)
2 λm1(r2)

−
√

(m2(r2))
2−4m1(r2)m3(r2)

2m1(r2)
,

where x1 = (λq0 − ηr2)(1 − r2)
2(μ + φ), y1 = x1 + μr22 (θ + φr2), y2 =

(x1 − μr2(θ + φr2)(1 − r2)),

m1(r2) = μr2(θ + φr2) [r2(μRγ + Cφ) − γ (μR − C)]

m2(r2) = (μ + φ)
[
(μRγ + Cφ)(1 − r2)y1 +μr2(θ + φr2) {Cr2(γ +φ)− 2(μR − C)γ (1 − r2)}

]

m3(r2) = (μ + φ)2γ (1 − r2)y2(μR − C).

Consider a tagged positive customer who finds the server on working vacation mode on
arrival and joins the system with probability q0 if he earns a positive net benefit. We analyze
the equilibrium joining probability q0

e under the following two cases:

Case 1: C
μ+φ

μ
W(0, 0, q1) < R ≤ C

μ+φ
μ

W(0, 1, q1). In this case, if all positive cus-
tomers join with probability q0 = 1, then the tagged positive customer who
decides to enter has Δau(0, 1, q1) ≤ 0. Hence, q0 = 1 can not be an equilibrium
strategy. On the other hand, if all other positive customers join with probability
q0 = 0, then the tagged positive customer has Δau(0, q0, q1) > 0. The tagged
positive customer is benefited more by joining than balking. Hence, q0 = 0 can
not be an equilibrium strategy. Therefore, a unique mixed Nash equilibrium strat-
egy q0 = q0

e exists for which positive customers are indifferent between entering
and balking the queue. This unique equilibrium strategy is obtained by solving
Δau(0, q0, q1) = 0 for q0.

Case 2: C
μ+φ

μ
W(0, 1, q1) < R. In this case, the best response is 1, and the tagged pos-

itive customer gets benefited by joining the system irrespective of the decisions
taken by rest of the positive customers. Hence, q0

e = 1 is the only equilibrium
strategy.

Next, we consider the equilibrium mixed strategies for a tagged positive customer who
discovers the server on normal service mode upon arrival. From Eq. 26, the expected net
benefit of the tagged positive customer is

μ

μ + φ
R − C W(1, q0, q1) =

{
μ

μ+φ
R − C W(1, q0

e , q1) in case 1;
μ

μ+φ
R − C W(1, 1, q1) in case 2.

To find the equilibrium joining strategy q1
e , we analyze the following sub-cases under case

1 and case 2.

Case 1a: C
μ+φ

μ
W(0, 0, q1) < R ≤ C

μ+φ
μ

W(0, 1, q1) and R < C
μ+φ

μ
W(1, q0

e , 0),
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(q0
e , q1

e ) =
(

r2e[η(1−r2e)+θ+φ]
λ(1−r2e)

, 0
)
.

Case 1b: C
μ+φ

μ
W(0, 0, q1) < R ≤ C

μ+φ
μ

W(0, 1, q1) and C
μ+φ

μ
W(1, q0

e , 0) <

R ≤ C
μ+φ

μ
W(1, q0

e , 1),

(q0
e , q1

e ) =
(

r2e[η(1−r2e)+θ+φ]
λ(1−r2e)

,
m2(r2e)

2 λm1(r2e)
−

√
(m2(r2e))

2−4m1(r2e)m3(r2e)

2m1(r2e)

)

.

Case 1c: C
μ+φ

μ
W(0, 0, q1) < R ≤ C

μ+φ
μ

W(0, 1, q1) and C
μ+φ
μφ

W(1, q0
e , 1) < R,

(q0
e , q1

e ) =
(

r2e[η(1−r2e)+θ+φ]
λ(1−r2e)

, 1
)
.

Case 2a: C
μ+φ

μ
W(0, 1, q1) < R and R < C

μ+φ
μ

W(1, 1, 0),

(q0
e , q1

e ) = (1, 0).
Case 2b: C

μ+φ
μ

W(0, 1, q1) < R and C
μ+φ

μ
W(1, 1, 0) < R ≤ C

μ+φ
μ

W(1, 1, 1),

(q0
e , q1

e ) =
(

1, m2(r2(1))
2 λm1(r2(1))

−
√

(m2(r2(1)))2−4m1(r2(1))m3(r2(1))
2m1(r2(1))

)

.

Case 2c: C
μ+φ

μ
W(0, 1, q1) < R and C

μ+φ
μ

W(1, 1, 1) < R,

(q0
e , q1

e ) = (1, 1).

The social benefit of the system when all positive customers follow the same mixed joining
strategy (q0, q1), is

Δs(q0, q1) = λ
μ

μ + φ
(p0q0 + p1q1)R − C E(N)

= d2

[
λμ

μ + φ
R

{
q0

1 − r2
+ Bq1

1 − ξ
− q1 (θ + φr2) r2

F(r2)(1 − r2)

}

−C

{
r2

(1 − r2)2
−

(
θ + φr22

)
r2

F(r2)(1 − r2)2
+ Bξ

(1 − ξ)2

}]

. (28)

where p0 and p1 can be found from Eqs. 22 and 23, respectively.

4.2 Fully Unobservable Queue

In this section, positive customers do not have any information. They follow a mixed
strategy of joining with probability q. The state transition diagram is illustrated in
Fig. 5.

λqπ0,1 = γπ0,2, (29a)

(λq + μ + φ)πn,1 = λqπn−1,1 + μπn+1,1 + γπn,2 + θπn,0, n ≥ 1, (29b)

λqπ0,0 = μπ1,1 + ηπ1,0, (29c)

(λq + θ + φ + η)πn,0 = λqπn−1,0 + ηπn+1,0, n ≥ 1, (29d)

γπn,2 = φπn+1,1 + φπn+1,0, n ≥ 0 (29e)

In the fully unobservable M/M/1 queue with positive customers and multiple working
vacations in which all positive customers follow a strategy q, we can find the stationary
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Fig. 5 State transition diagram of the model with positive customers’ strategy q

state distribution by setting q0 = q1 = q in the almost unobservable queue.

πn,0 = d2r
n
2 (q), n ≥ 0, (30)

πn,1 = d2

[

Bξn − (θ + φ r2(q)) rn+1
2 (q)

F (r2(q))

]

, n ≥ 0, (31)

πn,2 = d2φ

γ

[

rn+1
2 (q) + Bξn+1 − (θ + φ r2(q)) rn+2

2 (q)

F (r2(q))

]

, n ≥ 0 (32)

where r2(q) is given by

r2(q) = (λq+θ+φ+η)−
√

(λq+θ+φ+η)2−4λqη

2η .

The probability π0 that the system is on a working vacation mode, the probability π1 that the
system is on a normal service mode and π2 that the system is on repair mode are calculated
as

π0 =
∞∑

n=0

πn,0 = d2

1 − r2(q)
, π1 =

∞∑

n=0

πn,1 = d2

[
B

1 − ξ
− (θ + φ r2(q)) r2(q)

F (r2(q))(1 − r2(q))

]

,

π2 =
∞∑

n=0

πn,2 = d2φ

γ

[
r2(q)

1 − r2(q)
+ Bξ

1 − ξ
− (θ + φ r2(q)) r22 (q)

F (r2(q))(1 − r2(q))

]

.

The average number of the positive customers in the system

E(N) =
∞∑

n=1

n(πn,0 + πn,1)

= d2

[
r2(q)

(1 − r2(q))2

(

1 − (θ + φr2(q)) r2(q)

F (r2(q))

)

+ Bξ

(1 − ξ)2

]

.
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Using Little’s law, the mean sojourn time of a positive customer that decides to enter upon
arrival is obtained as

W(q) = E(N)

λq
= d2

λq

[
r2(q)

(1−r2(q))2

(
1 − (θ+φr2(q))r2(q)

F (r2(q))

)
+ B ξ

(1−ξ)2

]
(33)

Lemma 3 In the fully unobservable M/M/1 queue with multiple working vacations and
negative customers and λ < μ, the expected mean sojourn time of a customer who decides
to join the system, is strictly increasing for q ∈ [0, 1].

Proof The expected mean sojourn time can be rewritten as W(q) = g1(q) g2(q), where,

g1(q) = r2(q)

λq(1 − r2(q))2
and g2(q) = d2

(

1 − (θ + φr2(q)) r2(q)

F (r2(q))
+ Bξ(1 − r2(q))2

r2(q)(1 − ξ)2

)

.

Differentiating g1(q) and g2(q) with respect to q, we have

g′
1(q) = qr ′

2(q)(1+r2(q))−r2(q)(1−r2(q))

λq2(1−r2(q))3
,

g′
2(q) = d ′

2(q)g2(q) + d2(q)g′
2(q),

where r ′
2(q) is given by

r ′
2(q) = λ

2η

[
1 − λq+θ+φ−η√

(λq+θ+φ−η)2+4η(θ+φ)

]
> 0, q ∈ [0, 1],

Clearly, r ′
2(q) > 0 for q ∈ [0, 1], and 0 ≤ r2(q) < 1. By taking λ < μ, we find that both

g1(q) and g2(q) are strictly increasing for q ∈ [0, 1], that is, g′
1(q) > 0 and g′

2(q) > 0.
Therefore, we infer that W(q) is strictly increasing for q ∈ [0, 1].

Consider a fully unobservable positive customer in a Markovian queue with multiple
working vacations where arriving positive customers follow a common mixed strategy q

such that the system is stable (λq < μ). Now the expected net benefit of a tagged positive
customer who decides to join is

Δf u(q) = μ

μ + φ
R − C

r2(q)

λq(1 − r2(q))2
g2(q), (34)

and

Δf u(0) = μ

μ + φ
R − C

μ + φ + θ

(μ + φ)(η + θ + φ)
,

Δf u(1) = μ

μ + φ
R − Cr2(1)g2(1)

λ(1 − r2(1))2
.

Therefore, Δf u(q) = 0 has a unique solution q∗
e ∈ (0, 1) for

R ∈
(

C(μ + φ + θ)

μ(η + θ + φ)
,
μ + φ

μ

Cr2(1)g2(1)

λ(1 − r2(1))2

)

,

and Δf u(q) > 0 for each q when R ∈
[

μ+φ
μ

Cr2(1)g2(1)
λ(1−r2(1))2

, ∞
)

, that is, the tagged positive

customer’s best response is 1. If 0 < R <
C(μ+φ+θ)
μ(η+θ+φ)

, then Δf u(q) ≤ 0 for every q. Upon
arrival of a positive customer, the best response is to balk and the unique equilibrium point
is q = 0. Thus, there exists a unique Nash equilibrium strategy qe, if the tagged positive
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customer takes a decision to join the system, provided R satisfies certain conditions. Hence,
the Nash equilibrium strategy for the fully unobservable queue is given as follows:

qe =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 R ∈
(
0, C(μ+φ+θ)

μ(η+θ+φ)

]

q∗
e R ∈

(
C(μ+φ+θ)
μ(η+θ+φ)

,
μ+φ

μ
Cr2(1)g2(1)
λ(1−r2(1))2

)
,

1 R ∈
[

μ+φ
μ

Cr2(1)g2(1)
λ(1−r2(1))2

, ∞
)
.

Now, the social benefit per time unit when all positive customers follow the equilibrium
mixed strategy qe is Δs(qe).

Δs(qe) = λ qe

[
μ

μ+φ
R − C d2

λ qe

(
r2(qe)

(1−r2(qe))2

(
1 − (θ+φr2(qe))r2(qe)

F (r2(qe))

)
+ Bξ

(1−ξ)2

)]
.

Remark 1 In the fully unobservable multiple working vacations queue with negative cus-
tomers and λ ≥ μ, there exists a unique mixed equilibrium strategy ‘enter with probability
qe’, where qe is given by

qe = q∗
e for R ∈

(
C(μ + φ + θ)

μ(η + θ + φ)
,∞

)

. (35)

5 Numerical Results and Discussions

In this section, we discuss the impact of model parameters on positive customers’ behav-
ior through several numerical experiments. The behavior of the strategic customers under
different levels of information are discussed for some variations of model parameters. The
equilibrium joining strategies for the observable models and the unobservable models are
presented under different situations. The role of information on the social benefit of the sys-
tem is also discussed. Maple software is used to get the numerical results for the queueing
systems with a variety of model parameters. In Figs. 6, 7, 8, 9, the equilibrium threshold
strategies for the observable cases and in Figs. 10, 11, 12, 13, 14, 15, equilibrium joining
probabilities for the unobservable cases are presented for different queueing parameters.

In the first set of experiments, we study the behavior of positive customers in the observ-
able model. The dependence of the equilibrium joining (threshold) strategies on the system
parameters is discussed. This set of experiments will help to answer the impact of negative
arrivals, working vacation duration, server repair speed, and working vacation service rate
on the equilibrium behavior of positive customers. The equilibrium threshold strategies are
non-decreasing functions of repair rate, vacation rate, and vacation times (Figs. 6–8). If the
repair rate increases, the waiting time of the positive customers’ decreases, which attracts
more customers to join the system; as a result, the equilibrium threshold increases. In Figs. 7
and 8, the lesser the customers wait in the system when the server works faster during vaca-
tion or takes vacations of shorter duration, the smaller is the gap among thresholds. As the
vacation rate increases, the mean vacation time decreases, which results in shorter expected
sojourn times for waiting customers. Thus, the waiting time of the rest positive customers
decreases substantially due to the shorter expected sojourn time during working vacation.
This information about the smaller queue length attracts more customers to join the system;
as a result, the threshold increases.

In Fig. 9, the thresholds decrease with frequent arrivals of negative customers. As the fre-
quency of negative arrival increases, more positive customers (that are in service each time)
are removed from the system, which results in the decrease in the threshold. We observe
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Fig. 6 Equilibrium threshold strategies vs. γ with λ = 3.0, μ = 4.0, φ = 0.3, η = 1.5, θ = 0.1, R =
10, C = 1

that the equilibrium thresholds in the almost observable model lie within the equilibrium
thresholds of the fully observable model, that is, n0e ≤ nL ≤ nU ≤ n1e . This shows that the
system congestion can be controlled by regulating the available system information.

In the second set of experiments, we consider the model under the unobservable case,
where the positive customers follow a mixed equilibrium joining strategy. Customers with
the server state information only do not get any benefit in case of a system with a fast
server but have a visible effect when they join a slow server. Fig. 10 shows the influence
of the server speed on the equilibrium joining probabilities. In Fig. 11, the effect of nega-
tive arrivals is more prominent when the server is on normal service. If more customers are

Fig. 7 Equilibrium threshold strategies vs. η with λ = 3.0, μ = 4.0, φ = 0.3, θ = 0.1, γ = 0.5, R =
10, C = 1

Methodology and Computing in Applied Probability (2022) 24:1439–14661460



Fig. 8 Equilibrium threshold strategies vs. θ with λ = 2.0, μ = 5, φ = 1.0, η = 0.4, γ = 0.3, R = 10,
C = 1

removed with more negative arrivals, it reduces the waiting time of positive waiting cus-
tomers; thus, their chances of getting service increases. As a result, positive customers join
the systemwith a follow the crowd effect. When the frequency of negative arrivals increases,
entirely unaware positive customers join the system with probability one. In Fig. 12, the
joining probabilities have mixed variations. Positive customers finding a slower server are
reluctant or less interested to join the system when their arrival rate increases. This is intu-
itive as the congestion in a working vacation state increases their waiting time. There is no

Fig. 9 Equilibrium threshold strategies vs. φ with λ = 3.0, μ = 7.0, η = 0.8, θ = 1.0, γ = 0.5, R =
10, C = 1
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Fig. 10 Equilibrium joining strategies vs. μ with λ = 3.0, φ = 0.2, η = 1.5, θ = 0.1, γ = 0.3, R = 4,
C = 1

benefit of having the server state information in a system with slower arrivals. But this has
a positive effect in a system with more arrivals.

In Fig. 13, the equilibrium joining probabilities are non-decreasing functions of working
vacation service rate and fully uninformed positive customers always join the system. When
the repair process is faster, the server status does not have any effect on the equilibrium
behavior of positive customers, where as it has a positive effect on the joining strategies
for longer repair times. The effect of repair rate on the equilibrium behavior is depicted
in Fig. 14. Finally, we illustrate the effect of working vacation times on the equilibrium
joining strategies of positive customers in Fig. 15. When the server takes longer vacations

Fig. 11 Equilibrium joining strategies vs. φ with λ = 3, μ = 3.5, η = 1.5, θ = 0.1, γ = 0.4, R = 4, C = 1
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Fig. 12 Equilibrium joining strategies vs. λ with μ = 3.5, φ = 0.2, θ = 0.1, η = 1, γ = 1.5, R = 2, C = 1

(θ ≤ 0.12), positive customers’ joining probabilities in the busy state dominates that of
the working vacation state. After θ = 0.12, the dominance relation between the joining
probabilities becomes the opposite. Customers are least interested to join the busy state for
θ = 0.2 and beyond this more customers join the busy state with shorter vacation duration.
This is because of the presence of more positive customers during the previous vacation
periods. When the server has shorter vacations, positive arrivals are interested to join the
vacation state expecting shorter waiting times. When more positive customers join the vaca-
tion state, it brings negative externalities on the positive customers who decide to join the
busy state and these negative externalities reduce with shorter vacation duration. Thus, more

Fig. 13 Equilibrium joining strategies vs. η with λ = 3.0, μ = 3.5, φ = 0.2, γ = 1.0, θ = 0.1, R = 5,
C = 1
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Fig. 14 Equilibrium joining strategies vs. γ with λ = 3.0, μ = 3.5, φ = 0.2, η = 2.0, θ = 0.1, R = 5,
C = 1

positive customers are interested to join the busy state followed by shorter vacations. In
the experiments, we observe that positive customers unaware of the server status, choose to
‘follow the crowd’ under equilibrium.

We observe that fully uninformed positive customers always join the system. The server
status does not impact positive customers’ equilibrium behavior when the repair duration is
very short. The positive customers’ waiting time decreases with the increase of the repair
rate in the observable case. Thus, it pulls more customers to join the system; therefore, the
equilibrium threshold increases.

Fig. 15 Equilibrium joining strategies vs. θ with λ = 3.0, μ = 3.5, φ = 0.2, γ = 0.15, η = 1.5, R =
5, C = 1
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6 Conclusion

In this paper, we analyzed the positive customers’ equilibrium behavior in a Markovian
queueing system with working vacations and negative arrivals under four different informa-
tion levels. We derived closed-form expressions of the stationary state probabilities using
a recursive method. The equilibrium joining behavior and social benefit based on various
parameters of the information level has been examined under the corresponding strategies.
The sensitivity analysis of the equilibrium thresholds in observable cases and equilibrium
joining probabilities in the unobservable cases are carried out by varying several model
parameters. The effect of negative arrivals on the equilibrium behavior of positive customers
under the observable and unobservable models is presented. The presented model, on the
one hand, could provide strategic customers with useful insights in decision making under
a variety of information policies and guide them on whether to follow or avoid the crowd.
On the other hand, of the different information levels, it could provide useful information
to the system manager to get the maximum benefit. The inclusion of the retrials of balking
customers and the reneging of waiting customers in this problem is more challenging and is
left for future exploration. This model may be extended to incorporate arbitrarily distributed
service demands to a batch-arrival or a batch service queue.
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