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Abstract
We consider an extended form of the MX/M/c queue with two types of server groups:
Static as well as dynamic (which turn on/off in a state-dependent manner) servers. The
two server groups may have homogenous or non-homogenous service rates. The model is
further extended to feature setup and delayed-off times, finite capacity, and k staffing
levels. This class of queues is solved via the difference equations approach, which
addresses narratives in the literature and achieves higher numerical efficiency than the
direct method. While the model of this queueing system is not new, the methodology for
solving it is. Comparisons between our model and classic queues are provided followed
by concluding remarks, including a summary of key observations.
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1 Introduction

Until the mid-sixties, a queueing problem was considered solved if the solution was given in
some form of a generating function or Laplace transform. This is because the inversion of a
generating function was either considered unnecessary or a trivial problem. However, the
inversion of transforms arising in queueing and other stochastic models (except for simple
cases) is not as easy as it was once thought and hence such results can be difficult to exploit in
solving practical problems. Many users expressed concerns that such solutions were inade-
quate. Kendall (1964) made a famous remark that queueing theory wears the Laplacian curtain.
Kleinrock (1975) states “one of the most difficult parts of this method of spectrum factoriza-
tion is to solve for the roots.” In a similar account, Neuts (see Stidham Jr. (2001)) states “In
discussing matrix-analytic solutions, I had pointed out that when the Rouché’s roots coincide
or are close together, the method of roots could be numerically inaccurate. When I finally got
copies of Crommelin’s papers, I was elated to read that, for the same reasons as I, he was
concerned about the clustering of roots. In 1932, Crommelin knew; in 1980, many of my
colleagues did not....” In this connection, see also Neuts (1981).

The preconceived notion of the above said risks associated with root-finding has carried
through to the modern literature of queueing theory. In 2005, Mejia-Téllez makes the
following statement: “If the batch size is large, the determination of these roots is difficult….”
In a recent paper by Bar-Lev et al. (2007) that analyzes the M/G(m,M)/1 queue, they introduce
their model’s characteristic equation as A(M)(z) − zM where M is the maximum batch size. The

polynomial A(M)(z) is the probability generating function (p.g.f) of the random variable Y Mð Þ
n

which corresponds to the number of job arrivals during the bulk-service period ofM jobs from
the n-th batch arrival. Bar-Lev et al. (2007) state that “this general solution requires the
calculation of the zeros of A(M)(z) − zM which in practice can result in numerical inaccuracies
especially when the decision variable M assumes a large value….” In a recent work by Harris
et al. (2000), they state that “the standard root-finding problem gets complicated particularly
when the inter-arrival time distribution possesses a complicated non-closed form or non-
analytic Laplace-Stieltjes transform (L-ST).”

It is evident that the idea of root-finding, an imperative step in inverting a generating
function, continues to be dismissed by a large body of researchers based on the perceived risk
of numerical inaccuracies and previous remarks made by prominent figures. New methodol-
ogies have emerged as workaround solutions. These include numerical convolutions (say, R∗n

which is not easy to calculate for large n), the matrix-analytic method (which simplifies to a
matrix-geometric method when the underlying distributions are of phase type (Neuts 1981)),
not to mention different iterative algorithms or approximation methods. Abate and Whitt
(1992) use a Fourier-series method to numerically invert generating functions as well as
Laplace transforms. The Fourier-series method involves numerically integrating the transform
by means of the trapezoidal rule. The greatest difficulty in this case is approximately
calculating the infinite series obtained from the inversion integral.

Historically, when numerical software such as MAPLE and Mathematica could not find a
large number of roots (they do now), a software package called QROOT developed by Chaudhry
(1991) was used by him and his collaborators to find the roots and use them in solving several
queueingmodels. The algorithm for finding such roots is available in some of their papers. It may
be remarked here that MAPLE can now not only find roots that are close to each other (a concern
expressed by several researchers) but even repeated roots. As root-finding algorithms continued
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to be refined, several researchers revisited the problem of inverting a generating function via root-
finding. Gouweleeuw (1996) states that it is more efficient to use the roots method to get explicit
expressions for probabilities from generating functions. Similarly, Janssen and van Leeuwaarden
(2005), who have successfully used the roots method, make the comment, “initially, the potential
difficulties of root-finding were considered to be a slur on the unblemished transforms since the
determination of the roots can be numerically hazardous and the roots themselves have no
probabilistic interpretation. However, Chaudhry et al. (1990) have made every effort to dispel
the skepticism towards root-finding in queueing theory.” Daigle and Lucantoni (1991) state that
“whenever the roots method works, it works blindingly fast.”

The procedure and results of root-finding are found to be efficient and accurate by those who
advocate the use of roots, and therefore, improve the generating function method. However,
despite the availability of roots, having to construct and invert a generating function remains a
laborious exercise. Such issues for the use of generating functions in solving multi-server queues
are noted by Chaudhry and Kim (2016) who, in reviewing the work by Zhao (1994) on the GIX/
M/c queue, write “despite the detailed analysis, his derivations to construct the p.g.f.’s and their
inversions are evidently lengthy and consider several conditions that can be avoided.” In solving
the M/M/c/setup queue, Gandhi et al. (2014) state that “generating function approaches involve
guessing the form of the solution and then solving for the coefficients of the guess, often leading
to long computations.” Nevertheless, multi-server queues with removable servers (including the
M/M/c/setup queue) form an important class of queues that can be used in a wide variety of
contexts. Besides the applications in modeling data centres (see Krioukov et al. (2010), Qin and
Wang (2007), Horvath and Skadron (2008), Maccio and Down (2015), Phung-Duc (2015), etc.),
there have been applications in retail service facilities (see Berman and Larson (2004), and
Terekhov andBeck (2009)), and border-crossing stations (see Zhang (2009)). In our survey of the
literature on multi-server queues with removable servers, we have concluded that the generating
function approach is often disadvantaged over other methods such as the Recursive Renewal
Reward (RRR) method, the matrix-analytic method, and recursive methods.

While such limitations of the generating function approach are widely acknowledged in the
literature, it is also our opinion that the inconveniences of the generating function approach can
be remedied by an alternate approach. Instead of formulating the generating function (i.e. the z-
transform of the set of balance equations), we interpret a subset of the balance equations of the
model as a set of difference equations. How we proceed to choose such a subset is illustrated in
an intuitive manner. By leveraging the properties of the difference equations we are able to give
a solution of a general form in terms of the roots of the model’s characteristic equation. In
essence, we achieve the solution in an explicit form in a straightforward manner instead of
formulating and then inverting a generating function that leads to the same solution. The
solution and its coefficients are entirely in terms of roots hence finding such roots is an essential
step in our methodology. Once the roots are found, the coefficients can be easily computed.

The purpose of this paper is to demonstrate that our method, the difference equations
approach (and therefore the use of roots), can effectively solve an advanced form of multi-
server queues with removable servers. The paper is organized in the following manner: We first
introduce the baseline model followed by various extensions that have either frequently
appeared or are likely to be of interest (bulk arrival, non-homogenous servers, setup and
delayed-off times, finite capacity, and multiple staffing levels). Each model has a unique ‘root
equation’ which provides the required roots to find the steady-state distribution. This work is
followed by the introduction of performance measures and then comparisons against the
traditional queue (i.e. the model MX/M/c). While we conclude that the method used here is
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analytically simple and numerically efficient (when compared against the direct method), it is
our hope that the difference equations approach can be considered as a useful tool in analyzing
other variants of multi-server queueing control problems.

2 The Baseline Model: The MX/M/c + l/(m, n) Queue

Consider the MX/M/c queue with two types of servers: there are c static servers (with a
common service rate μ) which remain turned on at all times. As well, there are l dynamic
servers (with a common service rate μ1) that immediately turn on whenever the number of jobs
in the system reaches or exceeds an upper-threshold n and are immediately turned off
whenever the number of jobs in the system falls to or below a lower-threshold m. We assume
the relation between lower and upper bounds (c + l ≤m ≤ n − 2) is such that all l dynamic
servers are turned off immediately whenever the number of jobs in the system becomes c + l or
smaller. Upon turning off the l dynamic servers, any jobs being served by those l dynamic
servers rejoin the front of the queue. When μ1 = μ, the l servers are called homogenous
dynamic servers (and non-homogenous dynamic servers when μ1 ≠ μ).

Jobs arrive in batches of size X and the inter-batch arrival time distribution is exponential
with rate λ. The maximum batch size is r, (r < +∞) and the batch-size distribution is bh = P(X =
h), (1 ≤ h ≤ r) with mean E[X]. We assume that jobs are served in a First-Come-First-Served

(FCFS) manner. The traffic intensity of the model is ρ ¼ λE X½ �
cμþlμ1

< 1. We refer to this model as

the baseline model or in an adaptation of Kendell’s notation, the MX/M/c + l/(m, n) queue.

2.1 Balance Equations

Let J(t) and S(t) denote the number of jobs in the system and the state of servers,
respectively, at time t. We form a Markov chain {X(t) = (J(t), S(t)); t ≥ 0} on the state
space φ = {(i, s); i ≥ 0, s = 0, 1} where s = 0 and s = 1 indicate that the l dynamic servers
are turned off and turned on, respectively. See Fig. 1 below for a simple example of
transitions among different states.

Fig. 1 Transition diagram of the baseline model when c = 2, l = 1, r = 2, m = 3,and n = 5
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Let πi;s ¼ lim
t→∞

P J tð Þ ¼ i; S tð Þ ¼ sf g ; i; sð Þ∈φ be the joint steady-state distribution of

{X(t)}. Note that πi, s > 0 for the following regions of (i, s): (0 ≤ i ≤ n − 1, s = 0) and (i ≥m +
1, s = 1), and πi, s = 0 otherwise. In this section of the paper we solve for πi, s using the roots
method. The system dynamics can be described in terms of the following balance equations:

λπ0;0 ¼ μπ1;0 ð1Þ

λþ iμð Þπi;0 ¼ λ ∑
min i;rð Þ

h¼1
bhπi−h;0 þ iþ 1ð Þμπiþ1;0; 1≤ i≤c−1ð Þ ð2Þ

λþ cμð Þπi;0 ¼ λ ∑
min i;rð Þ

h¼1
bhπi−h;0 þ cμπiþ1;0; c≤ i≤m−1ð Þ ð3Þ

λþ cμð Þπi;0 ¼ λ ∑
min i;rð Þ

h¼1
bhπi−h;0 þ cμ 1−δi;n−1

� �
πiþ1;0

þ δi;m cμþ l1μ1ð Þπiþ1;1; m≤ i≤n−1ð Þ

ð4Þ

λþ cμþ lμ1ð Þπi;1

¼ λ 1−δi;mþ1

� �
I n≤ i≤nþ r−1f g ∑

min i;rð Þ

h¼i−nþ1
bhπi−h;0 þ ∑

min i−m−1;rð Þ

h¼1
bhπi−h;1

� �

þ cμþ lμ1ð Þπiþ1;1; mþ 1≤ i≤nþ r−1ð Þ ð5Þ

λþ cμþ lμ1ð Þπi;1 ¼ λ ∑
min i−n;rð Þ

h¼1
bhπi−h;1 þ cμþ lμ1ð Þπiþ1;1; nþ r≤ i≤nþ 2r−1ð Þ ð6Þ

λþ cμþ lμ1ð Þπi;1 ¼ λ ∑
min i−n−r;rð Þ

h¼1
bhπi−h;1 þ cμþ lμ1ð Þπiþ1;1; i≥nþ 2rð Þ ð7Þ

where δi; j ¼ 1 if i ¼ j and 0 otherwise; and I{a ≤ i ≤ b} is an indicator function such that
I{a ≤ i ≤ b} = 1 for a ≤ i ≤ b and 0 otherwise. As a remark, the balance equations above can
be analytically extended to incorporate finite capacity (see Appendix 3), set up and delayed-off
times (Sections 3 and 4), and k staffing levels (Section 5).

2.2 Direct Method

Given the balance equations of the baseline model, one could find the joint steady-state
distribution via the direct method; we assume that the balance equation (7) terminates at N′,
where N′ is chosen such that πN

0
;s is an extremely small probability. Similar to the direct

method employed by Chaudhry et al. (2001), we establish the following condition in deter-

mining N′; there exists a positive integer N′ such that πN 0−1;s−πN
0
;s

��� ��� < 10−50. A disadvantage
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of the direct method would be in having to solve a large number of equations. While it could
be extremely time-consuming to solve a very large number of simultaneous equations, picking
a threshold larger than 10−50 leads to a lower N′, but may result in numerical inaccuracies
(possibly ranging from being a few decimal places off to even negative probabilities). In our
baseline model, finding the joint steady-state distribution via the direct method involves
solving a set of ND =N′ + n −m equations. Later in Section 6, we compare ND against that
of our method for each model extension.

2.3 Root Equation

In light of the transition diagram in Fig. 1, we identify the repeating portion of the state
transition diagram as {πi,1, i ≥ n + r} which corresponds to the balance equation (7). While
balance equation (6) also qualifies as a repeating portion, our approach is to assume a general
solution at a higher i (i.e. i ≥ n + r) and then analytically exploit the balance equations back-
wards (i.e. 0 ≤ i ≤ n + r − 1) to see which segment(s) of the transition diagram (both repeating
and non-repeating portions) can be represented by our general solution (this is described in
detail in Appendix 2). Doing so also reduces the number of equations, the benefit of which is
numerically shown in Section 6. Therefore, in solving the baseline queue, we select the solution
of a general form πi, 1 =Czi, (i ≥ n + r) as it represents our chosen repeating portion, as well as
satisfying the required properties of difference equations (Appendix 5). Substituting the
solution of this general form into the balance equation (7) leads to

λþ cμþ lμ1ð ÞCzi ¼ λ ∑
r

h¼1
bhCzi−h þ cμþ lμ1ð ÞCziþ1; i≥nþ 2rð Þ

or rearranged as

1 ¼ 1

λþ cμþ lμ1
λ ∑

r

h¼1
bhz−h þ cμþ lμ1ð Þz

� �
ð8Þ

We define expression (8) as the root equation of the model. Since (8) has r roots inside the unit
circle |z| = 1, let these roots be z1, z2, …, zr (see Appendix 1 for the proof). The solution of a
general form becomes r-fold in that it becomes a geometric sum

πi;1 ¼ ∑
r

h¼1
Chzih; i≥nþ rð Þ ð9Þ

where Ch for 1 ≤ h ≤ r are yet to be determined non-zero constants. As a remark, one may
exploit the option of considering the balance equation (3) (instead of (7)) as the r-th order
linear difference equation. However, doing so will lead to r roots that exist under the condition
λE X½ �
cμ < 1. This results in an incomplete solution since the joint steady-state distribution cannot

be computed when ρ < 1≤ λE X½ �
cμ . Therefore, the balance equation (3) is deemed inappropriate

to be the difference equation in determining the joint steady-state distribution.

2.4 Determining the Joint Steady-State Distribution

Given (9), letNR be the total number of unknownswhich is the sumof the following: The total number
of unknown probabilities {πi,0, 0≤ i≤ n− 1}, {πi,1,m+1≤ i≤ n+ r− 1}, and the total number of
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unknown constant terms Ch, (1≤ h≤ r). Therefore the unknown probabilities and constant terms can
be found by generating NR = 2n−m+ 2r− 1 equations. Intuitively, these NR equations can be
generated from the balance equations (2) through (6) along with the normalizing condition:

∑
n−1

i¼0
πi;0 þ ∑

∞

i¼mþ1
πi;1 ¼ 1 ð10Þ

The benefit of a difference equations approach is not just in being able to express the lengthy tail
probabilities (i.e. πi,1 for i ≥ n + r) in terms of a single expression (9). By leveraging the root
equation (8) and other properties of difference equations (Appendix 5), we can further reduce
NR in a systematic way (see Appendix 2 for details). Reducing NR significantly increases the
computational efficiency when compared against ND from the direct method (see Section 6).

3 Extension to the MX/M/c + l/(m, n)/setup Queue

The baseline model can be extended to feature a set up time; consider a situation where the l
dynamic servers are initially turned off and then an upper-threshold has been reached due to a
batch arrival. Instead of turning on immediately, all l dynamic servers go through an expo-
nentially distributed set up time in a collective manner. After this setup time has elapsed, the l
dynamic servers are turned on and begin to serve. Let A denote a generic setup time with mean

E A½ � ¼ 1
	
α. With the definition of ρ remaining unchanged, the stability condition (ρ < 1) also

holds in this extended model. In Kendall’s notation we denote this extension as anMX/M/c + l/
(m, n)/setup queue. It has the joint steady-state distribution {πi,0, i ≥ 0} and {πi,1, i ≥m + 1}.
The normalizing condition is defined as

∑
∞

i¼0
πi;0 þ ∑

∞

i¼mþ1
πi;1 ¼ 1 ð11Þ

See Fig. 2 below for a simple example of transitions among different states.

Fig. 2 Transition diagram of the MX/M/c + l/(m, n)/setup queue when c = 2, l = 1, r = 2, m = 3,and n = 5
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The balance equations that describe the system dynamics of the MX/M/c + l/(m,
n)/setup queue are provided: While the balance equations (1) through (3) from
Section 2.1 remain unchanged, the balance equation (4) is modified by replacing δn − 1, n − 1
with 0. Similarly, the balance equation (5) is modified as follows:

λþ cμþ lμ1ð Þπi;1 ¼ λ ∑
min i−m−1;rð Þ

h¼1
bhπi−h;1 þ cμþ lμ1ð Þπiþ1;1; mþ 2≤ i≤n−1ð Þ ð12Þ

In addition, the following two balance equations are added:

λþ αþ cμð Þπi;0 ¼ λ ∑
min i;rð Þ

h¼1
bhπi−h;0 þ cμπiþ1;0; i≥nð Þ ð13Þ

λþ cμþ lμ1ð Þπi;1 ¼ λ ∑
min i−m−1;rð Þ

h¼1
bhπi−h;1 þ απi;0 þ cμþ lμ1ð Þπiþ1;1; i≥nð Þ ð14Þ

3.1 Root Equation and Determining the Joint Steady-State Distribution

To determine the joint steady-state distribution {πi,s, i ≥ 0, s = 0, 1} we interpret the balance
equation (13) as an r-th order linear difference equation. By doing so, we select the solution of
a general form πi,0 =Czi, (i ≥ n + r) given that the repeating portions of the transition diagram
span the region i ≥ n + r. Substituting the solution of this general form into the balance equation
(13) leads to

1 ¼ 1

λþ αþ cμ
λ ∑

r

h¼1
bhz−h þ cμz

� �
ð15Þ

The root equation (15) has r roots inside the unit circle |z| = 1 (this can be proved in a similar
manner as described in Appendix 1). Let the roots of (15) be z1, z2,…, zr. The general solution
becomes r-fold of the form

πi;0 ¼ ∑
r

h¼1
Chzih; i≥nþ rð Þ ð16Þ

Depending on the size of r, (16) could also hold for (n ≤ i ≤ n + r − 1) which can be
proved in a similar manner as described in Appendix 2. In solving for the joint
steady-state distribution the direct method would result in having to solve a set of
ND = 2N′ − m + 1 equations whereas expressing the queue length in terms of the
geometric sum results in having to solve a set of NR = N′ + n −m + r equations; a
numerical comparison between the values ND and NR is made in Section 6. As a
remark, the rationale for choosing the balance equation (13) as the difference equation
in lieu of the other balance equations that represent the repeating portions is as
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follows: The balance equation (3) is unsuitable for the same reasons as indicated in
Section 2.3. The balance equation (12) is also unsuitable since it requires the general
solution πi,1 = Czi, (m + r + 2 ≤ i ≤ n) which imposes a more stringent assumption (m +
r + 2 ≤ n) while the original region is m + 2 ≤ n. Lastly, the balance equation (14) is
unsuitable since it requires the general solution πi,0 + πi, 1 = Czi, (i ≥ n + r) that leads to
a root equation with r − 1 roots inside the unit circle and the r-th root on the unit
circle (i.e. |zr| = 1).

4 Extension to the MX/M/c + l/(m, n)/delayedoff Queue

The baseline model (or the extended model featuring a setup time) can be extended to feature a
delayed-off time; consider a situation where the number of jobs in the system has dropped to
m. Instead of turning off immediately, the l dynamic servers remain collectively turned on for
an exponentially distributed period of time before removal. Let B denote a generic delayed-off

time with mean E B½ � ¼ 1
	
β. We denote this extension as the MX/M/c + l/(m, n)/delayedoff

queue with the joint steady-state distribution {πi,0, 0 ≤ i ≤ n − 1} and {πi,1, i ≥ 0}. The normal-
izing condition is given by

∑
n−1

i¼0
πi;0 þ ∑

∞

i¼0
πi;1 ¼ 1 ð17Þ

See Fig. 3 below for a simple example of transitions among different states.
The balance equations that describe the system dynamics of the MX/M/c + l/(m, n)/

delayedoff queue are obtained by modifying the earlier ones. From Section 2.1, we replace

Fig. 3 Transition diagram of the MX/M/c + l/(m, n)/delayedoff queue when c = 2, l = 1, r = 2, m = 3,and n = 5
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δm + 1, m + 1 with 0 and replace the expression ‘min(i −m − 1, r)’ with ‘min(i, r)’ in the balance
equation (5). The balance equations (6) and (7) remain unchanged. In addition the balance
equations (1) through (4) are modified as follows:

λπ0;0 ¼ μπ1;0 þ βπ0;1 ð18Þ

λþ βð Þπ0;1 ¼ cμþ lμ1ð Þπ1;1 ð19Þ

λþ iμð Þπi;0 ¼ λ ∑
min i;rð Þ

h¼1
bhπi−h;0 þ iþ 1ð Þμπiþ1;0 þ βπi;1; 1≤ i≤c−1ð Þ ð20Þ

λþ cμð Þπi;0 ¼ λ ∑
min i;rð Þ

h¼1
bhπi−h;0 þ cμπiþ1;0 þ βπi;1; c≤ i≤mð Þ ð21Þ

λþ cμþ lμ1 þ βð Þπi;1 ¼ λ ∑
min i;rð Þ

h¼1
bhπi−h;1 þ cμþ lμ1ð Þπiþ1;1; 1≤ i≤mð Þ ð22Þ

λþ cμð Þπi;0 ¼ λ ∑
min i;rð Þ

h¼1
bhπi−h;0 þ cμ 1−δi;n−1

� �
πiþ1;0; mþ 1≤ i≤n−1ð Þ ð23Þ

As a remark, the balance equations for theMX/M/c + l/(m, n)/setup/delayedoff queue can be easily
obtained by combining the balance equations (18) through (22) with (13), (14), and the following
modified balance equations: Balance equation (23) is modified by replacing δn− 1, n− 1 with 0. The
lower bound of the range for balance equation (12) is modified to i ≥m + 1 (versus i ≥m+ 2) and
in balance equations (12) and (14), each instance of ‘min(i −m − 1, r)’ is replaced with ‘min(i, r)’.
The normalizing condition for the MX/M/c + l/(m, n)/setup/delayedoff queue is

∑
∞

i¼0
πi;0 þ ∑

∞

i¼0
πi;1 ¼ 1. See Fig. 4 below for a simple example of transitions among different states.

0,0 1,0 2,0 3,0

4,1 5,1 6,1

4,0

7,1

2 2 2

1 1 1 1

1 1 1 1

2 2 2

2 2 2

2

5,0 6,0 7,0

1 1 1

2 2 2

2

1

2

0,0 1,0 2,0 3,0

1 1 1 1

2222

2 2 2 2

Fig. 4 Transition diagram of theMX/M/c + l/(m, n)/setup/delayedoff queue when c = 2, l = 1, r = 2,m = 3,and n = 5
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4.1 Root Equations and Determining the Joint Steady-State Distribution

The general solutions and the root equations of theMX/M/c + l/(m, n)/delayedoff and theMX/M/
c + l/(m, n)/setup/delayedoff queues are identical to that of the baseline and theMX/M/c + l/(m,
n)/setup queue, respectively. Let NR be the total number of unknown probabilities and
unknown constant coefficients of the solution. In the modelMX/M/c + l/(m, n)/delayedoff there
are NR = 2(n + r) (versus ND =N′ + n + 1) unknowns whereas in the model MX/M/c + l/(m, n)/
setup/delayedoff there are NR =N′ + n + r + 2 (versus ND = 2(N′ + 1)) unknowns. The same
number of equations can be generated from the respective balance equations and the normal-
izing condition.

5 Extension to the MX/M/c + l/(m, n) Queue with k Staffing Levels

The baseline model (or all previous extensions) can be extended to feature k (k ≥ 2) staffing
levels such that groups of servers (say l1, l2, …, lk each with service rate μ1, μ2, …, μk) are
turned on sequentially in an aggregate manner as the number of jobs in the system grows to
surpass a sequence of increasing upper-thresholds (say n1, n2, …, nk). These server groups are
then turned off in the reverse order (i.e. lk, lk − 1, …, l1) as the number of jobs in the system
drops below a decreasing sequence of lower-thresholds (say mk, mk − 1, …, m1). With these

additional staffing levels, the following properties must hold: cþ ∑
k

s¼1
ls≤ms≤ns−2 for (1 ≤ s ≤

k) and the traffic intensity ρ ¼ λ

cμþ ∑
k

s¼1
ls
μs < 1. We call this extended system anMX/M/c + l/(m,

n) queue with k staffing levels. The corresponding joint steady-state distribution is given by
{πi,s, i ≥ 0, 0 ≤ s ≤ k}. The normalizing condition is

∑
n1−1

i¼0
πi;0 þ ∑

k−1

s¼1
∑

nsþ1−1

i¼msþ1
πi;s þ ∑

∞

i¼mkþ1
πi;k ¼ 1 ð24Þ

The balance equations that describe the system dynamics of theMX/M/c + l/(m, n) queue with k
staffing levels can be derived in a similar manner to previous models. The balance Equations
(1) and (2) from Section 2.1 remain unchanged and the remainder of the balance equations are
provided in Appendix 3.

5.1 Root Equation and Determining the Joint Steady-State Distribution

In solving the MX/M/c + l/(m, n) queue with k staffing levels via the difference equations
approach, we substitute the general solution πi,k =Czi, (i ≥ nk + r) into the balance equation
(44) such that it leads to the root equation

1 ¼ 1

λþ cμþ ∑
k

s¼1
lsμs

λ ∑
r

h¼1
bhz−h þ cμþ ∑

k

s¼1
lsμs

� �
z

� �
ð25Þ
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equation (25) has r roots inside the unit circle |z| = 1 (this can be proved similarly to the result
in Appendix 1); let these roots be z1, z2,…, zr. The general solution becomes r-fold of the form

πi;k ¼ ∑
r

h¼1
Chzih; i≥nk þ rð Þ ð26Þ

where Ch, (1 ≤ h ≤ r) are non-zero constants. The joint steady-state distribution of
the MX/M/c + l/(m, n) queue with k staffing levels can be found by solving the

NR ¼ m1 þ ∑
k−1

s¼1
ns−2ms−1þ msþ1ð Þ þ2 nk−mkð Þ þr−1 equations. As a remark, NR can be

systematically reduced by leveraging (25) and (26) in a similar manner as shown in Appendix 1.

6 Numerical Comparison against the Direct Method

In this section we show numerical comparisons between NR and ND for each model. Results
were verified by evaluating a state probability independently at N′ (i.e. direct and difference
equations method) and then matching them.

Table 1 λ = 2.0, c = 5, l = 5, μ = 0.5, μ1 = 0.5, m = c + l, n =m + 2, b1 = 0.5, b2 = 0.5

Model Other input parameters Verification NR ND

1 Baseline N/A ∑
r

h¼1
Chz307h ¼ −2825:3089 −0:2899ð Þ 307 þ
5:6430 0:5899ð Þ307 ¼ 1:8133x10−49

15 309

π307,0=1.8133x10−49

2 Baseline with setup
time

α=0.4 ∑
r

h¼1
Chz441h ¼ 1566:1528 −0:3391ð Þ 441 þ

0:8742 0:7729ð Þ441 ¼ 4:0643x10−50

445 873

π441,0=4.0643x10−50

3 Baseline with
delayed-off time

β=0.4 ∑
r

h¼1
Chz308h ¼ −2453:4767 −0:2899ð Þ 308 þ
4:4119 0:6899ð Þ308 ¼ 9:7806x10−50

28 321

π308,0=9.7806x10−50

4 Baseline with setup
and delayed-off
times

α=0.4, β=0.4 ∑
r

h¼1
Chz432h ¼ −88:4065 −0:3391ð Þ 432 þ

0:6674 0:7729ð Þ432 ¼ 3:1514x10−49

448 884

π432,0=3.1514x10−49

5 Baseline with k
staffing levels

k ¼ 2; n1 ¼ 12;m1 ¼
10 n2 ¼ 16;m2 ¼ 14 ∑

r

h¼1
Chz529h ¼ −22872:8180 −0:3090ð Þ 529

þ1:7094 0:8090ð Þ529 ¼ 3:4869x10−49

20 532

π529,0=3.4869x10−49
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As a remark, in Table 1, a significant reduction from ND to NR is achieved in rows 1, 3, and
5, whereas the reduction from ND to NR is approximately halved in rows 2 and 4. The reason
for such numerical behaviour is as follows. The presence of setup times (i.e. rows 2 and 4)
results in partial expression of the queue length in terms of roots. In other words, we can
express πi,0 =Czi, (i ≥ n + r) but the expression πi,0 + πi, 1 =Dyi, (i ≥ n + r) does not hold (see
Section 3.1 for further explanation). Therefore, we must treat {πi,1, i ≥ n + r} as unknowns
while we are able to express {πi,0, i ≥ n + r} entirely in terms of the roots of equation (15).
Because we have nearly halved the number of unknowns, NR in our approach, when compared
against ND, is approximately halved. On the contrary, in rows 1, 3, and 5 both {πi,1, i ≥ n + r}
and {πi,0, i ≥ n + r} are entirely expressed in terms of the roots. This results in a greater
reduction in NR.

7 Performance Measure and Trade-off Analysis

In this section we first introduce a list of performance measures (Table 2) followed by
a trade-off analysis between those performance measures (Tables 3, 4, 5 and 6). The
performance measures can be largely divided into two categories; system performance
and resource consumption. The system performance indicates how well the system is
performing whereas the resource consumption indicates the efforts consumed in
achieving the corresponding level of system performance. There is a trade-off between
the two categories, the extent of which also depends on other factors such as the
upper-threshold, mean batch size, and traffic intensity. Using the joint steady-state
distribution from earlier sections of this paper we are able to derive all performance
measures. As a remark, while some of our performance measures are deducible from a
p.g.f., others, such as the switching cost rate, are more conveniently found from the
distribution itself.

Using our performance measures in Table 2, we conducted a trade-off analysis
between the system performance and resource consumption. Throughout Tables 3, 4,
5 and 6, we have taken the MX/M/c + l/(m, n)/K (and MX/M/c/K) queues where for each
upper-threshold (n = 8, 13, 18, 23, 28, 33,and 38) we have represented each corresponding
performance measure as a horizontal colour-coded bar (different colours represent differ-
ent performance measures while the height of each bar corresponds to the magnitude of
that performance measure). The height of each bar is based on the ratio to the maximum
entry of that metric in the table such that a full bar height corresponds to the maximum
entry in that table. We have utilized the parameters c = 2, l = 4, μ = 2.0, μ1 = 2.5, λ = 1.5,

m = c + l, K = 70, and ε ¼ 1
	
λ throughout Tables 3, 4, 5 and 6. Our findings are summa-

rized in four observations.
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Table 4 c < E[X] < c + l with b1 = 0.5 and b3 = 0.5

Table 5 E[X] = c + l with b1 = 0.5 and b11 = 0.5

Table 3 E[X] < c with b1 = 1.0
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Observation 1: Across all tables the MX/M/c/K queue results in the largest PPJL and Lq.
As the mean batch size increases, the probability of dynamic server utilization becomes
larger. Conversely, as the mean batch size decreases, the probability of dynamic server
utilization becomes smaller.
Observation 2: A high switching cost rate coincides with a high chance of the number of
customers in the system crossing above and below the upper and lower-thresholds,
respectively. It is observed that the switching cost rate is highest when the mean batch
size is identical to the system’s lower-threshold (i.e. Table 5); a higher chance of crossing
above and below the upper and lower-thresholds requires moderately sized batches as
well as a moderate rate of batch arrivals. While all tables have identical rates of batch
arrivals, each table has different mean batch size. Table 5 appears to have the most
moderate mean batch size which contributes to it having the highest switching cost rate.
Observation 3: The impact of dynamic servers on the system is more pronounced when
the mean batch size is higher: When the mean batch size is smaller than the system’s total
capacity (i.e. Tables 3 and 4), adding dynamic servers leads to a relatively small drop in
Lq while Is remains relatively unchanged. When the mean batch size is larger than the
system’s total capacity (i.e. Tables 5 and 6), adding dynamic servers leads to a sharp
decrease in Lq.
Observation 4: PPJL increases with n at a modest rate; it is expected that PPJL will
increase at a much faster rate when the mean batch size is larger.

To conclude, we summarize our findings in terms of when the dynamic servers appear to be
effective (or ineffective). When the mean batch size is very small (i.e. E[X] < c), the dynamic
servers appear to be ineffective across all values of n. When the mean batch size is relatively
small (i.e. c < E[X] < c + l) the dynamic servers contribute effectively in lowering the queue size
only when they are turned on at smaller values of n. For higher values of n, the dynamic servers
appear to be ineffective. For larger mean batch size (i.e. E[X] ≥ c + l), in general, the dynamic
servers effectively contribute to reducing the queue size even at smaller values of n.

8 Conclusion

In this paper, we have demonstrated that the difference equations approach stands as a reliable tool
in treating advanced forms of multi-server bulk arrival queues. Through this work, what would

Table 6 E[X] > c + l with b1 = 0.5 and b15 = 0.5
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have otherwise been done via the generating functions approach has been greatly simplified by
intuitively choosing a set of balance equations as difference equations. Doing so relies heavily on
the finding of Rouché’s roots; a critical step in a solution procedure that has been heavily criticized
by some researchers due to the perceived risk of numerical inaccuracies, and the laborious and
ambiguous steps involved in constructing and inverting a generating function (see Section 1). Such
issues are compounded when extending to bulk arrival queues as multiple roots are often involved.
Nevertheless, we have successfully demonstrated that our method can handle an advanced form of
quasi birth and death process that features bulk arrival, setup and delayed-off times, finite capacity,
non-homogenous dynamic servers, and k staffing levels. In the future, our plan is to apply our
method in solving non-Markovian and semi-Markovianmodels that feature working vacations and
are formulated in discrete-time.

Appendix 1: Proving the existence of roots

In this appendix we prove that (8) has r roots inside the unit circle |z| = 1. We first multiply
both sides of the root equation (8) by zr yielding

zr ¼ 1

λþ cμþ lμ1
λ ∑

r

h¼1
bhzr−h þ cμþ lμ1ð Þzrþ1

� �

Let f(z) = zr and g zð Þ ¼ − 1
λþcμþlμ1

λ ∑
r

h¼1
bhzr−h þ cμþ lμ1ð Þzrþ1

� �
such that f(z) + g(z) = 0.

Consider the magnitudes of f(z) and g(z) on the contour |z| = 1 − τ where τ is positive and
sufficiently small. This gives

f zð Þj j ¼ 1−τð Þr ¼ 1−τr þ o τð Þ

and

g zð Þj j≤ 1

λþ cμþ lμ1
λ ∑

r

h¼1
bh zj jr−h þ cμþ lμ1ð Þ zj jrþ1

� �

Letting |z| = 1 − τ in the right-hand side of the above expression leads to the following:

g zð Þj j≤ 1

λþ cμþ lμ1
λ ∑

r

h¼1
bh 1− r−hð Þτð Þ þ cμþ lμ1ð Þ 1− r þ 1ð Þτð Þ þ o τð Þ

� �

≤
1

λþ cμþ lμ1
λþ cμþ lμ1− λþ cμþ lμ1ð Þrτ þ λE X½ �τ− cμþ lμ1ð Þτ þ o τð Þ½ �

Using the definition of ρ from Section 2, the above expression can be rearranged to give

g zð Þj j≤1−rτ− cμþ lμ1ð Þ 1−ρð Þτ
λþ cμþ lμ1

þ o τð Þ

The fact that ρ < 1 implies that |g(z)| < |f(z)| on |z| = 1 − τ. Since f(z) and g(z) satisfy the
conditions of Rouché’s theorem it follows that (8) has r roots inside the unit circle.
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Appendix 2: Reduction of NR

In this Section we demonstrate that (9) is also true for n ≤ i ≤ n + r − 1. The benefit of doing so
is in the analytical reduction of NR by r which subsequently enables even further reduction of
NR (the effect of such a reduction is demonstrated in Table 1). We begin this procedure by
letting i = n + 2r − 1 in the balance equation (6) and expressing probabilities using (9) where
applicable:

λþ cμþ lμ1ð Þ ∑
r

j¼1
C jznþ2r−1

j ¼ λ ∑
r−1

h¼1
bh ∑

r

j¼1
C jznþ2r−1−h

j þ λbrπnþr−1;1 þ cμþ lμ1ð Þ ∑
r

j¼1
C jznþ2r

j

This can be rearranged:

λþ cμþ lμ1ð Þ ∑
r

j¼1
C jznþ2r−1

j 1−
1

λþ cμþ lμ1
λ ∑

r

h¼1
bhz−hj − cμþ lμ1ð Þz j


 �
þ λbrz−rj

λþ cμþ lμ1

� �
¼ λbrπnþr−1;1

Applying (8) to the above expression and given that λ and br are both strictly positive, we have

πnþr−1;1 ¼ ∑
r

h¼1
Chznþr−1

h

By letting i = n + 2r − 2, n + 2r − 3, …, n + r + 1, n + r, we have the following result:

πi;1 ¼ ∑
r

h¼1
Chzih; n≤ i≤nþ r−1ð Þ ð27Þ

By deriving (27), we have reduced NR by r, it went from 2n −m + 2r − 1 to 2n −m + r − 1.

Appendix 2.1: Further reduction of NR

Further reduction of NR is desired as it enables efficient numerical computations. To perform
such a reduction we must distinguish and treat each of the following two cases separately: Case
1 occurs when r ≥ n and Case 2 occurs when r < n.

Appendix 2.1.1: Case 1: r ≥ n

In this case, an incoming batch of size h, (1 ≤ h ≤ r) could be equal to or larger than n so that
the l dynamic servers are turned on immediately upon arrival of the batch. Using (27) we
concluded that there are NR = 2n −m + r − 1 unknowns: {πi,0, 0 ≤ i ≤ n − 1}, {πi,1,m + 1 ≤ i ≤ n
− 1}, and Ch, (1 ≤ h ≤ r). To further reduce NR we let i = n + r − 1 in balance equation (5) and
express πi, 1 with (27) where applicable. Doing so gives

λþ cμþ lμ1ð Þ ∑
r

j¼1
C jznþr−1

j ¼ λ brπn−1;0 þ ∑
r

h¼1
bhπnþr−1−h;1

� �
þ cμþ lμ1ð Þ ∑

r

j¼1
C jznþr

j
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The above expression is then rearranged to yield

λþ cμþ lμ1ð Þ ∑
r

j¼1
C jznþr−1

j 1−
1

λþ cμþ lμ1
λ ∑

r

h¼1
bhz−hj − cμþ lμ1ð Þz j


 �
þ λ

λþ cμþ lμ1
brz−rj

� �

¼ λbr πn−1;0 þ πn−1;1
� �

Applying (8) to the above expression and given that λ and br are both strictly positive, we have

∑
r

j¼1
C jzn−1j ¼ πn−1;0 þ πn−1;1

We let i = n + r − 2, n + r − 3, …, m + r + 2, m + r + 1 in balance equation (5) and prove that

∑
r

j¼1
C jzij ¼ πi;0 þ πi;1; mþ 1≤ i≤n−1ð Þ ð28Þ

We proceed further for the remaining values of i (i.e. i =m + r, m + r − 1, …, r + 1, r). Let i =
m + r in balance equation (5) and express πi, 0 + πi, 1 with (28) where applicable. Doing so gives

λþ cμþ lμ1ð Þ ∑
r

j¼1
C jzmþr

j ¼ λ ∑
r

h¼mþr−nþ1
bhπmþr−h;0 þ ∑

r−1

h¼1
bhπmþr−h;1

� �
þ cμþ lμ1ð Þ ∑

r

j¼1
C jzmþrþ1

j

which can be rearranged to

λþ cμþ lμ1ð Þ ∑
r

j¼1
C jzmþr

j

¼ λ ∑
mþr−n

h¼1
bhπmþr−h;1 þ ∑

r−1

h¼mþr−nþ1
bh πmþr−h;0 þ πmþr−h;1
� �þ brπm;0


 �
þ cμþ lμ1ð Þ ∑

r

j¼1
C jzmþrþ1

j

or

λþ cμþ lμ1ð Þ ∑
r

j¼1
C jzmþr

j 1−
1

λþ cμþ lμ1
λ ∑

r

h¼1
bhz−hj þ cμþ lμ1ð Þz j


 �
þ brz−rj

λþ cμþ lμ1

� �
¼ λbrπm;0

Applying (8) to the above expression and given that λ and br are both strictly positive,
we have

πm;0 ¼ ∑
r

j¼1
C jzmj

By letting i =m + r − 1, m + r − 2, …, r + 1, r in balance equation (5), it can be shown that

∑
r

j¼1
C jzij ¼ πi;0; 0≤ i≤mð Þ ð29Þ

Therefore when r ≥ n, by deriving expression (28) and (29) we have further reduced NR by n so
that it is reduced from 2n −m + r − 1 to n −m + r − 1. The needed NR equations can be
generated from the balance equations such that {πi, s, i ≥ 0, s = 0, 1} can be explicitly expressed
as
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πi;s ¼

∑
r

l¼1
Clzil; 0≤ i≤m; s ¼ 0ð Þ

already determined; mþ 1≤ i≤n−1; s ¼ 0ð Þ
∑
r

l¼1
Clzil−πi;0; mþ 1≤ i≤n−1; s ¼ 1ð Þ

∑
r

l¼1
Clzil; i≥n; s ¼ 1ð Þ

8>>>>>>><
>>>>>>>:

ð30Þ

where the ‘already determined’ probabilities are those that are simultaneously found along with
the Ch’s when solving the NR equations.

Appendix 2.1.2: Case 2: r < n

In this case, we assume that an incoming batch of size h, (1 ≤ h ≤ r) will prompt the l dynamic
servers to turn on immediately upon arrival of the batch. With (27) found we have concluded
that there are NR = 2n −m + r − 1 unknowns: {πi,0, 0 ≤ i ≤ n − 1}, {πi,1,m + 1 ≤ i ≤ n − 1}, and
Ch, (1 ≤ h ≤ r). In reducing NR for Case 2 we must further consider two subcases: n − r ≤m and
n − r >m. As a remark, readers will later see that both of these subcases lead to the reduction of
NR by r. However, such a separation needs to be made as the expressions for πi,s for each
subcase are different.

Appendix 2.1.2.1: Subcase 1: n − r≤m

The procedure to compute {πi,0, 0 ≤ i ≤ n − 1}, {πi,1,m + 1 ≤ i ≤ n − 1}, and Ch, (1 ≤ h ≤ r) when
n − r ≤m follows the same procedure as provided in Appendix 2.1.1 up to the derivation of
(28). However, after (28), instead of letting i =m + r, m + r − 1, …, r + 1, r in the balance
equation (5), we let i =m + r, m + r − 1, …, n + 1, n as r < n. Doing so leads to

∑
r

j¼1
C jzij ¼ πi;0; n−r≤ i≤mð Þ ð31Þ

Therefore when n − r ≤m, by deriving expression (31) we have further reduced NR by r, from
2n −m + r − 1 to 2n −m − 1. The needed NR equations can be generated from the balance
equations such that {πi,s, i ≥ 0, s = 0, 1} can be explicitly expressed as

πi;s ¼

already determined; 0≤ i≤n−r−1; s ¼ 0ð Þ
∑
r

l¼1
Clzil; n−r≤ i≤m; s ¼ 0ð Þ

already determined; mþ 1≤ i≤n−1; s ¼ 0ð Þ
∑
r

l¼1
Clzil−πi;0; mþ 1≤ i≤n−1; s ¼ 1ð Þ

∑
r

l¼1
Clzil; i≥n; s ¼ 1ð Þ

8>>>>>>>>><
>>>>>>>>>:

ð32Þ

where the ‘already determined’ probabilities are those that are simultaneously found along
with the Ch’s when solving the NR equations.
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Appendix 2.1.2.2: Subcase 2: n − r >m

The procedure to compute {πi,0, 0 ≤ i ≤ n − 1}, {πi,1,m + 1 ≤ i ≤ n − 1}, and Ch, (1 ≤ h ≤ r) when
n − r >m is slightly different than the procedure provided in Appendix 2.1.2.1. Instead of
letting i = n + r − 1, n + r − 2, …, m + r + 2, m + r + 1 in the balance equation (5) in Appendix
2.1.2.1, we let i = n + r − 1, n + r − 2, …, n + 1, n as n − r >m. Doing so leads to

∑
r

j¼1
C jzij ¼ πi;0 þ πi;1; n−r≤ i≤n−1ð Þ ð33Þ

Therefore when n − r >m, by deriving expression (33) we have further reduced NR by r (as
done in Appendix 2.1.2.1). The needed NR equations can be generated from the balance
equations such that {πi, s, i ≥ 0, s = 0, 1} can be explicitly expressed as

πi;s ¼

already determined; 0≤ i≤n−r−1; s ¼ 0; 1ð Þ
already determined; n−r≤ i≤n−1; s ¼ 0ð Þ
∑
r

l¼1
Clzil−πi;0; n−r≤ i≤n−1; s ¼ 1ð Þ

∑
r

l¼1
Clzil; i≥n; s ¼ 1ð Þ

8>>>>><
>>>>>:

ð34Þ

where the ‘already determined’ probabilities are those that are simultaneously found along
with the Ch’s when solving the NR equations.

Appendix 3: Balance equations for the extension to k staffing levels

The transition dynamics of the MX/M/c + l/(m, n) queue with k staffing levels are provided.
While the balance equations (1) and (2) from the baseline model remain unchanged, the rest of
the balance equations are modified to the following:

λþ cμð Þπi;0 ¼ λ ∑
min i;rð Þ

h¼1
bhπi−h;0 þ cμπiþ1;0; c≤ i≤m1−1ð Þ ð35Þ

λþ cμþ ∑
s−1

j¼1
l jμ j

 !
πms;s−1 ¼ λ ∑

min r;msð Þ

h¼ms−n1þ1
bhπms−h;0 þ λ ∑

s−2

j¼1
∑

min r;ms−m j−1ð Þ
h¼ms−n jþ1þ1

bhπms−h; j

þ λ ∑
min r;ms−ms−1−1ð Þ

h¼1
bhπms−h;s−1 þ cμþ ∑

s

j¼1
l jμ j

 !
πmsþ1;s

þ cμþ ∑
s−1

j¼1
l jμ j

 !
πmsþ1;s−1; 1≤s≤kð Þ ð36Þ
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λþ cμþ ∑
s−1

j¼1
l jμ j

 !
πi;s−1 ¼ λ ∑

min r;ið Þ

h¼i−n1þ1
bhπi−h;0 þ λ ∑

s−2

j¼1
∑

min r;i−m j−1ð Þ
h¼i−n jþ1þ1

bhπi−h; j

þ λ ∑
min r;i−ms−1−1ð Þ

h¼1
bhπi−h;s−1

þ cμþ ∑
s−1

j¼1
l jμ j

 !
πiþ1;s−1; ms þ 1≤ i≤ns−2; 1≤s≤kð Þ ð37Þ

λþ cμþ ∑
s−1

j¼1
l jμ j

 !
πns−1;s−1 ¼ λ ∑

min r;ns−1ð Þ

h¼ns−n1
bhπns−1−h;0 þ λ ∑

s−2

j¼1
∑

min r;ns−m j−2ð Þ
h¼ns−n jþ1

bhπns−1−h; j

þ λ ∑
min r;ns−ms−1−2ð Þ

h¼1
bhπns−1−h;s−1; 1≤s≤kð Þ ð38Þ

λþ cμþ ∑
s

j¼1
l jμ j

 !
πmsþ1;s ¼ cμþ ∑

s

j¼1
l jμ j

 !
πmsþ2;s; 1≤s≤kð Þ ð39Þ

λþ cμþ ∑
s

j¼1
l jμ j

 !
πi;s ¼ λ ∑

min r;i−ms−1ð Þ

h¼1
bhπi−h;s

þ cμþ ∑
s

j¼1
l jμ j

 !
πiþ1;s; ms þ 2≤ i≤ns−1; 1≤s≤kð Þ ð40Þ

λþ cμþ ∑
s

j¼1
l jμ j

 !
πi;s ¼ λ ∑

min r;ið Þ

h¼i−n1þ1
bhπi−h;0 þ λ ∑

s−1

j¼1
∑

min r;i−m j−1ð Þ
h¼i−n jþ1þ1

bhπi−h; j

þ λ ∑
min r;i−ms−1ð Þ

h¼1
bhπi−h;s

þ cμþ ∑
s

j¼1
l jμ j

 !
πiþ1;s; ns≤ i≤ns þ r−1; 1≤s≤kð Þ ð41Þ

λþ cμþ ∑
s

j¼1
l jμ j

 !
πi;s ¼ λ ∑

min r;i−nsð Þ

h¼1
bhπi−h;s

þ cμþ ∑
s

j¼1
l jμ j

 !
πiþ1;s; ns þ r≤ i≤msþ1−1; 1≤s≤k−1ð Þ ð42Þ
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λþ cμþ ∑
k

j¼1
l jμ j

 !
πi;k ¼ λ ∑

min r;i−nkð Þ

h¼1
bhπi−h;k þ cμþ ∑

k

j¼1
l jμ j

 !
πiþ1;k ; nk þ r≤ i≤nk þ 2r−1ð Þ ð43Þ

λþ cμþ ∑
k

j¼1
l jμ j

 !
πi;k ¼ λ ∑

min r;i−nk−rð Þ

h¼1
bhπi−h;k þ cμþ ∑

k

j¼1
l jμ j

 !
πiþ1;k ; i≥nk þ 2rð Þ ð44Þ

Appendix 4: Extension to the MX/M/c + l/(m, n)/K queue

The baseline model can be extended to feature a finite capacity such that the total number of
jobs held by the system is finite. Therefore, the MX/M/c + l/(m, n) queue with finite capacity
can house up to K, (1 ≤K < +∞) jobs in the system where K includes the jobs in queue as well
as those being served by both the static and dynamic servers (if any). Therefore we have the
MX/M/c + l/(m, n)/K queue with the joint steady-state distribution {πi, s, 0 ≤ i ≤K, s = 0, 1} and
the normalizing condition

∑
n−1

i¼0
πi;0 þ ∑

K

i¼mþ1
πi;1 ¼ 1 ð45Þ

With the introduction of finite capacity, an incoming batch can be rejected if its size (h)
exceeds the available space (K − i). When h >K − i the modelMX/M/c + l/(m, n)/K is subject to
one of the following two rejection policies: partial rejection of a batch occurs when out of h
jobs the K − i jobs are admitted into the system and the remaining (h −K + i) jobs are rejected.
Total rejection of a batch occurs when, given the same condition, the entire batch is rejected.
The balance equations that describe the system dynamics of theMX/M/c + l/(m, n)/K queue can
be derived by modifying the balance equation (7) from Section 2.1 to incorporate each
rejection policy. These are provided in the following two sections.

Appendix 4.1: MX/M/c + l/(m, n)/K queue with partial rejection

λþ cμþ lμ1ð Þπi;1 ¼ λ ∑
min i−n−r;rð Þ

h¼1
bhπi−h;1 þ cμþ lμ1ð Þπiþ1;1; nþ 2r≤ i≤K−1ð Þ ð46Þ

cμþ lμ1ð ÞπK;1 ¼ λ ∑
r

j¼1
∑
r

h¼ j
bhπK− j;1 ð47Þ

Appendix 4.2: MX/M/c + l/(m, n)/K queue with total rejection

λþ cμþ lμ1ð Þπi;1 ¼ λ ∑
min i−n−r;rð Þ

h¼1
bhπi−h;1 þ cμþ lμ1ð Þπiþ1;1; nþ 2r≤ i≤K−r−1ð Þ ð48Þ
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λ ∑
K−i

h¼1
bh þ cμþ lμ1

� �
πi;1 ¼ λ ∑

min i−n−r;rð Þ

h¼1
bhπi−h;1 þ cμþ lμ1ð Þπiþ1;1; K−r≤ i≤K−1ð Þ ð49Þ

cμþ lμ1ð ÞπK;1 ¼ λ ∑
r

h¼1
bhπK−h;1 ð50Þ

The above balance equations can be solved via the difference equations approach as demon-
strated in earlier sections of this paper.

Appendix 5: Properties of difference equations

The difference equations approach we introduced in solving the baseline model and its
extensions is based on interpreting the model’s balance equations as difference equations.
By doing so, we can express the solution in terms of roots by leveraging the well-established
properties of linear difference equations. As discussed in Chaudhry and Templeton (1983), an
equation of the type

a0 f xþn þ a1 f xþn−1 þ…þ an−1 f xþ1 þ an f x ¼ bx; x ¼ 1; 2;…ð Þ
where the ai are known constants, fi are unknown functions to be determined, and bx is a given
function of x, is called a nonhomogeneous linear difference equation of order n. If bx = 0, for
all x, then it is called a homogenous linear difference equation with constant coefficients. A
general solution to the above nonhomogeneous equation consists of two parts:

1. A linear combination of all solutions to the homogeneous equation; and
2. A particular solution to the nonhomogeneous equation.

The solution to the homogeneous part of the equation proceeds along the following lines.
Letting fx =Czx in the homogeneous equation leads to

a0Czxþn þ a1Czxþn−1 þ…þ an−1Czxþ1 þ anCzx ¼ 0

and

a0zn þ a1zn−1 þ…þ an−1zþ an ¼ 0

The last equation in z, being an n-th degree equation, gives n roots (real or complex, distinct or
coincident). As a consequence, assuming that the roots are distinct, the general solution of the
homogeneous part is written as

f x ¼ ∑
n

j¼1
C jzxj
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