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Abstract
A periodic-review insurance model is studied under the following assumptions. One-period
insurance claims form a sequence of independent identically distributed nonnegative ran-
dom variables with a finite mean. At the beginning of each period a quota δ of the company
surplus is invested in a non-risky asset for m periods. Theoretical expressions for finite-
time and ultimate ruin probabilities, in terms of multiple integrals, are presented and applied
to the particular case where claims are exponential. Dividend problems are also consid-
ered. Numerical results obtained by virtue of simulation are provided and other algorithmic
approaches are discussed. Sensitivity analysis of ruin probability is carried out for the case
of exponential claims.

Keywords Discrete-time insurance model · Investment · Finite-time ruin · Dividends ·
Simulation · Sensitivity
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1 Introduction

Risk is a keyword in all definitions of actuarial sciences. Risk is present whenever the
outcome is uncertain, whether favorable or unfavorable. Methods for transferring or dis-
tributing risk were practiced by Chinese and Babylonian traders as long ago as the
3rd and 2nd millennia BC, respectively. However actuarial science emerged significantly
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later (in the 17th century). It has an interesting history consisting of 4 periods, see, e.g.,
Bulinskaya (2017).

Not only insurance, but other applied probability research domains such as inventory
and dams, finance, queueing theory, reliability and some others can be considered as spe-
cial cases of decision making under uncertainty (or risk management) aimed at the systems
performance optimization, thus eliminating or minimizing risk. For correct decision mak-
ing one needs an appropriate mathematical model. Constructing an insurance company
model one has to take into account its twofold nature. Originally all insurance societies
were designed for risk sharing. Hence, their primary task is policyholders indemnification.
Nowadays, for the most part they are joint stock companies. Thus, the secondary but very
important task is dividend payments to shareholders.

The 20th century, belonging to the second (stochastic) period in actuarial sciences, is
known for emergence of collective risk theory. The study of ruin probability for various
modifications of (continuous-time) Cramér-Lundberg model has dominated. This allowed
insurance companies to increase their solvency and thus provide a solution to the first task.

The modern period is characterized by investigation of complex systems, including div-
idends payment, reinsurance, tax, bank loans and investment. Interplay of actuarial and
finance methods, in particular, unification of reliability and cost approaches is another fea-
ture of the last twenty years, see, e.g., Bulinskaya (2003). Furthermore, discrete-time models
turned out to be more appropriate for description of some aspects of insurance company
performance. On the other hand, discrete-time models can be used for approximation of
continuous-time ones, see, e.g. Dickson and Waters (2004). Therefore we concentrate on
such type of models although there exist a lot of simulation methods treating continuous-
time insurance models (see, e.g., Dutang et al. (2008) and further modifications available
at the site http://CRAN.R-project.org/). It is interesting to underline that discretization is
widely used in many programs.

A first important discrete-time model giving start to investigation of dividends was intro-
duced in a seminal paper Andersen (1957). The discrete model treating the ruin probability
was firstly proposed in Gerber (1988). The paper Li et al. (2009) is a review of discrete-time
models considered until 2009. Let us also mention three papers, not included in review:
Chan and Zhang (2006) treating direct derivation of finite-time ruin probabilities, Alfa and
Drekic (2007) presenting algorithmic analysis of the Sparre Andersen model in discrete
time and Wei and Hu (2008) considering the models with stochastic rates of interest, see
also Kordzakhia et al. (2012) and references therein. The model with dependence of finance
and insurance risks and heavy tailed losses is considered in Tsitsiashvili (2010). Recurrent
algorithms for ruin probability calculation are provided there.

The papers Blaževičius et al. (2010), Castañer et al. (2013) and Damarackas and
Šiaulys (2014) investigate discrete-time models with different types of non-homogeneity.
Inequalities for the ruin probability in a controlled discrete-time risk process are dealt
with in Diasparra and Romera (2010). Sharp approximations of ruin probabilities in the
discrete-time models are provided in Gajek and Rudz (2013). Quantitative analysis of ruin
probability for a discrete-time insurance model with proportional reinsurance and surplus
investment according to random interest rate is carried out in Jasulewicz and Kordecki
(2015). Two cases of one period loss distributions were compared, namely, light-tailed
(exponential) and heavy-tailed (Pareto).

Not only ruin probabilities were studied. Thus, discrete-time models with dividends
and reinsurance are treated in Bulinskaya and Yartseva (2010). The discounted factorial
moments of the deficit in discrete-time renewal risk model are dealt with in Bao and He
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(2012). Optimization of discrete-time insurance model with capital injections and reinsur-
ance is carried out in Bulinskaya et al. (2015). Asymptotic analysis of insurance models with
bank loans one can find in Bulinskaya (2014) and (2018). A substantial review of recent
results on discrete-time models is supplied, as well, in Section 5 of Bulinskaya (2017). The
author’s results concerning a discrete-time model with reinsurance and capital injections are
given there in Section 6.2.

It is necessary to note that compound binomial models are still popular, see, e.g., Wat
et al. (2018) and references therein.

In our paper we study the discrete-time insurance model under following assumptions.
The premium obtained by the company each period is equal to a constant c > 0. The claims
form a sequence of independent identically distributed nonnegative random variables. No
assumptions are made about the claims distribution, except existence of density and finite-
ness of expectation. There exist investment possibility in a non-risky asset. More precisely,
in contrast to above mentioned papers, we assume that only a certain part δ of surplus can
be placed in a bank for m � 1 periods under a fixed interest rate β per period. At the end
of the term the deposit is returned to the company along with interest and can be used for
claims indemnification.

The paper is organized as follows. In Section 2 we give the model description. The
ultimate and finite-time ruin probabilities are considered in Section 3. We obtain their
expressions in terms of multi-dimensional integrals. For the particular case of exponentially
distributed claims an explicit form of such integrals is calculated. The problem of dividends
payment is dealt with in Section 4. Simulation results and sensitivity analysis of ruin proba-
bility for the case of exponential claims are presented in Section 5. In conclusion (Section 6)
we discuss the obtained results and further research directions.

2 Model Description

We consider the following generalization of the model introduced in Bulinskaya and
Kolesnik (2018). For certainty, we proceed in terms of insurance company performance.
During the ith period (year, month, week or day) the company gets a fixed premium amount
c and pays a random indemnity Xi , i = 1, 2, . . .. It is supposed that {Xi}i�1 is a sequence of
independent identically distributed nonnegative random variables (i.i.d. r.v.’s) with a known
distribution function F(x), possessing a density pX(x) and a finite mean. Let the initial
capital S0 = x be fixed and positive. It is possible to place a quota δ ∈ [0, 1] of this amount
in a bank for m periods (m � 1), the interest rate being β per period. Thus, the surplus at
the end of the first period has the form

S1 = (1 − δ)S0 + c − X1.

The same procedure is repeated each period (investment of the part δ of available surplus,
acquirement of premium and return of invested m periods earlier capital along with interest,
payment of indemnity). For simplicity sake, we put um = (1 + β)m getting the following
recurrent formula

Sn = min[(1 − δ)Sn−1, Sn−1] + c + umδS+
n−(m+1) − Xn. (1)

Here and further on it is assumed that Sk = 0 for k < 0. That means, nothing is returned
if n < m + 1. The expression (1) is useful if it is permitted to delay the company insol-
vency, that is, the surplus can stay negative for some time. It takes into account the fact that
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negative surplus cannot be invested. Thus, for negative Sn−1 we start from Sn−1, whereas
for positive values of Sn−1 the amount (1 − δ)Sn−1 is left after investment. In the same
way, we write umδS+

n−(m+1) (where S+ = max(S, 0)), because it was impossible to invest
negative Sn−(m+1). Moreover, if the surplus at the previous step Sn−1 was negative it is pos-
sible to obtain Sn > 0 due to arrival of previous investment (if any) and/or small indemnity.
However in this case it is necessary to have c − Xn + umδS+

n−(m+1) > |Sn−1|.
Hence, expression (1) is appropriate for the study of Parisian ruin τd which occurs if

the process Sn stays below or at zero at least for a fixed time period d ∈ {1, 2, . . .}. More
precisely, see, e.g., Czarna et al. (2017),

τd = inf{n > 0 : Sn � 0, n − sup{k < n : Sk > 0} > d}.
If we use the classical notion of ruin, then the ruin time τ is defined as follows

τ = inf{n > 0 : Sn � 0}, (2)

that is, the delay d = 0. To calculate the ultimate ruin probability

P(τ < ∞) =
∞∑

n=1

P(S1 > 0, . . . , Sn−1 > 0, Sn � 0)

one can use instead of Eq. 1 the relation

Sn = (1 − δ)Sn−1 + c − Xn + umδSn−(m+1), (3)

treated in Bulinskaya and Kolesnik (2018) only for m = 1. Clearly, expression (3) is also
used for calculation of finite-time ruin probability.

There is no need to find the explicit form of Sn (although it is possible to obtain it). For
further investigation we need only the following lemma.

Lemma 1 Put S0 = x and

Sn = fn −
n∑

i=1

gn,iXi, n � 1, (4)

then f0 = x, whereas

fn = (1 − δ)fn−1 + c, n = 1,m, fn = (1 − δ)fn−1 + umδfn−(m+1) + c, n > m, (5)

and

gn,i = (1 − δ)gn−1,i + umδgn−(m+1),i , i = 1, n − (m + 1),

gn,i = (1 − δ)gn−1,i , i = n − m, n − 1, gn,n = 1. (6)

Proof Obviously, combination of Eqs. 3 and 4 provides the desired recursive relations (5)
and (6).

3 Ruin Probability: Theoretical Results

3.1 General Claim Distribution

Our next aim is investigation of ultimate and finite-time ruin probabilities. To this end, we
reformulate Lemma 1 as follows. The company surplus Sn, n � 1, has the form Sn = fn−Yn

with fn defined by Eq. 5 and vector Yn = (Y1, . . . , Yn) given by Yn = Gn ·Xn. Here vector
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Xn = (X1, . . . , Xn) and matrix Gn = (gk,i)k,i=1,...,n, where gk,i = 0 for i > k, the others
being specified by Eq. 6.

Now we prove the following result.

Theorem 1 The ultimate ruin probability is represented by

ϕ(x) =
∞∑

n=1

f1∫

0

. . .

fn−1∫

0

+∞∫

fn

n∏

k=1

pX(vk(y1, . . . , yn))dy1 . . . dyn,

where x is the initial surplus, fn, n � 1, and gn,i , n � 1, i = 1, n, are given by Eqs. 5
and 6, respectively. The function vk(y1, . . . , yn), k = 1, n, is the kth component of vector
G−1

n yn and yn = (y1, . . . , yn).

Proof The ruin time is defined by Eq. 2. So, we calculate the probability of ruin at the nth
step obtaining the distribution of the ruin time. To this end, we use Lemma 1. Hence, the
probability under consideration P(τ = n) is given by P(Un) with

Un =
{

g1,1X1 < f1, ...,
n−1∑

i=1

gn−1,iXi < fn−1,

n∑

i=1

gn,iXi � fn

}
.

In other words, P(τ = n) is a multiple integral over the domain

U ′
n =

{
g1,1x1 < f1, . . . ,

n−1∑

i=1

gn−1,ixi < fn−1,

n∑

i=1

gn,ixi � fn

}

of pX1,...,Xn(x1, . . . , xn). Performing the change of variables yn = Gn · xn, we see that the
integral transforms into

f1∫

0

. . .

fn−1∫

0

+∞∫

fn

pX1,...,Xn(v1(y1, . . . , yn), . . . , vn(y1, . . . , yn))

| det Gn(v1(y1, . . . , yn), . . . , vn(y1, . . . , yn))| dy1 . . . dyn.

Obviously, xn = G−1
n · yn, so vi(y1, . . . , yn) = (G−1

n · yn)i .
Using the fact that the determinant is a product of diagonal elements gi,i = 1 and the

sequence Xi consists of i.i.d. r.v.’s we establish the desired form of probability

f1∫

0

. . .

fn−1∫

0

+∞∫

fn

n∏

k=1

pX(vk(y1, . . . , yn))dy1 . . . dyn. (7)

Summing these expressions over all n � 1 we obtain the ultimate ruin probability.
According to Lemma 1 integration limits fk , k � 1, depend on x, so the ultimate ruin
probability is also a function of the initial surplus x, that is, ϕ(x) = P(τ < ∞|S0 = x).

Another interesting problem is calculation of finite-time ruin probability. In other words,
we want to get the expression of probability

ϕN(x) = P(τ � N |S0 = x)
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for a fixed number N .

Corollary 1 The following relation holds

ϕN(x) = 1 −
f1∫

0

. . .

fN−1∫

0

fN∫

0

N∏

k=1

pX(vk(y1, . . . , yN))dy1 . . . dyN . (8)

Proof Clearly, using Eq. 7 which provides P(τ = n) we get ϕN(x) as a sum of corre-
sponding summands for n � N . On the other hand, it can be written as 1 − P(τ > N) =
1 − P(S1 > 0, . . . , SN > 0). Thus, proceeding along the same lines as in the proof of
Theorem 1 we immediately obtain expression (8).

3.2 Exponential Claim Distribution

Theorem 1 gives an explicit formula for finding the probability of ultimate ruin. However,
as it often happens in actuarial and financial mathematics, it contains multi-dimensional
integrals that are difficult to calculate. As usual, we can apply the formula to the simplest
particular case of the model and obtain analytical expressions. Specifically, in Theorem 2
we assume that X has an exponential distribution (which is a common assumption) and give
an expression for ruin probability P(τ = n) containing no integrals. This result can be used
for further theoretical analysis of the model.

Let En denote an n × n identity matrix. We first formulate a useful lemma.

Lemma 2 Let λ, (ai)
n
i=1, (fi)

n
i=1, (lij , 1 � j < i � n) be real numbers, λ > 0, fi > 0 for

all i. Let
⎛

⎜⎜⎜⎜⎜⎝

l1
l2
...

ln−1
ln

⎞

⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎝

0 0 . . . 0 0
l21 0 . . . 0 0
...

...
. . .

...
...

ln−1 1 ln−1 2 . . . 0 0
ln1 ln2 . . . ln n−1 0

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

y1
y2
...

yn−1
yn

⎞

⎟⎟⎟⎟⎟⎠

be a vector of linear combinations of variables (yi)
n
i=1 and denote

In :=
∫ f1

l1

· · ·
∫ fn

ln

exp

(
−λ

n∑

i=1

aiyi

)
dy1 . . . dyn. (9)

Then

In = 1

λn

2n−1∑

k=0

sk, (10)

sk := (−1)k1+...kn

⎛

⎝
n∏

p=1

ak
p

⎞

⎠
−1

exp

⎛

⎝−λ

n−1∑

p=1

kpak
pfp

⎞

⎠ , (11)
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where knkn−1 . . . k2k1 is the binary representation of k, 0 � k � 2n − 1, that is, ki is either
0 or 1, and

⎛

⎜⎜⎜⎜⎜⎝

ak
1

ak
2
...

ak
n−1
ak
n

⎞

⎟⎟⎟⎟⎟⎠
= (En + (1 − k1)L1) . . . (En + (1 − kn)Ln)

⎛

⎜⎜⎜⎜⎜⎝

a1
a2
...

an−1
an

⎞

⎟⎟⎟⎟⎟⎠
, (12)

(Li)st =
{

lts if t = i, s < i,

0 otherwise.
(13)

Proof We will argue by induction over n. If n = 1, the result is easily verified.
Assume the formula is true for all dimensions not higher than n − 1. Taking the integral

with respect to yn in Eq. 9 gives In = I ′
n−1 + I ′′

n−1, where

I ′
n−1 := 1

λan

∫ f1

l1

· · ·
∫ fn−1

ln−1

exp

(
−λ

n−1∑

i=1

(ai + anlni)yi

)
dy1 . . . dyn−1,

I ′′
n−1 := − 1

λan

e−λanfn

∫ f1

l1

· · ·
∫ fn−1

ln−1

exp

(
−λ

n−1∑

i=1

aiyi

)
dy1 . . . dyn−1.

After applying the formula for dimension n − 1 and getting

I ′
n−1 = 1

λnan

2n−1−1∑

k=0

s′
k,

I ′′
n−1 = − 1

λnan

e−λanfn

2n−1−1∑

k=0

s′′
k

for certain s′
k and s′′

k , it can be easily seen that

1

an

s′
k = sk,

− 1

an

e−λanfns′′
k = sk+2n−1 ,

which completes the proof.

Theorem 2 If the density function of X is exponential, namely, pX(y) = e−λy1{y > 0},
where 1{·} is the indicator function, then the probability of ruin at a particular time is given
by

P(τ = n) = 1

λn
e−λfn

2n−1−1∑

k=0

sk,

sk := (−1)k1+...kn−1

⎛

⎝
n−1∏

p=1

ak
p

⎞

⎠
−1

exp

⎛

⎝−λ

n−1∑

p=1

kpak
pfp

⎞

⎠ ,
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where kn−1kn−2 . . . k2k1 is the binary representation of k, 0 � k � 2n−1 − 1, so ki is either
0 or 1, and

⎛

⎜⎜⎜⎜⎜⎝

ak
1

ak
2
...

ak
n−2

ak
n−1

⎞

⎟⎟⎟⎟⎟⎠
= (E + (1 − k1)L1) . . . (E + (1 − kn−1)Ln−1)

⎛

⎜⎜⎜⎜⎜⎝

a1
a2
...

an−2
an−1

⎞

⎟⎟⎟⎟⎟⎠
,

ai =
{

(1 − u)δ if 1 � i � n − m − 1,

δ if n − m � i � n − 1,

(Li)st =

⎧
⎪⎨

⎪⎩

uδ if (s, t) = (i − m − 1, i),

1 − δ if (s, t) = (i − 1, i),

0 otherwise.

Proof Using the recurrence relations for gn,i it is easy to show that

(
G−1

n

)

ij
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if i = j ,

δ − 1 if i − j = 1,

−uδ if i − j = m + 1,

0 otherwise.

Therefore,

v1(y1, . . . , yn) = y1,

v2(y1, . . . , yn) = y2 − (1 − δ)y1,

v3(y1, . . . , yn) = y3 − (1 − δ)y2,

· · ·
vm+1(y1, . . . , yn) = ym+1 − (1 − δ)ym,

vm+2(y1, . . . , yn) = ym+2 − (1 − δ)ym+1 − uδy1,

vm+3(y1, . . . , yn) = ym+3 − (1 − δ)ym+2 − uδy2,

· · ·
vn(y1, . . . , yn) = yn − (1 − δ)yn−1 − uδyn−m−1.

It follows that

n∑

k=1

vk(y1, . . . , yn) =
n−m−1∑

k=1

(1 − u)δyk +
n−1∑

k=n−m

δyk + yn. (14)

The expression for the ruin probability at time n

P (τ = n) =
∫ f1

0
· · ·

∫ fn−1

0

∫ ∞

fn

∞∏

k=1

pX (vk(y1, . . . , yn)) dy1 . . . dyn

can be rewritten in the form

P(τ = n) =
∫ f1

l1

· · ·
∫ fn−1

ln−1

∫ ∞

fn

e−λ
∑n

k=1 vk(y1,...,yn)dy1 . . . dyn. (15)
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The lower limits can be found by solving the inequalities vk(y1, . . . , yn) ≥ 0:

l1 = 0,

l2 = (1 − δ)y1,

l3 = (1 − δ)y2,

· · ·
lm+1 = (1 − δ)ym,

lm+2 = (1 − δ)ym+1 + uδy1,

lm+3 = (1 − δ)ym+2 + uδy2,

· · ·
ln−1 = (1 − δ)yn−2 + uδyn−m−2.

Using (14) and taking the integral in (15) with respect to yn, we obtain

P(τ = n) = 1

λ
e−λfn

∫ f1

l1

· · ·
∫ fn−1

ln−1

exp

⎛

⎝−λ

n−1∑

p=1

apyp

⎞

⎠ dy1 . . . dyn−1. (16)

Using Lemma 2, we get

∫ f1

l1

· · ·
∫ fn−1

ln−1

exp

⎛

⎝−λ

n−1∑

p=1

apyp

⎞

⎠ dy1 . . . dyn−1

= 1

λn−1

2n−1−1∑

k=0

(−1)k1+...+kn−1

⎛

⎝
n−1∏

p=1

ak
p

⎞

⎠
−1

exp

⎛

⎝−λ

n−1∑

p=1

kpak
pfp

⎞

⎠ . (17)

Combining (16) and (17) proves the desired result.

Corollary 2 The finite-time ruin probability is given by

φN = 1 − λNIN

for IN as found in Eqs. 10–13.

4 Dividends

Another characteristic important to any insurance company is dividends payment to its
shareholders. The simplest and widely used dividends strategy is a so-called barrier strat-
egy. It is specified by some barrier level b > 0. If the company capital crosses upwards this
level the excess is immediately paid out as dividends. The first problem is to find the prob-
ability that dividends will be paid at least once before the ruin. To solve it we define a new
random variable

tb = inf{n > 0 : Sn � b}.
Hence, we would like to calculate P(tb < τ). It is not difficult to prove the following result.

Theorem 3 The relation

P(tb < τ) =
∞∑

n=1

f1∫

f1−b

. . .

fn−1∫

fn−1−b

fn−b∫

0

n∏

k=1

pX(vk(y1, . . . , yn))dy1 . . . dyn (18)

is valid for S0 = x > 0. The expressions of fk and vk(y1, . . . , yn) are defined in Theorem 1.
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Proof We begin by establishing the form of P(tb = n, tb < τ). That means, we calculate
the probability of crossing level b by surplus before ruin. Obviously, we can write

P(tb = n, tb < τ) = P(S1 ∈ (0, b), . . . , Sn−1 ∈ (0, b), Sn � b).

Recalling that Sk = fk − Yk , k � 1, we rewrite this probability as

P(f1 − b < Y1 < f1, . . . , fn−1 − b < Yn−1 < fn−1, Yn < fn − b)

=
f1∫

f1−b

. . .

fn−1∫

fn−1−b

fn−b∫

0

n∏

k=1

pX(vk(y1, . . . , yn))dy1 . . . dyn.

The last expression is obtained along the same lines as Eq. 7. Since P(tb < τ) =∑∞
n=1 P(tb = n, tb < τ) we get immediately (18).

Remark 1 Theorems 1, 3 and Corollary 1 can be extended to treat the case of
independent non-identically distributed random variables Xi , i � 1. Instead of∏n

k=1 pX(vk(y1, . . . , yn)) one has to write
∏n

k=1 pXk
(vk(y1, . . . , yn)), here pXk

(x) is the
density of Xk .

5 Numerical Results

5.1 Simulation

Using the Python 3 programming language and the package numpy, we generated a large
sample of pseudo-random variables to simulate the claim sizes Xi . The process Sn was
modeled multiple times (100 000 times during this iteration) and the empirical probability
of ruin was calculated. (It is equal to the number of attempts in which ruin occurred divided
by the total number of attempts). In the same way, the empirical probability of the event
that dividends are paid at least once before ruin was calculated as well. It is a very good
numerical method for obtaining the values of these probabilities, and it is better than trying
to calculate the multi-dimensional integrals found in explicit theoretical formulas above.
Indeed, calculating those integrals by definition is unfeasible because the runtime grows
exponentially as the number of dimensions increases. The simple Monte-Carlo method of
calculating multi-dimensional integrals is also inappropriate in this case, because the mea-
sure of the domain grows very quickly, causing the standard error to grow so much that the
answer contains no information (see Table 1).

Table 1 The probability of ruin calculated using the Monte-Carlo method

horizon ruin standard error runtime

1 0.247 0.001 8.756

4 0.385 0.002 24.343

7 0.408 0.016 29.040

10 0.334 0.262 31.556

The standard error increases rapidly. Fixed parameters: δ = 0.8, u = 1.5, m = 1, c = 6.0, S0 = 5.0, Xi have
the density pX(t) = λe−λt1{t�0} with parameter λ = 0.2
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The reader may see the code of one simulation in Listing 1.
It is impossible to model the process Sn for all positive integers n, so we checked how

quickly the probability of ruin over a finite horizon converges to the actual probability of
ruin. Table 2 shows the results. It is clear from this table that it is enough to calculate Sn for
only the first few values of n, the remaining steps do not change the probability much. We
have verified this convergence quality for other values of parameters as well.

Taking that into account, we will confine ourselves to only considering the horizon 1000.
Table 3 shows how the two empirical probabilities depend on the distribution of Xi .

It is clear from this table that the result for Xi distributed exponentially differs from
that for Xi distributed uniformly with the same mean. More precisely, if the distribution
of claims is uniform, the situation is better for the insurance company: indeed, the claim

import numpy as np

def div_and_ruin_for_Xs(
horizon, delta, u, m, c, S_0, barrier, Xs,

):
dividends_are_paid = False
ruin_occured = False

S = [None for _ in range(horizon + 1)]
S[0] = S_0
for i in range(1, horizon + 1):

if i >= m + 1:
S[i] = (1 - delta) * S[i - 1] + c +\

u * delta * S[i - (m + 1)] - Xs[i]
else:

S[i] = (1 - delta) * S[i - 1] + c - Xs[i]
if S[i] < 0:

ruin_occured = True
return (dividends_are_paid, ruin_occured)

if S[i] >= barrier:
dividends_are_paid = True

return dividends_are_paid, ruin_occured

def one_simulation(
horizon, delta, u, m, c, lambda_, S_0, barrier,

):
Xs = [None] + list(

np.random.exponential(
scale = 1 / lambda_, size=horizon,

)
)
return div_and_ruin_for_Xs(

horizon, delta, u, m, c, S_0, barrier, Xs,
)

Listing 1 The code of one simulation
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Table 2 The empirical probability of ruin and at least one payment of dividends before ruin: premium rate c

and horizon are varied

c horizon dividends are paid ruin runtime

2.0 3 0.000 0.939 5.239
2.0 10 0.001 0.996 5.338
2.0 32 0.002 1.000 6.812
2.0 100 0.002 1.000 11.694
2.0 316 0.002 1.000 25.094
2.0 1000 0.002 1.000 71.171
2.0 3162 0.002 1.000 202.847

6.0 3 0.000 0.582 4.709
6.0 10 0.346 0.730 6.381
6.0 32 0.346 0.753 10.327
6.0 100 0.348 0.752 23.776
6.0 316 0.346 0.753 64.307
6.0 1000 0.347 0.753 197.461
6.0 3162 0.347 0.752 588.802

10.0 3 0.449 0.281 4.889
10.0 10 0.753 0.341 7.776
10.0 32 0.754 0.342 16.328
10.0 100 0.754 0.342 43.908
10.0 316 0.753 0.342 131.265
10.0 1000 0.754 0.342 415.139
10.0 3162 0.753 0.342 1325.672

Fixed parameters: δ = 0.8, u = 1.5, m = 3, S0 = x = 5.0, b = 10.0, Xi have the density pX(t) =
λe−λt1{t�0} with parameter λ = 0.2. The runtime is how long it took the algorithm to run 100 000 simulations
before giving the answer, in seconds

Table 3 The empirical probability of ruin and at least one payment of dividends before ruin: the distribution
of Xi is varied

distribution of Xi dividends are paid ruin runtime

exponential with λ = 0.1 0.052 0.996 14.377

exponential with λ = 0.2 0.347 0.752 40.779

exponential with λ = 0.3 0.644 0.396 78.986

exponential with λ = 0.4 0.820 0.192 97.866

exponential with λ = 0.5 0.910 0.093 115.296

exponential with λ = 0.6 0.956 0.044 122.637

exponential with λ = 0.7 0.979 0.021 127.139

uniform on [0.0, 2.0] 1.000 0.000 111.898

uniform on [0.0, 6.0] 1.000 0.000 121.689

uniform on [0.0, 10.0] 0.285 0.729 42.049

uniform on [0.0, 14.0] 0.059 0.971 15.218

Fixed parameters: δ = 0.8, u = 1.5, c = 6.0, m = 3, S0 = x = 5.0, b = 10.0. The runtime is how long it
took the algorithm to run 100 000 simulations before giving the answer, in seconds

114



Methodology and Computing in Applied Probability (2021) 23:103–121

Table 4 The empirical probability of ruin and at least one payment of dividends before ruin: m and δ are
varied

δ m dividends are paid ruin runtime

0.0 1 0.739 0.503 70.118

0.0 2 0.742 0.499 74.127

0.0 6 0.738 0.503 70.278

0.0 10 0.740 0.501 71.366

0.0 14 0.737 0.504 69.061

0.05 1 0.728 0.485 69.319

0.05 2 0.724 0.470 76.895

0.05 6 0.709 0.471 71.198

0.05 10 0.709 0.487 74.023

0.05 14 0.709 0.512 70.852

0.1 1 0.716 0.473 74.496

0.1 2 0.699 0.466 72.326

0.1 6 0.676 0.495 74.844

0.1 10 0.673 0.539 75.732

0.1 14 0.675 0.589 64.763

0.15 1 0.701 0.468 74.902

0.15 2 0.680 0.468 72.277

0.15 6 0.635 0.528 74.752

0.15 10 0.626 0.598 68.505

0.15 14 0.627 0.663 52.311

0.2 1 0.688 0.467 77.648

0.2 2 0.655 0.473 74.138

0.2 6 0.589 0.562 64.429

0.2 10 0.576 0.650 54.871

0.2 14 0.570 0.730 45.221

0.4 1 0.647 0.479 69.677

0.4 2 0.576 0.526 64.270

0.4 6 0.394 0.700 45.936

0.4 10 0.313 0.814 33.595

0.4 14 0.278 0.895 25.112

0.6 1 0.606 0.510 70.180

0.6 2 0.505 0.591 56.527

0.6 6 0.232 0.809 33.800

0.6 10 0.099 0.910 23.496

0.6 14 0.041 0.960 17.957

Fixed parameters: β = 0.15, c = 6.0, S0 = x = 5.0, b = 10.0, Xi have the density pX(t) = λe−λt1{t�0}
with parameter λ = 0.2. The runtime is how long it took the algorithm to run 100 000 simulations before
giving the answer, in seconds
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amounts are bounded from above, so there is a smaller chance of losing too much in one
period.

It is also very interesting how the performance of the company depends on the relative
amount δ of the invested capital, and the number m of periods this fraction is kept in the
bank. Table 4 shows our results. The data suggests that the probability of ruin is concave
with respect to δ. Verifying this conjecture formally and finding the optimum is another
theoretical problem.

A different problem is the complex behavior of the integrals in formulas (7), (8) and (18).
In particular, it is impossible to give any simple expressions for the sequence fn, because the
characteristic polynomial xm+1−(1−δ)x−uδ of the recurrence relation dn = (1−δ)dn−1+
uδdn−(m+1) may not be solvable in radicals. Though it is easy to show (see Lemma 3) that
the sequence fn is monotonic if c − δS0 � 0, we cannot say much about the other case.
For an example of such a sequence see Table 5. Numerical data suggests that fn is always
monotonic for sufficiently large n.

5.2 Sensitivity Analysis of the Ruin Probability

In the exponential case, the explicit formula for the probability of ruin with finite horizon
has been obtained in Corollary 2. If the horizon is small enough, this formula is much more
convenient to use than other methods, because the value is precise and takes little time to
compute. We fix a small value of horizon (5 for speed and simplicity) and choose m to be 1.
The probability of ruin is then a function of five parameters: δ, u, c, λ, x. We are interested
in discovering how sensitive the probability is to changes in each parameter.

We consider the parameters to be independent uniformly distributed random variables in
segments [0.0, 1.0], [1.0, 1.4], [2.0, 10.0], [0.5, 1.5], [0.0, 16.0] respectively and simulate
N = 20 000 values of the target function. This way, we obtain five scatterplots shown in
Fig. 1. It is immediately obvious that for the given segments the parameter c has the greatest
influence, λ and x have a smaller effect on the function, δ still smaller but noticeable, and
u does not seem to influence the probability of ruin at all (that may change if a much larger
segment is chosen).

We now prove this conclusion quantitatively. The target function Y is a function of five
parameters (which are viewed as random variables): Y = h(Z1, Z2, Z3, Z4, Z5). We are
interested in the first-order sensitivity index of ith parameter Si which represents the main
effect contribution of this input factor:

Si = V [E(Y |Zi)]
V (Y )

.

The total effect index accounts for the total contribution of the output variation due to
factor Zi , i.e. its first-order effect plus all higher-order effects due to interactions:

STi
= 1 − V [E(Y |Z∼i )]

V (Y )
,

Table 5 The sequence fn. Fixed parameters: δ = 0.5, β = 0.15, c = 2.0, S0 = x = 10.0, m = 7

f0 f1 f2 f3 f4 f5 f6 f7 f8 f9

10.00 7.00 5.50 4.75 4.38 4.19 4.09 4.05 17.32 19.97

f10 f11 f12 f13 f14 f15 f16 f17 f18 f19

19.30 17.97 16.80 15.97 15.43 15.10 32.59 44.86 50.10 50.95
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Fig. 1 The scatterplots versus δ, u, c, λ, x

where by Z∼i we mean all parameters other than the ith one. See Saltelli et al. (2008) or
Bulinskaya and Gusak (2016) for background on these sensitivity indices and an algorithm
for calculating them. In our case, we get the following values:

Sδ = 0.031137, STδ = 0.156902,

Su = 0.000145, STu = 0.001926,

Sc = 0.174891, STc = 0.682256,

Sλ = 0.096090, STλ = 0.481226,

Sx = 0.066017, STx = 0.444585.

These numbers unequivocally confirm our previous observation about the effects of the
five parameters on the probability of ruin with finite horizon.

6 Conclusion and Further Research Directions

We have considered a periodic-review insurance model with investment in a non-risky
asset. Although many researchers use investment in risky assets (see, e.g. Hussain and
Parvez 2017), it may be dangerous for insurance companies (see, Kabanov and Perga-
menshchikov 2016 and references therein). So, we treated the investment in a bank for a
given time providing a fixed interest. The formulas for calculation of finite-time and ulti-
mate ruin probabilities are obtained in terms of multi-dimensional integrals. For the case of
exponential claims we computed these integrals getting the formulas useful for numerical
investigations. Dividends payment under the barrier strategy is also considered.
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We provided the following numerical results obtained by modeling the surplus dynamics
using the programming language Python 3. The code of one simulation is given by Listing 1.
Empirical ruin probability was calculated as well as probability of at least one dividends
payment before the ruin. It turned out that such a method is better than calculation of ruin
probability by Monte-Carlo method (see Table 1). The above mentioned empirical probabil-
ities were calculated for exponential distribution if premium rate c and horizon are varied.
As Table 2 shows, the ruin probability over a finite horizon quickly converges to the ultimate
one. Results for exponential and uniform claim distributions are compared in Table 3 (for
fixed investment parameters). Parameters m and δ are varied for exponential distribution in
Table 4. The data suggests that the probability of ruin is concave with respect to δ.

Verification of this conjecture formally and finding the optimal investment policy
(minimizing the ruin probability) is the theoretical problem we plan to solve.

Although it was proved in Lemma 3 that the sequence fn monotonically grows for c −
δS0 � 0, we cannot say much about the other case. An example of such a sequence is given
in Table 5. Numerical data suggests that fn is always monotonic for sufficiently large n.
However it is necessary to prove this fact.

In Section 5.2 we carried out the sensitivity analysis of the model to small fluctuations
of parameters for the case of exponential claim distribution using the methods presented in
Saltelli et al. (2008), see Bulinskaya and Gusak (2016) as well. It turned out much more
convenient to use the formula of Corollary 2 than other methods, since the result is precise
and takes less time to compute. The methods of probability metrics, see, e.g., Rachev et al.
(2013), will be useful for treatment of underlying processes perturbation.

Investigation of the asymptotic behavior of ruin probability for light- and heavy-tailed
claim distributions is currently under development.

The results established for Parisian ruin and dividends payment with Parisian implemen-
tation delay will be published in a forthcoming paper.

Acknowledgments The authors would like to thank an anonymous Reviewer for the helpful suggestions on
improvement of presentation.

Appendix

For further investigation, the following results will be useful.

Lemma 3 The sequence {fn}n�0 defined by Eq. 5 is increasing if c > δx. If c = δx then
the sequence {fn}n�m is increasing whereas fk = f0 = x for k = 1,m.

Proof Put hn = fn − fn−1, n � 1, then, according to Eq. 5, h1 = f1 − f0 = c − δx,
hk = (1 − δ)k−1h1, k = 2,m, hm+1 = (1 − δ)mh1 + umδx and, for k � 1,

hm+k+1 = (1 − δ)hm+k + umδhk . (19)

Thus,

hm+k = [(1 − δ)m+k−1 + (k − 1)umδ(1 − δ)k−2]h1 + umδ(1 − δ)k−1x, k = 2,m + 1,

whereas

h2m+2 = [(1 − δ)2m+1 + (m + 1)umδ(1 − δ)m]h1 + [umδ(1 − δ)m+1 + (umδ)2]x.
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Using Eq. 19 we conclude that hn = κnh1 + γnx with κn = (1 − δ)n−1, for n = 1,m + 1,
and γn = 0, n = 1,m, γm+1 = umδ. Moreover, κm+2 = (1−δ)m+1+umδ, γm+2 = umδ(1−
δ) and κm+l+1 = (1− δ)κm+l +umδκl , for l > 1, while γm+l+1 = (1− δ)γm+l +umδγl . It
follows immediately that κn > 0 for n � 1, whereas all γn are non-negative. Thus, hn > 0
for n � 1 if h1 = c − δx > 0. If h1 = 0 then hn = 0 for n = 1,m and hn > 0 for n > m.
Since fn = fn−1 + hn, it is clear that, for all n > m, fn > fn−1 if h1 = c − δx � 0.

It is possible to get an explicit form of coefficients κn and γn for any m and n.

Corollary 3 The following relations hold

κn =
[ n
m+1 ]∑

i=0

a
(m,n)
i (umδ)i(1 − δ)n−1−(m+1)i ,

with a
(m,n)
0 = 1, a(m,n)

i = a
(m,n−1)
i + a

(m,n−m−1)
i−1 for i > 1.

Moreover,

γn =
[ n
m+1 ]∑

k=1

a
(m)
n,k (umδ)k(1 − δ)n−(m+1)k

with a
(m)
n,1 = 1 and a

(m)
n,k = a

(m)
n−1,k + a

(m)
n−1−m,k−1 for k > 1. The sum over empty set is equal

to zero.

Proof The results follow in a straightforward way from the expression hn = h1κn + xγn

leading to the following recurrence relations:

κn = (1 − δ)κn−1 + umδκn−1−m,

γn = (1 − δ)γn−1 + umδγn−1−m.

Remark 2 It follows easily from definition of Yn that it can be rewritten in a following form:

Yn =
n∑

k=1

dn−kXk where dn−k = gn,k .

Hence, dk = (1 − δ)k , k = 0,m, and dl = (1 − δ)dl−1 + umδdl−1−m for l > m. It is not
difficult to obtain an explicit expression of dn for any n :

dn =
[ n
m+1 ]∑

i=0

a
(n)
i (umδ)i(1 − δ)n−i(m+1)

with a
(n)
0 = 1, a

(n)
1 = 1 + a

(n−1)
1 for all n and a

(n)
i = a

(n−1)
i + a

(n−m−1)
i−1 for i > 1.

Lemma 4 Consider the sequence {fn}n�0 for the case m = 1, given by the following
recurrence relation:

fn = (1 − δ)fn−1 + δu1fn−2 + c, n ≥ 2,

f0 = x, f1 = (1 − δ)x + c.

The solution can be written explicitly:

fn = c1
xn+1

1 − 1

x1 − 1
+ c2

xn+1
2 − 1

x2 − 1
, c1 = c − x (δ + x2)

x1 − x2
, c2 = c − x (δ + x1)

x2 − x1
,

where x1 < x2 are the roots of the quadratic equation y2 − (1 − δ)y − u1δ = 0.
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Proof For convenience, let f−1 = 0, and put hn = fn − fn−1 for n � 0. Then {hn}n�0
satisfies:

hn = (1 − δ)hn−1 + δu1hn−2, n � 2,

h0 = x, h1 = c − δx.

It is a simple homogeneous recurrence relation of order 2. The characteristic polynomial
p(y) = y2 − (1 − δ)y − u1δ has two different roots x1 < x2, therefore, the solution is

hn = c1x
n
1 + c2x

n
2 .

The values of c1 and c2 are found from the initial conditions h0 = c1 + c2 = x, h1 =
c1x1 + c2x2 = c − δx.

Recalling that

fn =
n∑

i=0

hi

completes the proof.

Corollary 4 In the case m = 1, fn ∼ dxn
2 → +∞ as n → +∞, where d is a positive

constant. In particular, this sequence is strictly increasing for sufficiently large n.

Proof Since the discriminant D = (1 − δ)2 + 4u1δ of p(y) is greater than (1 + δ)2, the
following three inequalities take place:

x1 = 1 − δ − √
D

2
< −δ,

x2 = 1 − δ + √
D

2
> 1,

|x1| < |x2|.
Then, obviously, the relation fn ∼ dxn

2 with d = c−x(δ+x1)
(x2−x1)(x2−1)

x2 follows from Lemma 4.
We only need to show c − x (δ + x1) > 0, or, equivalently, x1 < c

x
− δ. It is true because

x1 < −δ < c
x

− δ.
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