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Abstract
In the present paper we study the distributions of families of patterns which generalize runs
and patterns distributions extensively examined in the literature during the last decades. In
our analysis we assume that the sequence of outcomes under investigation includes inde-
pendent, but not necessarily identically distributed trials. An illustration is also provided
how our new results could be exploited to enrich a new system, still in research, related to
patients’ weaning from mechanical ventilation.
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1 Introduction

During the last decades the distribution of runs and patterns has been extensively studied
due to its wide applicability in several research areas.

Let Z1, Z2, . . . be a sequence of Bernoulli trials with success (failure) probability of
the t-th trial pt = Pr(Zt = 1) (qt = Pr(Zt = 0) = 1 − pt ), t ≥ 1 and k ≥ 2,
r ≥ 0 two integers. Recently, Dafnis et al. (2019) motivated by a reliability analysis problem
introduced the following collection of patterns:

E1: a string of outcomes containing k successes (S′s) in which each pair of successive
S′s may be interrupted by at most r consecutive failures (F ′s).

The typical element of E1 is of the form SF ...F
︸ ︷︷ ︸

d1

SF ...F
︸ ︷︷ ︸

d2

S...SF ...F
︸ ︷︷ ︸

dk−1

S, where di ∈ N, 0 ≤

di ≤ r , for all i = 1, 2, ..., k − 1 (N denotes the set of all non-negative integers).
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In several applications the study of the complement of E1 is of significant interest.
Introducing the following compound pattern E2

E2: a string of outcomes containing k S′s in which at least one pair of successive
S′s is interrupted by at least r consecutive F ′s (the typical element of E2 is of the
form SF ...F

︸ ︷︷ ︸

l1

SF ...F
︸ ︷︷ ︸

l2

S...SF ...F
︸ ︷︷ ︸

lk−1

S, where li ∈ N and li ∈ [r, +∞) for at least one i, i =

1, 2, ..., k−1), it is clear thatE2 is the complement of E1, with r replaced by r−1. Note that
the cardinality of E1 equals | E1 |= (r + 1)k−1 while E2 is a compound pattern containing
infinitively many simple patterns.

The patterns contained in E1 and E2 contain exactly k successes. In order to allow
for more than k successes in the patterns under enumeration we shall also consider the
next two families generated by adding a number of S′s at the end of the typical elements
of E1 and E2. More specifically, the typical element of the family E3 is of the form
SF ...F
︸ ︷︷ ︸

d1

SF ...F
︸ ︷︷ ︸

d2

S...SF ...F
︸ ︷︷ ︸

dk−1

SS...S
︸︷︷︸

≥0

, where di ∈N, 0≤di ≤ r , for all i = 1, 2, ..., k−1,while the

typical element of E4 reads SF ...F
︸ ︷︷ ︸

l1

SF ...F
︸ ︷︷ ︸

l2

S...SF ...F
︸ ︷︷ ︸

lk−1

SS...S
︸︷︷︸

≥0

, where li ∈ N and li ∈ [r, +∞)

for at least one i, i = 1, 2, ..., k − 1. A phrasal description of E3 and E4 follows:
E3: a string of outcomes containing at least k S′s in which each pair of successive S′s in

the first k S′s may be interrupted by at most r consecutive F ′s,
E4: a string of outcomes containing at least k S′s in which at least one pair of successive

S′s in the first k S′s is interrupted by at least r consecutive F ′s. Each one of the compound
patterns E3 and E4 contains infinitively many simple patterns.

To make the definitions of E3 and E4 more clear, we should note that, in both cases when
enumerating a simple pattern, the occurrence of an F is permitted only among the first k

S’s and not among the S’s which possibly follow. A new pattern may start counting from
scratch only after the appearance of an F .

Let us denote by N
(i)
n,k,r the number of non-overlapping occurrences of patterns included

in Ei (i = 1, 2, 3, 4) in the sequence of outcomes Z1, Z2, . . . , Zn (n ≥ k).
As already mentioned, the compound pattern E1 was first introduced by Dafnis et al.

(2019), who studied the distribution ofN(1)
n,k,r , in the case of independent trials, motivated by

a reliability evaluation problem in a consecutive-type system. Special cases of the compound
patterns E1, E2 have also been considered in Dafnis et al. (2012), where the distributions
of N

(i)
n,2,r (i = 1, 2) have been obtained when Z1, Z2, . . . is a sequence of independent

and identicallly distributed (i.i.d.) trials; for related results see, among others, Makri and
Psillakis (2012, 2013, 2014, 2017).

It is noteworthy that, when r = 0, some of the aforementioned random variables, reduce
to well-known success runs enumerating random variables. Philippou and Makri (1986),
Hirano (1986) and Goldstein (1990) have proceeded to extensive studies of the random vari-
ables N

(1)
n,k,0 and N

(3)
n,k,0, which enumerate the number of occurrences of non-overlapping

success runs of length k and the number of success runs of length at least k, respectively. If
the underlying sequence Z1, Z2, . . . of binary outcomes comes from Bernoulli trials, then
the distributions are called binomial distributions of order k. A convenient reference for the
theory and applications of run-related distributions is Balakrishnan and Koutras (2002). A
very popular method for deriving the distribution of success runs occurrences is by estab-
lishing an appropriate Markov chain and expressing the probability mass function (pmf) of
the variable of interest through the transition probability matrix of the chain. The definite
reference for this approach is the monograph of Fu and Lou (2003).
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For k = 2, some of the random variables introduced in the present article reduce to
random variables enumerating patterns. Dafnis et al. (2012) studied the distributions of
N

(i)
n,2,r (i = 1, 2) employing a Markov chain imbedding technique. These distributions were

also studied earlier by Sen and Goyal (2004), for r ≥ 1, by the aid of combinatorial methods.
During the last decades, many publications have dealt with success run distributions and

their generalizations, including scans and patterns distribution; see for example Antzoulakos
et al. (2003), Bersimis et al. (2014), Chatziconstantinidis et al. (2000), Demir and Eryilmaz
(2010), Eryilmaz (2005), Fu and Koutras (1994b), Inoue and Aki (2003), Koutras et al
(1995), Makri and Philippou (2005), Makri et al. (2007), Makri and Psillakis (2011, 2015),
Mytalas and Zazanis (2013), Yalcin and Eryilmaz (2014).

In the present paper we employ the Markov chain imbedding technique to study the
distributions of N

(i)
n,k,r (i = 2, 3, 4), in the case of independent, but not necessarily identi-

cally distributed, trials. An illustration is also provided how the developed outcomes can be
adapted to Markov dependent trials. Our results, could be used to establish flexible decision
criteria for monitoring a patient’s mechanical support, thereof enriching the tools that can be
practiced in biomedical engineering for this purpose (see Buliev et al. (2006), Dermitzakis
et al. (2008), Dojat et al. (2000), Esteban et al. (1994)).

Throughout the paper we denote by [x] the greater integer which is less than or equal to
x and by δi,j the Kronecker’s Delta function, i.e.

δi,j =
{

0, i �= j,

1, i = j .

2 Preliminary Results

Let Z1, Z2, ... be a sequence of binary outcomes taking on the values 1 (success, S) or 0
(failure, F ) and denote by E any pattern (simple or compound) with a prespecified compo-
sition. The number of appearances of E in the sequence Z1, Z2, ..., Zn (n a fixed integer)
will be denoted by Xn. In a series of papers (Antzoulakos et al. (2003), Dafnis et al. (2012),
Fu and Koutras (1994a), Koutras (2003), Koutras and Alexandrou (1995)) a Markov chain
imbedding method was developed for the study of the exact distribution of enumerating ran-
dom variables defined on sequences of binary (or multistate) trials. Since we are going to
make use of this approach in the forthcoming sections, we shall first review the key features
of it, bringing in at the same time all necessary terminology.

We first introduce the notion of a Markov chain imbeddable variable of binomial type.
Let Xn (n a non-negative integer) be a non-negative finite integer-valued random variable
and let �n = sup{x : Pr(Xn = x) > 0} its upper end point.

Definition 1 The random variable Xn will be called Markov chain imbeddable variable of
binomial type (MVB) if

(a) there exists a Markov chain {Yt , t ≥ 0} defined on a discrete state space � which
can be partitioned as

� =
⋃

x≥0

Cx, Cx = {cx0, cx1, ..., cx,s−1},

(b) Pr(Yt ∈ Cy |Yt−1 ∈ Cx) = 0, for all y �= x, x + 1 and t ≥ 1,
(c) the event (Xn = x) is equivalent to (Yn ∈ Cx), i.e.

Pr(Xn = x) = Pr(Yn ∈ Cx), n ≥ 0, x ≥ 0.
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It follows from condition (b) of Definition 1 that the only feasible transitions for {Yt ,

t ≥ 0} are the ones carried out within the same substate set Cx or from substate Cx to Cx+1.
Those transitions give birth to the next two s × s transition probability matrices

At(x) = (Pr(Yt ∈ cxj |Yt−1 ∈ cxi)), Bt (x) = (Pr(Yt ∈ cx+1,j |Yt−1 ∈ cxi)).

Denote by ft (x) the probability (row) vectors

ft (x) = (Pr(Yt ∈ cx0),Pr(Yt ∈ cx1), ...,Pr(Yt ∈ cx,s−1)), 0 ≤ t ≤ n,

and by
πx = (Pr(Y0 ∈ cx0),Pr(Y0 ∈ cx1), ...,Pr(Y0 ∈ cx,s−1)), x ≥ 0,

the initial probabilities of the Markov chain. In most of the applications where MVB’s have
been exploited the convention Pr (X0 = 0) = 1 can be used; an immediate consequence of
it is that

π01′ = (Pr(Y0 ∈ c00),Pr(Y0 ∈ c01), ...,Pr(Y0 ∈ c0,s−1))1′ = 1,

and πx1′ = 0 for 1 ≤ x ≤ �n (1 = (1, 1, ..., 1) is the row vector of Rs with all its entries
being 1).

The following lemma (see Koutras and Alexandrou (1995)) provides recursive relations
for the probability vectors ft (x).

Lemma 2.1 For an MVB Xn, the sequence ft (x), t = 1, 2, . . . , n, satisfies the recurrence
relations

ft (0) = ft−1(0)At (0)

ft (x) = ft−1(x)At (x) + ft−1(x − 1)Bt (x − 1), 1 ≤ x ≤ �n,

with initial conditions f0(x) = πx, 0 ≤ x ≤ �n.

Manifestly, the pmf fn(x) of Xn can be expressed as

fn(x) = fn(x)1′, x = 0, 1, . . . , �n. (2.1)

Next, let ϕn(z) and �(z,w) denote the single and double generating functions

ϕn(z) =
∞
∑

x=0

Pr(Xn = x)zx =
∞
∑

x=0

fn(x)zx, �(z,w) =
∞
∑

n=0

ϕn(z)w
n.

In the case of a homogeneous MVB (i.e. when At(x) = A and Bt(x) = B for all x and
t), we have the next theorem (see Koutras and Alexandrou (1995)).

Theorem 2.1 Let I be the identity s × s matrix. If At(x) = A, Bt(x) = B for all t ≥ 1 and
x ≥ 0, then the double generating function of Xn can be expressed as

�(z,w) = π0[I − w(A + zB)]−11′.

3 Binomial Distributions

In this section we shall deduce the exact distributions of N
(i)
n,k,r , i = 2, 3, 4. Before we pro-

ceed to the development of our results, we shall elucidate the structure of the enumerating
random variables by a simple example. Consider k = 3 and r = 2. Then,

E1={SSS, SFSS, SFSFS, SFSFFS, SFFSS, SFFSFS, SFFSFFS, SSFS, SSFFS},
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while E2 can be represented as a union of disjoint pattern sets as follows

E2 = E
(1)
2 ∪ E

(2)
2 ∪ E

(1,2)
2 ∪ E

(2,1)
2 ∪ E

(2,2)
2 ,

where

E
(1)
2 = {SF ...F

︸ ︷︷ ︸

l≥2

SS},

E
(2)
2 = {SSF ...F

︸ ︷︷ ︸

l≥2

S},

E
(1,2)
2 = {SFSF ...F

︸ ︷︷ ︸

l≥2

S},

E
(2,1)
2 = {SF ...F

︸ ︷︷ ︸

l≥2

SFS},

E
(2,2)
2 = {SF ...F

︸ ︷︷ ︸

l1≥2

SF ...F
︸ ︷︷ ︸

l2≥2

S}.

It should be mentioned that the aforementioned sets contain all the patterns generated for the
indicated range of l, l1, l2, i.e. the elements ofE(1)

2 are the patterns SFFSS, SFFFSS, . . . ,

while the elements of E
(2,2)
2 are SFFSFFS, SFFFSFFS, SFFSFFFS, . . . . Likewise

E3 = {SSSS...S
︸︷︷︸

≥0

, SFSSS...S
︸︷︷︸

≥0

, SFSFSS...S
︸︷︷︸

≥0

,

SFSFFSS...S
︸︷︷︸

≥0

, SFFSSS...S
︸︷︷︸

≥0

, SFFSFSS...S
︸︷︷︸

≥0

,

SFFSFFSS...S
︸︷︷︸

≥0

, SSFSS...S
︸︷︷︸

≥0

, SSFFSS...S
︸︷︷︸

≥0

},

and E4 can be represented as

E4 = E
(1)
4 ∪ E

(2)
4 ∪ E

(1,2)
4 ∪ E

(2,1)
4 ∪ E

(2,2)
4 ,

where

E
(1)
4 = {SF ...F

︸ ︷︷ ︸

l≥2

SSS...S
︸︷︷︸

≥0

}, E
(2)
4 = {SSF ...F

︸ ︷︷ ︸

l≥2

SSS...S
︸︷︷︸

≥0

}, E
(1,2)
4 = {SFSF ...F

︸ ︷︷ ︸

l≥2

SSS...S
︸︷︷︸

≥0

},

E
(2,1)
4 = {SF ...F

︸ ︷︷ ︸

l≥2

SFSSS...S
︸︷︷︸

≥0

}, E
(2,2)
4 = {SF ...F

︸ ︷︷ ︸

l1≥2

SF ...F
︸ ︷︷ ︸

l2≥2

SSS...S
︸︷︷︸

≥0

}.

The remark stated above for E2 applies for the decomposition of E4 as well, i.e. its disjoint
components contain all the patterns produced by varying l, l1, l2 over the indicated ranges.

Should one be interested in the random variables N
(i)
n,k,r = N

(i)
n,3,2, i = 1, 2, 3, 4 in the

following sequence of n = 19 binary outcomes: SFSSSSFSFFFSSFFSSSS, it can be
readily checked that

N
(1)
19,3,2 = 4, N(2)

19,3,2 = 2, N(3)
19,3,2 = 2, N(4)

19,3,2 = 1.
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3.1 Distribution of N (1)
n,k ,r

As already stated, Dafnis et al. (2019) studied the distribution of N
(1)
n,k,r to obtain the reli-

ability of a consecutive-type system. The following theorem and corollary originate from
that work and provide expressions for the pmf of N

(1)
n,k,r for r ≥ 1 and r = 0, respectively.

Theorem 3.1 The pmf fn(x) = P(N
(1)
n,k,r = x) of the random variable N

(1)
n,k,r (r ≥ 1)

is given by (2.1), where ft (x) are probability vectors satisfying the recursive relations of
Lemma 2.1, �n = [

n
k

]

, s = (k − 1)r + k, At is an s × s matrix which has all its entries 0
except for the entries:

• (1, 1), which is equal to qt ,
• (k + jr, 1), j = 1, ..., k − 1, which are all equal to qt ,
• (i, i + 1), 1 ≤ i ≤ k − 1, which are all equal to pt ,
• (i, k + (i − 2)r + 1), 2 ≤ i ≤ k, which are all equal to qt ,
• (k + jr + i, j + 3) for k ≥ 3, 1 ≤ i ≤ r, j = 0, 1, . . . , max{0, k − 3}, which are all

equal to pt ,
• (k + i − 1, k + i) for r ≥ 2, (j − 2)r + 2 ≤ i ≤ (j − 1)r, j = 2, 3, . . . , k, which are

all equal to qt ,

and Bt is an s × s matrix with all its elements vanishing except from the first column which
is given by 1′ − At1′.

Corollary 1 Let ft (x) be the probability vectors satisfying the recursive relations of Lemma

2.1. The pmf fn(x) = P(N
(1)
n,k,0 = x) of the random variable N

(1)
n,k,0 is given by (2.1), where

�n = [

n
k

]

, s = k, At is a k × k matrix which has all its entries 0 except for the entries:

• (i, 1), i = 1, 2, . . . , k, which are all equal to qt ,
• (i, i + 1), 1 ≤ i ≤ k − 1, which are all equal to pt ,

and Bt is a k×k matrix that has all its entries 0 except for the entry (k, 1), which equals pt .

As already mentioned in the introduction, for r = 0, the distribution of the ran-
dom variable N

(1)
n,k,0 reduces to the much studied binomial distribution of order k (see

e.g. Fu and Koutras (1994b), Philippou and Makri (1986) or the monograph by Bal-
akrishnan and Koutras (2002). In addition, the special case k = 2, i.e. the random
variable N

(1)
n,2,r , has been recently studied by Dafnis et al. (2012) (see also Sen and

Goyal (2004)).
In order to give a simple example in the case of identically distributed trials, we will

calculate P(N
(1)
5,3,2 = x), x = 0, 1. The matrices At = A and Bt = B of the Markov chain

reduce to

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

p q 0 0 0 0 0
0 0 q p 0 0 0
0 0 0 0 0 p 0
0 0 q 0 p 0 0
p 0 q 0 0 0 0
0 0 0 0 0 0 p

p 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, B =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 0 0
0 0 0 0 0 0 0
q 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
q 0 0 0 0 0 0
q 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.
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We get: f0(0) = (1, 0, 0, 0, 0, 0, 0), f1(0) = f0(0) · A = (q, p, 0, 0, 0, 0, 0),
f2(0) = f1(0) · A = (q2, pq, p2, pq, 0, 0, 0), f3(0) = f2(0) · A =
(q3, pq2, 2p2q, pq2, pq2, pq2, 0), f4(0) = f3(0) · A = (pq3 +
q4, pq3, 3p2q2, pq3, pq3, 2p2q2, p2q2), f5(0) = f4(0) · A = (p2q3 + pq4 + q(pq3 +
q4), p(pq3 + q4), 3p2q3, pq4, pq4, 3p2q3, 2p2q3), f1(1) = f0(1) · A + f0(0) · B =
(0, 0, 0, 0, 0, 0, 0), f2(1) = f1(1) · A + f1(0) · B = (0, 0, 0, 0, 0, 0, 0), f3(1) = f2(1) · A +
f2(0) · B = (p2, 0, 0, 0, 0, 0, 0), f4(1) = f3(1) · A + f3(0) · B = (4p3q, p4, 0, 0, 0, 0, 0),
f5(1) = f4(1) · A + f4(0) · B = (10p3q2, 4p4q, p5, p4q, 0, 0, 0). Thus, P(N

(1)
5,3,2 = 0) =

f5(0) · 1′ = 10p2q3 + 5pq4 + q5, P(N
(1)
5,3,2 = 1) = f5(1) · 1′ = p5 + 5p4q + 10p3q2.

An alternative method for the calculation of the pmf fn(x) of N
(1)
n,3,2 is provided by

deriving recurrence relations from the probability generating function (pgf) of it which can
be easily obtained by Theorem 2.1. Applying Theorem 3.1 for the special case k = 3, r = 2
we can obtain the entries of matrices A, B and a straightforward application of Theorem 2.1
yields the following expression for the double generating function of N

(1)
n,3,2

�(z,w) = 1 + pw(1 + qw(1 + qw))(1 + pw(1 + qw(1 + qw)))

1 − qw − p2q4w6(1 + qw) − pq3w4(1 + pw) − p3w3(1 + qw(1 + qw))2z
.

(3.1)
The last expression leads to the following expression for the pgf of the random variable
N

(1)
n,3,2.

Corollary 2 The pgf ϕn(z) of the random variable N
(1)
n,3,2 satisfies the recursive scheme

ϕn(z) = qϕn−1(z) + p3zϕn−3(z) + pq(pq(q2(q + pz)ϕn−7(z) + q(q + 2pz)ϕn−6(z)

+(q + 3pz)ϕn−5(z)) + (q2 + 2p2z)ϕn−4(z)), n ≥ 7,

with initial conditions

ϕ6(z) = 1 − p3(1 + 3q + 6q2 + 8q3) + p3(1 − p3 + 3q + 6q2 + 8q3)z + p6z2,

ϕ5(z) = 1 − p3(1 + 3q + 6q2) + p3(1 + 3q + 6q2)z,

ϕ4(z) = 1 − p3(1 + 3q) + p3(1 + 3q)z,

ϕ3(z) = 1 − p3 + p3z,

ϕn(z) = 1, f or 0 ≤ n < 3.

The expression described in Corollary 2 can be exploited for establishing very efficient
computational schemes for the calculation of the pmf fn(x) = P(N

(1)
n,3,2 = x) and the

moments μn,m= E[(N(1)
n,3,2)

m], m = 1, 2, . . . of N
(1)
n,3,2. These schemes are provided in the

following two corollaries.

Corollary 3 The pmf fn(x) of the random variable N
(1)
n,3,2 satisfies the recursive scheme

fn(x) = qfn−1(x) + pq3(p(q(qfn−7(x) + fn−6(x)) + fn−5(x)) + fn−4(x))

+p3(q4fn−7(x − 1) + 2q3fn−6(x − 1) + 3q2fn−5(x − 1) + 2qfn−4(x − 1)

+fn−3(x − 1)), n ≥ 7,
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with initial conditions fn(x) = δx,0, n = 0, 1, 2 and

f6(x) =
⎧

⎨

⎩

1 − p3(1 + 3q + 6q2 + 8q3), x = 0,
p3(1 − p3 + 3q + 6q2 + 8q3), x = 1,
p6, x = 2,

f5(x) =
{

1 − p3(1 + 3q + 6q2), x = 0,
p3(1 + 3q + 6q2), x = 1,

f4(x) =
{

1 − p3(1 + 3q), x = 0,
p3(1 + 3q), x = 1,

f3(x) =
{

1 − p3, x = 0,
p3, x = 1.

For x < 0 or x >
[

n
3

]

, we have fn(x) = 0 for all n.

Proof Follows immediately from Corollary 2 by replacing ϕn(z) = ∑∞
x=0 fn(x)zx and

picking up the coefficients of zx in both sides of the power series expansions that result.

Needless to say, applying Corollary 2 for n = 5, we can easily deduce the expressions
deduced earlier for P(N

(1)
5,3,2 = x), x = 0, 1 via the probability vector approach.

Corollary 4 The momentsμn,m, m ≥ 1, of the random variableN
(1)
n,3,2 satisfy the recursive

scheme

μn,m = qμn−1,m + pq3(p(q(qμn−7,m + μn−6,m) + μn−5,m) + μn−4,m)

+
m

∑

i=0

(

m

i

)

p3(q4μn−7,i + 2q3μn−6,i + 3q2μn−5,i + 2qμn−4,i + μn−3,i), n≥ 7,

with initial conditions

μ6,m = p3(1 − p3 + 3q + 6q2 + 8q3) + 2mp6,

μ5,m = p3(1 + 3q + 6q2),

μ4,m = p3(1 + 3q),

μ3,m = p3,

μn,m = 0, f or n < 3 and m ≥ 1,

μn,0 = 1.

Proof The moment generating function M(z) = E
(

exp(zN(1)
n,3,2)

)

of N
(1)
n,3,2 can be

expressed as M(z) = ϕn(e
z). Therefore, replacing z by ez in the recursive scheme provided

by Corollary 2 we may easily derive a recursive scheme satisfied by M(z). Recalling next
that

μn,m = E[(N(1)
n,3,2)

m] = dm

dzm
M(z)|z=0, m = 0, 1, . . .

and making use of the formula

dm

dzm

(

ekzM(z)
)
∣

∣

∣

∣

z=0
=

m
∑

i=0

(

m

i

)

km−iμn,i ,

the proof may be easily completed.
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3.2 Distribution of N (2)
n,k ,r

The next theorem is analogue to Theorem 3.1 and provides the structure of the matrices
At(x), Bt (x) that permit the evaluation of the pmf of the random variable N

(2)
n,k,r through

the Markov chain imbedding method.

Theorem 3.2 The pmf fn(x) = P(N
(2)
n,k,r = x) of the random variable N

(2)
n,k,r (r ≥ 1)

is given by (2.1), where ft (x) are probability vectors satisfying the recursive relations of
Lemma 2.1, �n = [n/(k + r)] , s = (k − 1)r + k, At is an s × s matrix which has all its
entries 0 except for the entries:

• (1, 1), which equals qt ,
• (2 + i, k + 1 + max{1, r − 1}i), i = 0, 1, ..., k − 2, which are all equal to qt ,
• (k + 1 + (r − 1)j + i, k + 2 + (r − 1)j + i), for r ≥ 3, i = 0, ...,max{0, r − 3},

j = 0, ..., k − 2, which are all equal to qt ,
• (k + r − 1+ (r − 1)i, (k − 1)r + 2+ i), for r ≥ 2, i = 0, ..., k − 2, which are all equal

to qt ,
• ((k − 1)r + 1 + i, (k − 1)r + 1 + i), i = 1, ..., k − 1, which are all equal to qt ,
• (i, i + 1), i = 1, ..., k − 1, which are all equal to pt ,
• (k, k) which equals pt ,
• (k + (r − 1)j + i, 3 + j) for r ≥ 2, j = 0, ...,max{0, k − 3}, i = 1, ..., r − 1, which

are all equal to pt ,
• (k+(k−2)(r−1)+i, k) for r ≥ 2 and k ≥ 3, i = 1, ..., r−1, which are all equal to pt ,
• ((k−1)r +1+ i, (k−1)r +2+ i) for k ≥ 3, i = 1, ..., k−2, which are all equal to pt ,

and Bt is an s × s matrix with all its elements vanishing except from the first column which
is given by 1′ − At1′.

Proof According to Lemma 2.1 it suffices to prove that N(2)
n,k,r is an MVB.

We set �n = [n/(k + r)] and introduce the state space � = ⋃�n

x=0 Cx where Cx , x =
0, 1, . . . , �n are disjoint subspaces with | Cx |= (k − 1)r + k, x = 0, 1, . . . , �n, elements
labelled as follows

Cx = {cx0, cx1, . . . , cx,k−1, cx1(1) , cx1(2) , . . . , cx1(r−1) , cx2(1) , cx2(2) , . . . ,

cx2(r−1) , cx,(k−1)(1) , . . . , cx,(k−1)(r−1) , cxL1 , cxL2 , . . . , cxLk−1}.

We introduce next a Markov chain {Yt , t ≥ 0} on � as follows:
Yt ∈ cx,i = {(x, i)}, or equivalently Yt = (x, i), if at the first t outcomes Z1, Z2, . . . , Zt

x occurrences of patterns contained in E2 have been observed, and (a) i = 0, if

(1) x = 0 and
∏t

j=1(1 − Zj ) = 1 (no S′s have appeared till the t-th outcome) or
(2) x ≥ 1, Zt = 0 and no S′s have appeared since the k-th S of the x-th occurrence of a
simple pattern contained in E2 or
(3) x ≥ 1 and the t-th outcome is the k-th S (Zt = 1) of a simple pattern contained in E2
(i.e. a simple pattern is completed at the t − th trial).
(b) i = j , j = 1, 2, . . . , k − 1, if the t-th outcome is the last S (Zt = 1) of a string of j S′s
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not interrupted by at least r consecutive F ′s between any two successive S′s.
(c) i = j (d), 1 ≤ j ≤ k − 1, 1 ≤ d ≤ r − 1, if the t − th outcome is the d-th consecutive
failure of a failure run (i.e.

∏d−1
i=0 (1−Zt−i ) = 1), following a string of j S′s not interrupted

by at least r consecutive F ′s between any two successive S′s.
(d) i = Lj , j = 1, 2, . . . , k − 1, if a new simple pattern in E2 will be completed in the next
k − i S′s (whenever they occur).

Under this set up, the random variable N
(2)
n,k,r becomes an MVB with initial probability

vector

π0 = (1, 0, 0, . . . , 0)1×((k−1)r+k) ,

and matrices At and Bt having the entries described in the theorem.
The result follows by Lemma 2.1 and Definition 1.

The principles of Theorem 3.2 can be better illustrated by an example. Let us consider
the special case k = 3, r = 2 and the following sequence of n = 18 binary outcomes:
Z1 = 0, Z2 = Z3 = Z4 = 1, Z5 = 0, Z6 = 1, Z7 = Z8 = 0, Z9 = 1, Z10 = 0, Z11 = 1,
Z12 = Z13 = Z14 = 0, Z15 = 1, Z16 = 0, Z17 = Z18 = 1. Then the evaluation of the
imbedded Markov chain, defined in Theorem 3.2, is as follows: Y1 = (0, 0), Y2 = (0, 1),
Y3 = (0, 2), Y4 = (0, 2), Y5 = (0, 2(1)), Y6 = (0, 2), Y7 = (0, 2(1)), Y8 = (0, L2),

Y9 = (1, 0), Y10 = (1, 0), Y11 = (1, 1), Y12 = (1, 1(1)), Y13 = (1, L1), Y14 = (1, L1),

Y15 = (1, L2), Y16 = (1, L2), Y17 = (2, 0), Y18 = (2, 1). The matrices At , Bt of the
Markov chain reduce to:

At =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(·, 0) (·, 1) (·, 2) (·, 1(1)) (·, 2(1)) (·, L1) (·, L2)

qt pt 0 0 0 0 0
0 0 pt qt 0 0 0
0 0 pt 0 qt 0 0
0 0 pt 0 0 qt 0
0 0 pt 0 0 0 qt

0 0 0 0 0 qt pt

0 0 0 0 0 0 qt

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Bt =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(·, 0) (·, 1) (·, 2) (·, 1(1)) (·, 2(1)) (·, L1) (·, L2)

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
pt 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

In the special case of identically distributed trials (pt = p and qt = q, for all t), we
shall have At = A, Bt = B for t = 1, 2, . . . and the calculation of P(N

(2)
5,3,2 = x),

x = 0, 1 may be easily accomplished by a direct application of Lemma 2.1 as follows:
f0(0) = (1, 0, 0, 0, 0, 0, 0), f1(0) = f0(0) · A = (q, p, 0, 0, 0, 0, 0), f2(0) = f1(0) · A =
(q2, pq, p2, pq, 0, 0, 0), f3(0) = f2(0) · A = (q3, pq2, p3 + 2p2q, pq2, p2q, pq2, 0),
f4(0) = f3(0)·A = (q4, pq3, p4+3p3q+2p2q2, pq3, p3q+2p2q2, 2pq3, 2p2q2), f5(0) =
f4(0)·A = (q5, pq4, p5+4p4q+4p3q2+2p2q3, pq4, p4q+3p3q2+2p2q3, 3pq4, p3q2+
6p2q3), f1(1) = f0(1) · A + f0(0) · B = (0, 0, 0, 0, 0, 0, 0), f2(1) = f1(1) · A + f1(0) · B =
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(0, 0, 0, 0, 0, 0, 0), f3(1) = f2(1) · A + f2(0) · B = (0, 0, 0, 0, 0, 0, 0), f4(1) = f3(1) · A +
f3(0) ·B = (0, 0, 0, 0, 0, 0, 0), f5(1) = f4(1) ·A+f4(0) ·B = (2p3q2, 0, 0, 0, 0, 0, 0). Thus,
P(N

(2)
5,3,2 = 0) = f5(0) · 1′ = p5 + 5p4q + 8p3q2 + 10p2q3 + 5pq4 + q5, P(N

(2)
5,3,2 =

1) = f5(1) · 1′ = 2p3q2.
It is worth mentioning that, in the special case k = 2, the random variable N

(2)
n,2,r−2

reduces to the variable N
(3)
n,r studied by Dafnis et al. (2012); see also Sen and Goyal (2004).

3.3 Distribution of N (3)
n,k ,r

In this subsection we turn our attention to the random variable N
(3)
n,k,r . Theorem 3.3 pro-

vides the form of the matrices At , Bt for accomplishing its Markov chain imbedding, while
Corollary 5 deals with the special case r = 0.

Theorem 3.3 The pmf fn(x) = P(N
(3)
n,k,r = x) of the random variable N

(3)
n,k,r (r ≥ 1)

is given by (2.1), where ft (x) are probability vectors satisfying the recursive relations of
Lemma 2.1, �n = [(n + 1)/(k + 1)] , s = (k − 1)r + k + 1, At is an s × s matrix which has
all its entries 0 except for the entries:

• (1, 1), which equals qt ,
• (i, 1), i = k + jr + 1, j = 0, 1, ..., k − 1, which are all equal to qt ,
• (i, i + 1), 1 ≤ i ≤ k − 1, which are all equal to pt ,
• (i, k + (i − 2)r + 2), 2 ≤ i ≤ k, which are all equal to qt ,
• (k + 1, k + 1), which equals pt ,
• (k + jr + i + 1, j + 3) for k ≥ 3, 1 ≤ i ≤ r, j = 0, 1, . . . , max{0, k − 3}, which are

all equal to pt ,
• (k + i, k + i + 1) for r ≥ 2, (j − 2)r + 2 ≤ i ≤ (j − 1)r, j = 2, 3, . . . , k, which are

all equal to qt ,

and Bt is an s × s matrix with all its elements vanishing except from the k + 1-th column
which is given by 1′ − At1′.

Proof We shall prove that the random variable N
(3)
n,k,r is an MVB with �n =

[(n + 1)/(k + 1)]. Introducing the ln sets of states

Cx = {cx0, cx1, . . . , cxk, cx1(1) , cx1(2) , . . . , cx1(r) , cx2(1) , cx2(2) , . . . ,

cx2(r) , cx,(k−1)(1) , . . . , cx,(k−1)(r)}, x = 0, 1, . . . , �n,

with cardinality | Cx |= (k − 1)r + k + 1 for each one we may establish a Markov chain
{Yt , t ≥ 0} on � = ⋃�n

x=0 Cx as follows:
Yt ∈ cx,i = {(x, i)}, or equivalently Yt = (x, i), if at the first t outcomes Z1, Z2, . . . , Zt

x occurrences of patterns contained in E3 have been observed, and (a) i = 0, if
(1) x = 0 and

∏t
j=1(1 − Zj ) = 1 (no S′s have appeared till the t-th outcome) or

(2) x ≥ 1, Zt = 0 and no S′s have appeared since the l-th (l ≥ k) S that completed the x-th
simple pattern contained in E3 or
(3) for t ≥ r+1,

∏r
i=0(1−Zt−i ) = 1 (the length of the current failure run is greater than r).
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(b) i = j , j = 1, 2, . . . , k − 1, if the t-th outcome is the last success (Zt = 1) of a string of
j S′s not interrupted by more than r consecutive F ′s between any two successive S′s.
(c) i = k, if the last outcome is the last success of a string of at least k S′s not interrupted
by more than r consecutive F ′s between any two of the first k successive S′s.
(d) i = j (d), 1 ≤ j ≤ k − 1, 1 ≤ d ≤ r , if the t − th outcome is the d-th consecutive F of
a failure run (i.e.

∏d−1
i=0 (1− Zt−i ) = 1), following a string of j S′s not interrupted by more

than r consecutive F ′s between any two successive S′s.
Under this set up, the random variable N

(3)
n,k,r becomes an MVB with initial probability

vector

π0 = (1, 0, 0, . . . , 0)1×((k−1)r+k+1) ,

and matrices At and Bt having the entries described in the theorem.
The result follows by Lemma 2.1 and Definition 1.

Corollary 5 Let ft (x) be the probability vectors obeying the recursive relations of Lemma

2.1. Then the pmf fn(x) = P(N
(3)
n,k,0 = x) of the random variable N

(3)
n,k,0 may be obtained

through (2.1), where �n = [(n + 1)/(k + 1)] , s = k + 1, At is an s × s matrix that has all
its entries 0 except for the entries:

• (i, 1), i = 1, 2, . . . , k + 1, which equal qt ,
• (i, i + 1), 1 ≤ i ≤ k − 1, which equal pt ,
• (k + 1, k + 1), which equals pt ,

and Bt is an s × s matrix that has all its entries 0 except for the entry (k, k + 1), which
equals pt .

Proof Making use of the structure described in Theorem 3.3 we may easily observe that for
r = 0 all the states i(j), i = 1, 2, . . . , k − 1, j = 1, 2, . . . , r of the Markov chain can be
accumulated at state 0. Thus, N(3)

n,k,0 becomes an MVB with

π0 = (1, 0, 0, . . . , 0)1×(k+1) ,

and matrices At , Bt reduce to (k + 1) × (k + 1) matrices with their non-vanishing entries
being the ones provided in the statement of Corollary 5.

Since we have proved that N
(3)
n,k,0 is an MVB, our result follows directly by applying

Lemma 2.1.

For illustration purposes we consider k = 3, r = 2 and the following sequence of n = 18
binary outcomes: Z1 = 0, Z2 = Z3 = Z4 = Z5 = 1, Z6 = 0, Z7 = 1, Z8 = 0,
Z9 = Z10 = Z11 = 1, Z12 = 0, Z13 = Z14 = 1, Z15 = Z16 = Z17 = 0, Z18 = 1.
Then the imbedded Markov chain Yt , t = 1, 2, . . . , 18 resulting from Theorem 3.3, takes
on the values Y1 = (0, 0), Y2 = (0, 1), Y3 = (0, 2), Y4 = (1, 3), Y5 = (1, 3), Y6 = (1, 0),
Y7 = (1, 1), Y8 = (1, 1(1)), Y9 = (1, 2), Y10 = (2, 3), Y11 = (2, 3), Y12 = (2, 0),
Y13 = (2, 1), Y14 = (2, 2), Y15 = (2, 2(1)), Y16 = (2, 2(2)), Y17 = (2, 0), Y18 = (2, 1).
Should one wish to calculate the pmf P(N

(3)
5,3,2 = x), x = 0, 1, the form of the matrices At ,
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Bt is as follows

At =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(·, 0) (·, 1) (·, 2) (·, 3) (·, 1(1)) (·, 1(2)) (·, 2(1)) (·, 2(2))

qt pt 0 0 0 0 0 0
0 0 pt 0 qt 0 0 0
0 0 0 0 0 0 qt 0
qt 0 0 pt 0 0 0 0
0 0 pt 0 0 qt 0 0
qt 0 pt 0 0 0 0 0
0 0 0 0 0 0 0 qt

qt 0 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Bt =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(·, 0) (·, 1) (·, 2) (·, 3) (·, 1(1)) (·, 1(2)) (·, 2(1)) (·, 2(2))

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 pt 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 pt 0 0 0 0
0 0 0 pt 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

The calculation procedure is similar to the one presented in detail in the examples of
Section 3.2.

It is of interest to note that for r = 0 the random variableN
(3)
n,k,0 enumerates the number of

success runs of length at least k; this variable is traditionally denoted by Gn,k and has been
extensively studied (see Balakrishnan and Koutras (2002), Makri et al. (2007), Makri and
Psillakis (2011)). For the form of the matrices At and Bt in this special case, the interested
reader may refer to Koutras and Alexandrou (1995).

3.4 Distribution of N (4)
n,k ,r

We finally focus on the random variable N
(4)
n,k,r . The approach depends on essentially the

same considerations as were used in obtaining the distributions of N
(i)
n,k,r , i = 1, 2, 3 with

some minor modifications in the definition of the Markov chain states.

Theorem 3.4 The pmf fn(x) = P(N
(4)
n,k,r = x) of the random variable N

(4)
n,k,r (r ≥ 1)

is given by (2.1), where ft (x) are probability vectors satisfying the recursive relations of

Lemma 2.1, �n =
[

n+1
k+r+1

]

, s = (k − 1)r + k + 1, At is an s × s matrix which has all its

entries 0 except for the entries:

• (1, 1) and (k + 1, 1) which are both equal to qt ,
• (2 + i, k + 2 + max{1, r − 1}i), i = 0, 1, ..., k − 2, which are all equal to qt ,
• (k + 1 + (r − 1)j + 1 + i, k + 3 + (r − 1)j + i), for r ≥ 3, i = 0, ...,max{0, r − 3},

j = 0, ..., k − 2, which are all equal to qt ,
• (k+r + (r −1)i, (k−1)r +3+ i), for r ≥ 2, i = 0, ..., k−2, which are all equal to qt ,
• ((k − 1)r + 2 + i, (k − 1)r + 2 + i), i = 1, ..., k − 1, which are all equal to qt ,
• (i, i + 1), i = 1, ..., k − 1, which are all equal to pt ,
• (i, i), i = k, k + 1, which are both equal to pt ,
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• (k + 1 + (r − 1)j + i, 3 + j), for r ≥ 2, j = 0, ...,max{0, k − 3}, i = 1, ..., r − 1,
which are all equal to pt ,

• (k + 1 + (k − 2)(r − 1) + i, k), for r ≥ 2 and k ≥ 3, i = 1, ..., r − 1, which are all
equal to pt ,

• ((k−1)r +2+ i, (k−1)r +3+ i), for k ≥ 3, i = 1, ..., k−2, which are all equal to pt .

and Bt is an s × s matrix with all its elements vanishing except from the k + 1-th column
which is given by 1′ − At1′.

Proof We introduce a Markov chain {Yt , t ≥ 0} on � = ⋃�n

x=0 Cx where �n =
[

n+1
k+r+1

]

and

Cx = {cx0, cx1, . . . , cxk, cx1(1) , cx1(2) , . . . , cx1(r−1) , cx2(1) , cx2(2) , . . . , cx2(r−1) , cx,(k−1)(1) ,

. . . , cx,(k−1)(r−1) , cxL1 , cxL2 , . . . , cxLk−1},
x = 0, 1, . . . , �n.

The cardinality of Cx equals | Cx |= (k − 1)r + k + 1, while Yt ∈ cx,i = {(x, i)}, or
equivalently Yt = (x, i), if at the first t outcomes Z1, Z2, . . . , Zt x occurrences of patterns
contained in E4 have been observed, and

(a) i = 0, if
(1) x = 0 and

∏t
j=1(1 − Zj ) = 1 (no S′s have appeared till the t-th outcome) or

(2) x ≥ 1, Zt = 0 and no S′s have appeared since the k-th S of the x-th occurrence of a
simple pattern contained in E4 or
(b) i = j , j = 1, 2, . . . , k − 1, if the t-th outcome is the last S (Zt = 1) of a string of j S′s
not interrupted by at least r consecutive F ′s between any two successive S′s.
(c) i = k, if the last outcome is the last S of a string of at least k S′s interrupted by at least
r consecutive F ′s between any two of the first k successive S′s.
(d) i = j (d), 1 ≤ j ≤ k − 1, 1 ≤ d ≤ r − 1, if the t − th outcome is the d-th consecutive
F of a failure run (i.e.

∏d−1
i=0 (1 − Zt−i ) = 1), following a string of j S′s not interrupted by

at least r consecutive F ′s between any two successive S′s.
(e) i = Lj , j = 1, 2, . . . , k − 1, if a new simple pattern contained in E4 will be completed
in the next k − i S′s (whenever they occur).

Under this set up, the random variable N
(4)
n,k,r becomes an MVB with initial probability

vector

π0 = (1, 0, 0, . . . , 0)1×((k−1)r+k+1) ,

and matrices At and Bt having the entries in the theorem. The result follows by Lemma 2.1
and Definition 1.

Considering again, for illustration purposes, the special case k = 3, r = 2 one may easily
verify that, if the following sequence of n = 18 binary outcomes is observed, Z1 = 0,
Z2 = Z3 = Z4 = 1, Z5 = 0, Z6 = 1, Z7 = Z8 = 0, Z9 = Z10 = 1, Z11 = 0, Z12 = 1,
Z13 = Z14 = Z15 = 0, Z16 = Z17 = 1, Z18 = 0, the states attained by the imbedded
Markov chain are Y1 = (0, 0), Y2 = (0, 1), Y3 = (0, 2), Y4 = (0, 2), Y5 = (0, 2(1)),

Y6 = (0, 2), Y7 = (0, 2(1)), Y8 = (0, L2), Y9 = (1, 3), Y10 = (1, 3), Y11 = (1, 0),
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Y12 = (1, 1), Y13 = (1, 1(1)), Y14 = (1, L1), Y15 = (1, L1), Y16 = (1, L2), Y17 = (2, 3),
Y18 = (2, 0). The corresponding matrices read now:

At =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(·, 0) (·, 1) (·, 2) (·, 3) (·, 1(1)) (·, 2(1)) (·, L1) (·, L2)

qt pt 0 0 0 0 0 0
0 0 pt 0 qt 0 0 0
0 0 pt 0 0 qt 0 0
qt 0 0 pt 0 0 0 0
0 0 pt 0 0 0 qt 0
0 0 pt 0 0 0 0 qt

0 0 0 0 0 0 qt pt

0 0 0 0 0 0 0 qt

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Bt =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(·, 0) (·, 1) (·, 2) (·, 3) (·, 1(1)) (·, 2(1)) (·, L1) (·, L2)

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 pt 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

and deploying a calculation procedure similar to the one presented earlier in the examples
of Section 3.2, we can easily deduce exact formulas for P(N

(4)
5,3,2 = x), x = 0, 1.

4 Weaning fromMechanical Ventilation

In this section we are going to illustrate how our theoretical results can be exploited in the
enhancement of patients’ mechanical ventilation system.

Although the majority of patients receiving mechanical ventilation can be safely discon-
nected from the mechanical support after a successful test trial of spontaneous breathing,
approximately 20% of ventilated patients need a gradual reduction of mechanical support
while resuming spontaneous breathing (see Esteban et al. (1994)).

The process of decreasing slowly the amount of ventilator support of a patient and allow-
ing a gradually increasing overall ventilation is called weaning from mechanical ventilation.
The term weaning is often used to describe any method of discontinuing mechanical ven-
tilation. In any case, a very significant fraction of a patient’s time in the intensive care unit
(ICU) is typically taken up with weaning.

For the majority of mechanically ventilated patients this process can be accomplished
quickly and easily. There is, however, a significant percentage of patients in whom weaning
fails. Part of the problem probably results from the fact that even for experienced physicians
it is difficult to estimate when a patient is ready to wean; it is also true that the clinical
approach to weaning, if poorly organized, adds additional time to the duration of mechanical
ventilation.

Currently, weaning tends to be dictated by the experience and intuition of the attending
physician who tries to maintain the patient in a state of ”comfort”. Nevertheless, most health
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experts advocate that the weaning procedure will become much more efficient if directed
according to some specific protocol.

Motivated by the aforementioned concerns, attempts have been made to formulate the
weaning process as an algorithm, which could be implemented on a computer system
(see, for example, Dohat et al. (2000)). In a new system, proposed by Buliev et al. (2002)
and subsequently improved by Dermitzakis et al. (2008), a large number of respiratory
and cardio-circulatory parameters are taken into account and monitored during the wean-
ing process; those include, among others, respiratory rate (RR), tidal volume (VT), the
ratio RR/VT, pulse oxygen saturation (SpO2), end-tidal CO2 partial pressure (PETCO2),
heart rate (HR), systolic arterial blood pressure (BP SAP), mean arterial blood pressure
(BP MAP), and the end- expiratory pressure (PEEP). For each of these parameters a
comfort zone (CZ) is defined by the physicians, specifying the range where the moni-
tored parameters should lie in order for the patient to be in a comfortable state. All the
data are fed in a Fuzzy Logic Controller, which decides if the patient’s support level
should be decreased or increased. The decision procedure is quite involved and takes into
account, among others, whether one or more of the monitored parameters are in or out of
the CZ.

It is still an open issue which the decision criteria should be. In Dafnis and Philippou
(2011) it was suggested that the waiting time for the occurrence of the event E1, in the
special case k = 2, is a reasonable criterion. The authors focused on one of the parameters
and assumed that values of the respiratory or cardio-circulatory parameter were collected
every 20 sec. They labelled by 0 and 1 the occurrence of a value in and out of the CZ,
respectively and suggested interpreting the occurrence of two consecutive 1’s as a sign of
a stabilized bad condition; the observation of that event could speak for the increase of
mechanical support. According to the approach taken by Dafnis and Philippou (2011), the
bad condition alert should also be launched if the two consecutive 1’s are separated by at
most r 0’s (the rational behind that is that the number of values observed inside the CZ are
not enough to compensate for the out of range values).

The random variables N
(i)
n,k,r , i = 2, 3, 4 studied in the present paper, combined with

N
(1)
n,k,r , offer alternative flexible alarm criteria which could be used separately or jointly for

setting up an efficient monitoring scheme of the weaning process. Manifestly, the occur-
rence of a sting of k consecutive 1’s provides a strong evidence of a stabilized bad condition
and could speak for a need for increased mechanical support. On the other hand, if the
k consecutive 1’s are interrupted by at most r consecutive 0’s should possibly lead to the
same decision in the sense that the number of values observed in the CZ is not enough
to compensate for the ones that lie outside it. Apparently, this is not the case when the
k consecutive 1’s are interrupted by at least r consecutive 0’s. Thus, a combination of
the random variables N

(i)
n,k,r , i = 1, 2, 3, 4 may provide more rational decision criteria

in favor or against the increase in the level of patient’s mechanical support. What k and
r should be depends on the clinical evidence and the level of false alarms one is willing
to accept.

For illustration purposes, we provide some numerical results for the distributions of all
four variables N

(i)
n,k,r , i = 1, 2, 3, 4. Suppose that one is collecting values of the respiratory

or cardio-circulatory parameter every 20 sec for 30 minutes (n = 90). Consider k = 7 and
r = 4. Using Theorems 3.1, 3.2, 3.3, 3.4, we calculated the entries of Tables 1, 2, 3, 4,
respectively which provide the whole distribution, the mean and the variance of N

(i)
90,7,4,

i = 1, 2, 3, 4 for p = 0.1, 0.3, 0.5, 0.7 and 0.9. A careful comparison of Tables 2 and 4
reveals that the distributions of N

(2)
90,7,4 and N

(4)
90,7,4 are quite close for all the values of p
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Table 1 Distibution of N
(1)
90,7,4

Pr(N(1)
90,7,4 = x)

x p = 0.1 p = 0.3 p = 0.5 p = 0.7 p = 0.9

0 0.979169 0.0879996 0.00009 ∗ ∗
1 0.0206922 0.286220 0.0003146 ∗ ∗
2 0.000138 0.355018 0.004354 ∗ ∗
3 ∗ 0.207636 0.032208 ∗ ∗
4 ∗ 0.056831 0.135483 ∗ ∗
5 ∗ 0.006130 0.315779 0.000279 ∗
6 ∗ 0.000165 0.359869 0.005847 ∗
7 ∗ ∗ 0.141531 0.070346 ∗
8 ∗ ∗ 0.010366 0.393325 ∗
9 ∗ ∗ 0.000086 0.466538 0.000258

10 ∗ ∗ ∗ 0.063166 0.063357

11 ∗ ∗ ∗ 0.000491 0.743893

12 ∗ ∗ ∗ ∗ 0.192491

E(N
(1)
90,7,4) 0.020970 1.878130 5.460110 8.511430 11.128600

V ar(N
(1)
90,7,4) 0.020809 1.116160 1.117740 0.558436 0.240344

∗ : Value less than 10−6

while Tables 1 and 3 indicate that this is also true for N
(1)
90,7,4 and N

(3)
90,7,4 but only for small

values of p.
All numerical results speak in favour of unimodality of all new distributions. Fig. 1

depicts the probability mass functions of N
(i)
90,7,4, i = 1, 2, 3, 4 for p = 0.5.

Table 2 Distibution of N
(2)
90,7,4

Pr(N(2)
90,7,4 = x)

x p = 0.1 p = 0.3 p = 0.5 p = 0.7 p = 0.9

0 0.192501 0.000036 0.0458621 0.611470 0.992386

1 0.744855 0.003765 0.190671 0.312359 0.007589

2 0.0624958 0.156752 0.334154 0.067787 0.000025

3 0.000148 0.655763 0.295348 0.007867 ∗
4 ∗ 0.181984 0.120350 0.000502 ∗
5 ∗ 0.001699 0.013518 0.000016 ∗
6 ∗ ∗ 0.000098 ∗ ∗
7 ∗ ∗ ∗ ∗ ∗
8 ∗ ∗ ∗ ∗ ∗
E(N

(2)
90,7,4) 0.870292 3.020990 2.294600 0.473619 0.007639

V ar(N
(2)
90,7,4) 0.238765 0.36048 1.187310 0.438418 0.007631

∗ : Value less than 10−6
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Table 3 Distibution of N
(3)
90,7,4

Pr(N(3)
90,7,4 = x)

x p = 0.1 p = 0.3 p = 0.5 p = 0.7 p = 0.9

0 0.979169 0.0879996 0.000009 ∗ ∗
1 0.0206973 0.297389 0.000417 ∗ 0.000396

2 0.000133 0.36704 0.007129 ∗ 0.007173

3 ∗ 0.199529 0.059337 0.000047 0.050742

4 ∗ 0.044946 0.243755 0.003049 0.177957

5 ∗ 0.003067 0.436807 0.065948 0.324841

6 ∗ 0.000029 0.234792 0.394625 0.297752

7 ∗ ∗ 0.017667 0.465111 0.122442

8 ∗ ∗ 0.000087 0.070516 0.018074

9 ∗ ∗ ∗ 0.000703 0.0006201

10 ∗ ∗ ∗ ∗ 0.000002

11 ∗ ∗ ∗ ∗ ∗
E(N

(3)
90,7,4) 0.020965 1.825350 4.884860 6.536070 5.296800

V ar(N
(3)
90,7,4) 0.020794 1.026270 0.845155 0.544710 1.323890

∗ : Value less than 10−6

5 Conclusion and future work

In the present paper we introduced three new discrete distributions associated to enumer-
ating random variables generalizing runs’ and patterns’ binomial distributions. The new
distributions can be potentially used for assessing the effectiveness of improved decision
criteria incorporated in a new system, that will be exploited for automated monitoring of

Table 4 Distibution of N
(4)
90,7,4

Pr(N(4)
90,7,4 = x)

x p = 0.1 p = 0.3 p = 0.5 p = 0.7 p = 0.9

0 0.192501 0.000036 0.0458621 0.611470 0.992386

1 0.750021 0.004588 0.204243 0.317884 0.007594

2 0.057379 0.206825 0.362412 0.064261 0.000019

3 0.000099 0.683235 0.295470 0.006123 ∗
4 ∗ 0.105068 0.088434 0.000259 ∗
5 ∗ 0.000247 0.003577 0.000003 ∗
6 ∗ ∗ 0.000002 ∗ ∗
7 ∗ ∗ ∗ ∗ ∗
E(N

(4)
90,7,4) 0.865077 2.889450 2.187110 0.465828 0.007633

V ar(N
(4)
90,7,4) 0.232073 0.319340 1.034110 0.417272 0.007614

∗ : Value less than 10−6
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Fig. 1 The pmf of N
(i)
90,7,4, i = 1, 3 (left) and N

(i)
90,7,4, i = 2, 4 (right) for p = 0.5

the weaning process. The main advantage of this approach is that, the system can be eas-
ily described in an algorithmic form, a fact that permits an easy implementation of it on a
computer system. Illustrative numerical results are also presented.

In our short term research activity, properties of the new distributions will be explored.
For example, numerical results speak in favour of unimodality; so it is a nice challenge to
establish it theoretically or look for conditions under which unimodality holds true. Finally,
the new decision criteria have to be tested and compared to the previous ones, using real
clinical data.

In closing, it is worth noting that an extension of the new results in the case of first order
Markov dependent trials is straightforward. Let us consider a two-state time-homogeneous
Markov chain {Zt , t ≥ 0} with state space {0, 1}, transition probabilities

pij = Pr(Zt = j | Zt−1 = i), t ≥ 1, (i, j) ∈ {0, 1},
and initial probabilities pj = P(Z0 = j), j = 0, 1.

Then, for example, the number ˜N
(2)
n,3,2 of occurrences of the compound pattern E2, in

Z1, Z2, . . . , Zn (n ≥ 1), is an MVB with π0 = (p0, p1, 0, ..., 0)1×9, matrix A reads

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

p00 p01 0 0 0 0 0 0 0
0 0 p11 0 p10 0 0 0 0
0 0 p11 0 0 p10 0 0 0

p10 p11 0 0 0 0 p01 0 0
0 0 p01 0 0 0 p00 0 0
0 0 p01 0 0 0 0 0 p00
0 0 0 0 0 0 p00 p01 0
0 0 0 0 0 0 0 0 p10
0 0 0 0 0 0 0 0 p00

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,
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and B is a 9 × 9 matrix with all its elements vanishing, except for the element (8, 4) which
equals p11, and (9, 4), which equals p01.
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