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Abstract
We consider a telegraph process with elastic boundary at the origin studied recently in the
literature (see e.g. Di Crescenzo et al. (Methodol Comput Appl Probab 20:333–352 2018)).
It is a particular random motion with finite velocity which starts at x ≥ 0, and its dynamics
is determined by upward and downward switching rates λ and μ, with λ > μ, and an
absorption probability (at the origin) α ∈ (0, 1]. Our aim is to study the asymptotic behavior
of the absorption time at the origin with respect to two different scalings: x → ∞ in the
first case; μ → ∞, with λ = βμ for some β > 1 and x > 0, in the second case. We prove
several large and moderate deviation results. We also present numerical estimates of β based
on an asymptotic Normality result for the case of the second scaling.
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1 Introduction

The (integrated) telegraph process is an alternating random motion with finite velocity, and
has several applications in different fields (for instance in physics, finance and mathematical
biology). The literature on the telegraph process and its generalizations is quite large. In this
paper we refer to a recent model with elastic barrier studied in Di Crescenzo et al. (2018),
where it is possible to find several references. Here we only recall some of them.

We start with some references that studied the solution of the telegraph equation; see e.g.
Goldstein (1951) and Kac (1974). Among the first references that studied some probabilis-
tic aspects, we recall (Orsingher 1990) and (Foong 1992). Moreover we also cite Orsingher
(1995) and Ratanov (1997) where the telegraph process in the presence of reflecting and
absorbing barriers was investigated. Among the more recent references with some gen-
eralizations, we recall (Stadje and Zacks 2004) for a model with random velocities, Di
Crescenzo and Martinucci (2010) for a damped telegraph process, Crimaldi et al. (2013)
for a model driven by certain random trials, Di Crescenzo and Zacks (2015) for a telegraph
process perturbed by a Brownian motion, De Gregorio and Orsingher (2011) and Garra and
Orsingher (2014) for certain multivariate extensions, and Ratanov (2015) for a model with
jumps having some interest in finance. Finally, since in this paper we prove results on large
deviations, we also recall (Macci 2016) (see also some references cited therein) and the
previous paper (Macci 2011).

We also cite some references on stochastic processes with elastic barriers: Dominé
(1995) and Dominé (1996) for the Wiener process, Giorno et al. (2006) for some diffusion
processes and, more recently, Jacob (2012) and Jacob (2013) for the Langevin process.

Now we describe the stochastic process studied in Di Crescenzo et al. (2018). It repre-
sents a random motion of a particle on the half-line [0, ∞). The particle moves up and down
in an alternating way; moreover it has velocity 1 for the upward periods, and it has velocity
−1 for the downward periods. Initially the motion proceeds upward for a positive random
time U1 and, after that, the particle moves downward for a positive random time D1; more-
over the motion alternates the random times U2,D2, U3, D3, . . ., where {Un : n ≥ 1} and
{Dn : n ≥ 1} are independent sequences of i.i.d. positive random variables. Furthermore,
when the particle hits the origin, it can be either absorbed or reflected upwards with prob-
abilities α and 1 − α, respectively (here α ∈ (0, 1) but, actually, the case α = 1 is also
allowed). More precisely, if during a downward period Dj , say, the particle reaches the ori-
gin and it is not absorbed, then instantaneously the particle starts an upward period for an
independent random time Uj+1. We also remark that, here, we restrict our attention on the
case in which the random variables {Un : n ≥ 1} and {Dn : n ≥ 1} are exponentially dis-
tributed with parameters λ and μ, respectively; moreover we assume that λ > μ and this
guarantees that E[D1] > E[U1].

In particular we are interested in the random variable Ax = Ax(λ, μ), i.e. the absorption
time of the particle when it starts at x; see equation (2) in Di Crescenzo et al. (2018). The
aim is to study the asymptotic behavior of that random variable with respect two different
scalings:

• Scaling 1: x → ∞;
• Scaling 2: μ → ∞, and λ = βμ for some fixed β > 1 and x > 0.

This will be done by referring to the theory of large deviations (see e.g. Dembo and Zeitouni
(1998) as a reference on this topic). This theory allows to give an evaluation of probabilities
of rare events on an exponential scale. Some preliminaries on this topic will be recalled in
the next Section 2.
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Some of these asymptotic results concern moderate deviations; this term is used in the
literature when one has a class of large deviation principles which fills the gap between
the convergence to a constant (typically governed by a large deviation principle) and an
asymptotic Normality result (see Remarks 3.1 and 4.2). Interestingly in this paper we can
also present a non-central moderate deviation result as μ → ∞ stated in Proposition 4.3;
this means that we have a class of large deviation principles that fills the gap between
the convergence to a constant and the weak convergence to a non-Gaussian limit (see
Remark 4.4).

In this paper we also present some numerical estimates for β (approximate confidence
intervals and point estimations) obtained by simulations and based on an asymptotic Nor-
mality result as μ → ∞; moreover, as far as the scaling 1 is concerned, we also study the
case in which the particle starts at some independent random point Y (x).

We conclude with the outline of the paper. We start with some preliminaries in Section 2.
The results are proved in Section 3 (for the scaling 1) and in Section 4 (for the scaling 2).
Finally, in Section 5, we present the numerical estimates.

2 Preliminaries

We start with some preliminaries on large deviations. Then we conclude with some details
on the model studied in Di Crescenzo et al. (2018); actually we recall some preliminaries
on the absorption time Ax = Ax(λ, μ).

2.1 Preliminaries on Large Deviations

We start with some basic definitions (see e.g. Dembo and Zeitouni (1998), pages 4-5). Let
Z be a topological space equipped with its completed Borel σ -field. A family of Z-valued
random variables {Zr : r > 0} (defined on the same probability space (�,F , P )) satisfies
the large deviation principle (LDP for short) with speed function vr and rate function I if:
limr→∞ vr = ∞; the function I : Z → [0, ∞] is lower semi-continuous;

lim sup
n→∞

1

vr

logP(Zr ∈ F) ≤ − inf
z∈F

I (z) for all closed sets F ; (1)

lim inf
r→∞

1

vr

logP(Zr ∈ G) ≥ − inf
z∈G

I (z) for all open sets G. (2)

A rate function I is said to be good if its level sets {{z ∈ Z : I (z) ≤ η} : η ≥ 0} are
compact.

Throughout this paper we prove LDPs withZ = R. We recall the following known result
for future use.

Theorem 2.1 (Gärtner Ellis Theorem (onR); see e.g. Theorem 2.3.6 in Dembo and Zeitouni
(1998)) Let {Zr : r > 0} be a family of real valued random variables (defined on the same
probability space (�,F , P )). Assume that the function � : R → (−∞,∞] defined by

�(s) := lim
r→∞

1

vr

logE
[
evr sZr

]
(for all s ∈ R)

exists, and it is finite in a neighborhood of the origin s = 0. Moreover let �∗ : R → [0, ∞]
defined by

�∗(z) := sup
s∈R

{sz − �(s)}.
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Then: Eq. 1 holds with I = �∗; a weak form of Eq. 2 with I = �∗ holds, i.e.

lim inf
r→∞

1

vr

logP(Zr ∈ G) ≥ − inf
z∈G∩E �∗(z) for all open sets G

where E is the set of exposed points of I (namely the points in which I is finite and strictly
convex); if � is essentially smooth and lower semi-continuous, then the LDP holds with
good rate function I = �∗.

We also recall that � in the above statement is essentially smooth (see e.g. Definition
2.3.5 in Dembo and Zeitouni (1998)) if the interior of the set D� := {s ∈ R : �(s) < ∞}
is non-empty, if it is differentiable throughout the interior of that set, and if it is a steep
function (namely |�′(s)| tends to infinity when s in the interior ofD� approaches any finite
point of its boundary).

2.2 Preliminaries on theModel

We start with a slight correction of Proposition 9 in Di Crescenzo et al. (2018) for the
moment generating function of the absorption time Ax = Ax(λ, μ). In what follows we
consider the function

�(s; λ, μ) := 1

2

(
λ − μ −

√
(λ + μ − 2s)2 − 4λμ

)
(3)

for s ≤ (
√

λ−√
μ)2

2 . Throughout this paper we use the symbols �′(s; λ, μ) and �′′(s; λ, μ)

for the first and the second derivatives of �(s; λ,μ) with respect to s.

Remark 2.1 (The moment generating function of Ax = Ax(λ, μ)) Proposition 9 in
Di Crescenzo et al. (2018) provides an expression of the moment generating function

E
[
esAx(λ,μ)

]
when s ≤ (

√
λ−√

μ)2

2 (it is equal to infinity otherwise). Actually a possible
further restriction on s is needed, i.e. (1 − α)E[esC0 ] < 1, where E[esC0 ] is the moment
generating function of the renewal cycles {C0,i : i ≥ 1} introduced in Di Crescenzo et al.

(2018). Then, since E
[
esC0

] ↑
√

λ
μ
as s ↑ (

√
λ−√

μ)2

2 , we distinguish two cases:

• if (1 − α)
√

λ
μ

< 1 or, equivalently, if α > 1 −
√

μ
λ
, then we recover the expression in

Proposition 9 in Di Crescenzo et al. (2018), i.e.

E

[
esAx(λ,μ)

]
=

⎧⎨
⎩

2αλex�(s;λ,μ)

2λ(α−1)+λ+μ−2s+
√

(λ+μ−2s)2−4λμ
for s ≤ (

√
λ−√

μ)2

2

∞ otherwise;

• if (1 − α)
√

λ
μ

≥ 1 or, equivalently, if α ≤ 1 −
√

μ
λ
, then we have

E

[
esAx(λ,μ)

]
=

{
2αλex�(s;λ,μ)

2λ(α−1)+λ+μ−2s+
√

(λ+μ−2s)2−4λμ
for s < ŝ(λ, μ, α)

∞ otherwise,

where ŝ(λ, μ, α) := α(λ(1−α)−μ)
2(1−α)

∈ (0,
(
√

λ−√
μ)2

2 ]; in particular we have ŝ(λ, μ, α) =
(
√

λ−√
μ)2

2 if (1 − α)
√

λ
μ

= 1 or, equivalently, if α = 1 −
√

μ
λ
.
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Now we discuss some technical details on the function �(·) = �(·; λ,μ) (in particular
the concept of steepness in the definition of essentially smooth function).

Remark 2.2 (Some properties of �(·; λ, μ)) The function �(·) = �(·; λ, μ) plays a cru-
cial role in some applications of the Gärtner Ellis Theorem in this paper. In particular, by

referring to Remark 2.1, it is a lower semi-continuous function if α > 1 −
√

μ
λ
, and it is an

essentially smooth function if α ≥ 1 −
√

μ
λ
.

In view of some results presented below, we compute the following Legendre transforms:

�∗(z; λ,μ) := sup
s∈R

{sz − �(s; λ, μ)} = sup

s≤ (
√

λ−√
μ)2

2

{sz − �(s; λ,μ)}

and, if we consider ŝ(λ, μ, α) in Remark 2.1 for α ≤ 1 −
√

μ
λ
,

�∗(z; λ, μ, α) := sup
s≤ŝ(λ,μ,α)

{sz − �(s; λ, μ)}.

Lemma 2.1 (Computation of Legendre transforms) We have

�∗(z; λ,μ) =
{

1
2

(√
(z − 1)λ − √

(z + 1)μ
)2

if z ≥ 1
∞ otherwise.

Moreover, for α ≤ 1 −
√

μ
λ
, if we set z̃(λ, μ, α) := λ+μ−2ŝ(λ,μ,α)√

(λ+μ−2ŝ(λ,μ,α))2−4λμ
for ŝ(λ, μ, α)

as in Remark 2.1, then

�∗(z; λ,μ, α) =
{

�∗(z; λ, μ) if z ≤ z̃(λ, μ, α)

ŝ(λ, μ, α)z − �(ŝ(λ, μ, α); λ, μ) otherwise

=
⎧⎨
⎩

∞ if z < 1
1
2

(√
(z − 1)λ − √

(z + 1)μ
)2

if 1 ≤ z ≤ z̃(λ, μ, α)

ŝ(λ, μ, α)z − �(ŝ(λ, μ, α); λ, μ) if z > z̃(λ, μ, α).

Proof We start with the first statement concerning �∗(z; λ, μ). For z > 1 one can check

that the equation z = �′(s; λ, μ) has solution s = sz := 1
2

(
λ + μ − 2z

√
λμ

z2−1

)
, and

�∗(z; λ, μ) = szz − �(sz; λ,μ)

yields the desired expression; for z ≤ 1 one can check that

�∗(z; λ, μ) = lim
s→−∞ sz − �(s; λ, μ),

which yields again the desired expression (one has to distinguish the cases z = 1 and z < 1).
For �∗(z; λ, μ, α) we proceed in the same way, and we omit some details. Some compu-

tations coincide with the ones presented above but, if sz above is larger than ŝ(λ, μ, α), then
the supremum is attained at s = ŝ(λ, μ, α). Moreover one can check that sz > ŝ(λ, μ, α)

if and only if z > z̃(λ, μ, α). The desired expression can be checked with straightforward
computations.

Finally, in the next Remark 2.3, we recall some formulas already presented in Di
Crescenzo et al. (2018); actually we give the corrected expression of the variance.
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Remark 2.3 (A correction of a variance formula in Di Crescenzo et al. (2018)) Here we
give the correct version of some formulas in Di Crescenzo et al. (2018). More precisely we
mean the n-th moments of Cx and Ax , i.e.

E[Cn
x ] = λ

λ + μ
e

x
2 (λ−μ) 2nn!

(λ + μ)n

n∑
h=0

(
− λ + μ

(
√

λ − √
μ)2

)h

× 2F1

(
1 + n − h

2
,
2 + n − h

2
; 2; 4λμ

(λ + μ)2

)

×
+∞∑
j=0

[
− (λ − μ)x

2

]j 1

j !
(

j/2

h

)
2F1

⎛
⎝−h, −j

2
; j

2
+ 1 − h;

(√
λ − √

μ√
λ + √

μ

)2
⎞
⎠ ,

and

E[An
x] = 2αλn!e x

2 (λ−μ)
n∑

h=0

(
− 2

(
√

λ − √
μ)2

)h
(8λ(α − 1))n−h

(4λα(μ + λ(α − 1)))n−h+1

×
[
2μ + 2λ(α − 1) + 2λμ

λ + μ

n−h∑
m=1

(
αμ + αλ(α − 1)

(α − 1)(λ + μ)

)m

× 2F1

(
m + 1

2
,
m + 2

2
; 2; 4λμ

(λ + μ)2

)]

×
+∞∑
j=0

[
− (λ − μ)x

2

]j 1

j !
(

j/2

h

)
2F1

⎛
⎝−h, −j

2
; j

2
+ 1 − h;

(√
λ − √

μ√
λ + √

μ

)2
⎞
⎠ .

In particular we also recall the correct expressions in Proposition 12 in Di Crescenzo et al.
(2018) (actually only the variances should be corrected):

E[Cx] = 2 + (λ + μ)x

λ − μ
and Var[Cx] = 4(λ + μ + 2λμx)

(λ − μ)3
;

E[Ax] = 2 + α(λ + μ)x

α(λ − μ)
and Var[Ax] = 4(λ + 2λμxα2 + μ(2α − 1))

(λ − μ)3α2
. (4)

3 Asymptotic Results Under the Scaling 1

We start with the standard large deviation result.

Proposition 3.1 (LD as x → ∞) Assume that α ≥ 1−
√

μ
λ
. Then the family

{
Ax

x
: x > 0

}

satisfies the LDP with speed x, and good rate function I1 defined by I1(z) := �∗(z; λ, μ).

Proof It is easy to check (by taking into account Remark 2.1) that

lim
x→∞

1

x
logE

[
esAx(λ,μ)

]
= �(s; λ, μ) (for all s ∈ R).

Then, by taking into account Remark 2.2, the desired LDP holds by a straightforward
application of the Gärtner Ellis Theorem.
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Note that Ax

x
converges to z1 := λ+μ

λ−μ
almost surely as x → ∞ (this can be checked

in a standard way noting that the rate function I1 uniquely vanishes at z1). Moreover z1 =
�′(0; λ,μ) = lim

x→∞
E[Ax ]

x
. Finally z1 can be seen as the abscissa of the intersection (in the

x̃ỹ plane) of the lines ỹ = 0 and ỹ = 1 +
1
λ
− 1

μ
1
λ
+ 1

μ

x̃. A version of Proposition 3.1 concerning

the case α < 1 −
√

μ
λ
will be illustrated in Remark 3.2 (case r = 1).

Now we present the moderate deviation result. As it typically happens, we have a class
of LDPs governed by the same quadratic rate function (i.e. Ĩ1). Moreover this class of LDPs
fills the gap between a convergence to zero and a weak convergence to a centered Normal
distribution; see Remark 3.1 for some details and comments.

Proposition 3.2 (MD as x → ∞) For every family of positive numbers {εx : x > 0} such
that

εx → 0 and xεx → ∞, (5)

the family
{

Ax−E[Ax ]√
x/εx

: x > 0
}
satisfies the LDP with speed 1/εx , and good rate function

Ĩ1 defined by Ĩ1(z) := z2

2�′′(0;λ,μ)
, where �′′(0; λ,μ) = 8λμ

(λ−μ)3
.

Proof It suffices to show that

lim
x→∞

1

1/εx

logE

[
e

s
εx

Ax−E[Ax ]√
x/εx

]
= �′′(0; λ,μ)

2
s2 (for all s ∈ R);

in fact the limit is a finite and differentiable function (with respect to s ∈ R) and, noting that

Ĩ1(z) = sup
s∈R

{
sz − �′′(0; λ, μ)

2
s2

}
(for all z ∈ R),

the desired LDP is a straightforward application of the Gärtner Ellis Theorem.
We remark that

1

1/εx

logE

[
e

s
εx

Ax−E[Ax ]√
x/εx

]
= εx

(
logE

[
e

s√
xεx

Ax
]

− s√
xεx

E[Ax]
)

and, since s√
xεx

is close to zero for x large enough, it is easy to check (by the expressions

of the moment generating function in Remark 2.1 and by Eq. 3) that

lim
x→∞

1

1/εx

logE

[
e

s
εx

Ax−E[Ax ]√
x/εx

]

= lim
x→∞εx

(
x�

(
s√
xεx

; λ, μ

)
− s√

xεx

E[Ax]
)

= lim
x→∞xεx

(
�

(
s√
xεx

; λ, μ

)
− s√

xεx

E[Ax]
x

)
.

Now we take into account the Mac Laurin formula of order 2 for the function �(·; λ, μ),
and we have

lim
x→∞

1

1/εx

logE

[
e

s
εx

Ax−E[Ax ]√
x/εx

]

= lim
x→∞xεx

((
�′ (0; λ, μ) − E[Ax]

x

)
s√
xεx

+ �′′ (0; λ, μ)

2

s2

xεx

+ o

(
s2

xεx

))
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where, by the mean value in Eq. 4,

�′ (0; λ, μ) − E[Ax]
x

= λ + μ

λ − μ
− 2 + α(λ + μ)x

α(λ − μ)x
= − 2

α(λ − μ)x
;

thus

lim
x→∞

1

1/εx

logE

[
e

s
εx

Ax−E[Ax ]√
x/εx

]
= lim

x→∞ − 2s
√

xεx

α(λ − μ)x
+ �′′ (0; λ, μ)

2
s2 + xεxo

(
s2

xεx

)

= �′′ (0; λ, μ)

2
s2 + lim

x→∞ − 2s
√

εx

α(λ − μ)
√

x

+xεxo

(
s2

xεx

)
= �′′ (0; λ, μ)

2
s2.

Remark 3.1 (Typical features on MD in Proposition 3.2) The class of LDPs in Proposition
3.2 fills the gap between the two following asymptotic regimes as x → ∞:

• the convergence to zero of Ax−E[Ax ]
x

(case εμ = 1/x);
• the weak convergence of Ax−E[Ax ]√

x
to the centered Normal distribution with variance

�′′(0; λ,μ) (case εx = 1).

In both cases one condition in Eq. 5 holds, and the other one fails. We also note that, by
taking into account the variance expression in Eq. 4, we have �′′(0; λ, μ) = lim

x→∞
Var[Ax ]

x
.

We conclude this section by considering a generalization of Proposition 3.1 with an inde-
pendent random perturbation Y (x) of the initial state x under suitable hypotheses collected
in Condition 1 below; this generalization will be given in Proposition 3.4, and it will be fol-
lowed by some remarks and comments. We start with the following slight generalization of
Proposition 3.1 where the initial state is modified in a deterministic way; we recover the
case in that proposition by setting r = 1.

Proposition 3.3 (Slight extension of Proposition 3.1) Assume that α ≥ 1 −
√

μ
λ
and let

r > 0 be arbitrarily fixed. Then the family
{

Arx

x
: x > 0

}
satisfies the LDP with speed x,

and good rate function I1(·; r) defined by I1(z; r) := r�∗(z/r; λ,μ).

Proof It is easy to check that

lim
x→∞

1

x
logE

[
esArx(λ,μ)

]
= r�(s; λ, μ) (for all s ∈ R)

(it is a slight modification of the analogue limit in the proof of Proposition 3.1 where
r = 1).Then, by taking into account Remark 2.2, the desired LDP holds by a straightfor-
ward application of the Gärtner Ellis Theorem. In fact the governing rate function I1(·; r) is
defined by

I1(z; r) := sup
s∈R

{sz − r�(s; λ,μ)} = r sup
s∈R

{sz/r − �(s; λ,μ)},

and this coincides with the rate function in the statement of the proposition.
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Arguing as we did just after Proposition 3.1, we can say that Arx

x
converges to rz1 =

r
λ+μ
λ−μ

almost surely as x → ∞ (and the rate function I1(·; r) uniquely vanishes at rz1).

Remark 3.2 (Versions of Propositions 3.1 and 3.3 with exposed points) Here we discuss

what happens when we consider the inequality α < 1−
√

μ
λ
in Proposition 3.3 (and therefore

in Proposition 3.1 for the case r = 1). We have to consider some items in the second part of
Lemma 2.1 and, by the Gärtner Ellis Theorem, we have

lim sup
x→∞

1

x
logP

(
Arx

x
∈ F

)
≤ − inf

z∈F
r�∗(z/r; λ, μ, α) for all closed sets F

and

lim inf
x→∞

1

x
logP

(
Arx

x
∈ G

)
≥ − inf

z∈G∩E r�∗(z/r; λ,μ, α) for all open sets G

where E = (rz̃(λ, μ, α),∞) is the set of exposed points of r�∗(·/r; λ, μ, α). Note that
rz̃(λ, μ, α) > rz1, and therefore both r�∗(·/r; λ, μ, α) and I1(·; r) uniquely vanish at rz1.

Now we introduce the condition on the random perturbation of the initial state.

Condition 1 Let {Y (x) : x ≥ 0} be a family of nonnegative random variables and assume
that there exists the function 	Y : R → (−∞,∞] such that

	Y (s) := lim
x→∞

1

x
logE

[
esY (x)

]

for all s ∈ R. The function 	Y is nondecreasing by construction; so we consider the set

DY := {s ∈ R : 	Y (s) < ∞},
and we assume that either DY = R or, for some s̄ > 0, DY = (−∞, s̄) or DY = (−∞, s̄]
(note that (−∞, 0] ⊂ DY ).

We remark that Condition 1 holds when {Y (x) : x ≥ 0} belongs to a wide class of
nondecreasing (with respect to x) Lévy processes, also called subordinators; in this case we
have 	Y (s) := logE[esY (1)]. For instance we recall the following examples of infinitely
divisible distributions concerning the random variable Y (1).

Distribution parameters DY 	Y (s) for s ∈ DY 	 ′
Y (0) 	 ′′

Y (0)
Poisson λ > 0 R λ(es − 1) λ λ

Gamma λ, θ > 0 (−∞, s̄), s̄ = θ γ log θ
θ−s

λ
θ

λ

θ2

Inverse Gaussian ξ > 0 (−∞, s̄], s̄ = ξ2

2 ξ − √
ξ2 − 2s ξ−1 ξ−3

So now we are ready to state the main generalization of Proposition 3.1.

Proposition 3.4 (Extension of Proposition 3.1) Assume that α ≥ 1−
√

μ
λ
and that a process

{Y (x) : x ≥ 0}, independent of {Ax : x ≥ 0}, satisfies Condition 1. Moreover let �Y be the
function defined by

�Y (s) :=
{

	Y (�(s; λ, μ)) for �(s; λ, μ) ∈ DY and s ≤ (
√

λ−√
μ)2

2∞ otherwise,
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and assume that it is essentially smooth. Then the family
{

AY(x)

x
: x > 0

}
satisfies the LDP

with speed x, and good rate function �∗
Y defined by �∗

Y (z) := sups∈R{sz − �Y (s)}.

Proof We compute the moment generating function of AY(x) by considering the well-

known equality E
[
esAY(x)(λ,μ)

] = E

[
E

[
esAr (λ,μ)

]∣∣
r=Y (x)

]
. Moreover, by the expression

of the moment generating function in Remark 2.1, we get

E

[
esAY(x)(λ,μ)

]
=

⎧⎨
⎩

2αλE
[
eY (x)�(s;λ,μ)

]

2λ(α−1)+λ+μ−2s+
√

(λ+μ−2s)2−4λμ
for s ≤ (

√
λ−√

μ)2

2

∞ otherwise.

So, by Condition 1, we get

lim
x→∞

1

x
logE

[
esAY(x)(λ,μ)

]
= �Y (s) (for all s ∈ R),

where �Y is the function in the statement of the proposition. In conclusion, since �Y is an
essentially smooth function, the desired LDP holds by a straightforward application of the
Gärtner Ellis Theorem.

Now we present some remarks and comments on Proposition 3.4. In what follows we
assume that the function 	Y is differentiable in the interior of DY .

Remark 3.3 (Extension of some parts in the proof of Lemma 2.1) We consider 	 ′
Y (−∞) :=

lims→−∞ 	 ′
Y (s) (this limit is well-defined because 	 ′

Y is monotonic by the convexity of
	Y ). Then, for z > 	 ′

Y (−∞), one can check that the equation z = �′
Y (s) has solution

s = s̃z, and we have
�∗

Y (z) = zs̃z − �Y (s̃z).

On the other hand, for z ≤ 	 ′
Y (−∞) one can check that

�∗
Y (z) = lim

s→−∞ sz − �Y (s),

which is finite for z = 	 ′
Y (−∞) and infinite for z < 	 ′

Y (−∞).

Remark 3.4 (On the essential smoothness of �Y ) In general, if s belongs to the interior of
the set where �Y (s) < ∞, we have

�′
Y (s) = 	 ′

Y (�(s; λ,μ))�′(s; λ, μ).

Then, if we refer to Condition 1, we have two cases.

1. If DY = R, then we have to check that �′
Y (s) ↑ ∞ as s ↑ (

√
λ−√

μ)2

2 . This statement is
true because �′(s; λ, μ) ↑ ∞ and 	 ′

Y (�(s; λ, μ)) tends to a positive limit.
2. If we have DY = (−∞, s̄) or DY = (−∞, s̄] for some s̄ ∈ (0, ∞), then we take

s0 := �−1(s̄; λ,μ) ∧ (
√

λ−√
μ)2

2 and we have to check that �′
Y (s) ↑ ∞ as s ↑ s0. If

s0 = (
√

λ−√
μ)2

2 , then we can conclude following the lines of the previous case (DY =
R). If s0 = �−1(s̄; λ, μ), we also require the condition 	 ′

Y (s) ↑ ∞ as s ↑ s̄, and then
we have �′

Y (s) ↑ ∞ because 	 ′
Y (�(s; λ,μ)) ↑ ∞ and �′(s; λ,μ) tends to a positive

limit.

We continue with some further comments and, from now on, we assume that 	 ′
Y (0) > 0;

note that this condition holds for the examples tabulated above. Moreover we assume to
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have the hypotheses of Propositions 3.3 and 3.4 that guarantee the validity of the LDPs
stated in those propositions. It is known that �∗

Y (z) = 0 if and only if z = ẑ := �′
Y (0) =

	 ′
Y (0)�′(0; λ, μ), and I1(z; r) = 0 if and only if z = z∗

r := r�′(0; λ,μ). So, if we take
r = 	 ′

Y (0), we have ẑ = z∗
r , both rate functions �∗

Y and I1(·; r) uniquely vanish at ẑ, and

therefore both AY(x)

x
and Arx

x
converge to same limit ẑ (as x → ∞). Thus, in this case, it is

interesting to find inequalities between rate functions (when z belongs to a neighborhood
of ẑ, except z = ẑ) to say that we have a faster convergence in the case governed by the
(locally) larger rate function.

We start noting that 	Y (s) ≥ 	 ′
Y (0)s by the convexity of 	Y and by 	Y (0) = 0; thus

we obtain

�Y (s) ≥ 	 ′
Y (0)�(s; λ, μ) for all s ∈ R

(in fact, if s >
(
√

λ−√
μ)2

2 , we have �Y (s) = 	 ′
Y (0)�(s; λ,μ) = ∞). So we easily obtain

the following inequality between rate functions:

�∗
Y (z) = sup

s∈R
{sz − �Y (s)} ≤ sup

s∈R
{sz − 	 ′

Y (0)�(s; λ, μ)} = I1(z; 	 ′
Y (0)).

In conclusion the rate function which governs the LDP of

{
A	′

Y
(0)x

x
: x > 0

}
cannot be

smaller than the one for the LDP of
{

AY(x)

x
: x > 0

}
; this is not surprising because we expect

to have a faster convergence (to ẑ as x → ∞) when the perturbation of the initial position
is deterministic.

We also remark that, under suitable conditions (for instance if 	Y is strictly convex,
as happens for the tabulated examples above), we have the strict inequality �∗

Y (z) <

I1(z; 	 ′
Y (0)) except for the cases in which both �∗

Y (z) and I1(z; 	 ′
Y (0)) are equal to zero

(i.e. if z = ẑ) or to infinity (i.e. if z < 	 ′
Y (−∞)).

As a final comment we also briefly discuss the comparison between the second deriva-
tives of the rate functions at z = ẑ; indeed a larger second derivative corresponds to a locally
larger rate function in a neighborhood of ẑ, except z = ẑ. We have

(�∗
Y )′′(�′

Y (0)) = 1

�′′
Y (0)

= 1

	 ′′
Y (0)(�′(0; λ, μ))2 + 	 ′

Y (0)�′′(0; λ,μ)

and

I ′′
1 (r�′(0; λ,μ); r) = 1

r�′′(0; λ, μ)
;

thus, if we set r = 	 ′
Y (0) in the last equalities, we get

(�∗
Y )′′(ẑ) ≤ I ′′

1 (ẑ; 	 ′
Y (0))

by the convexity of the function 	Y which yields 	 ′′
Y (0) ≥ 0. Actually in several common

cases we have the strict inequality (�∗
Y )′′(ẑ) < I ′′

1 (ẑ; 	 ′
Y (0)) because �′(0; λ, μ) > 0 and,

as happens for the tabulated examples above, 	 ′′
Y (0) > 0.

4 Asymptotic Results Under the Scaling 2

Throughout this section we set λ = βμ for some β > 1 and x > 0. We start with the
standard large deviation result.
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Proposition 4.1 (LD as μ → ∞) Assume that α ≥ 1 −
√

1
β . Then the family {Ax(βμ,μ) :

μ > 0} satisfies the LDP with speed μ, and good rate function I2 defined by I2(z) :=
x�∗(z/x; β, 1).

Proof It is easy to check (by taking into account Remark 2.1) that

lim
μ→∞

1

μ
logE

[
eμsAx(βμ,μ)

]
= x�(s; β, 1) (for all s ∈ R).

Then, by taking into account Remark 2.2, the desired LDP holds by a straightforward
application of the Gärtner Ellis Theorem. In fact the governing rate function I2 is defined by

I2(z) := sup
s∈R

{sz − x�(s; β, 1)} = x sup
s∈R

{sz/x − �(s; β, 1)},

and this coincides with the rate function in the statement of the proposition.

Note that Ax(βμ, μ) converges to z2 := x
β+1
β−1 almost surely as μ → ∞ (in

fact the rate function I2 uniquely vanishes at z2). Moreover z2 = x�′(0; β, 1) =
limμ→∞ E[Ax(βμ,μ)]. Finally z2 can be seen as the abscissa of the intersection (in the x̃ỹ

plane) of the lines ỹ = 0 and ỹ = x +
1

βμ
− 1

μ

1
βμ

+ 1
μ

x̃.

Remark 4.1 (A version of Proposition 4.1 with exposed points) Here we discuss what hap-

pens when we consider the inequality α < 1 −
√

1
β in Proposition 4.1. In this case we still

have to consider some items in the second part of Lemma 2.1 (as in Remark 3.2) and, by
the Gärtner Ellis Theorem, we have

lim sup
μ→∞

1

μ
logP (Ax(βμ, μ) ∈ F) ≤ − inf

z∈F
x�∗(z/x; β, 1, α) for all closed sets F

and

lim inf
μ→∞

1

μ
logP (Ax(βμ,μ) ∈ G) ≥ − inf

z∈G∩E x�∗(z/x; β, 1, α) for all open sets G

where E = (xz̃(β, 1, α),∞) is the set of exposed points of x�∗(·/x; β, 1, α). Note that
xz̃(β, 1, α) > z2, and therefore both x�∗(·/x; β, 1, α) and I2 uniquely vanish at z2.

Now we present the moderate deviation result. As it typically happens, we have a class
of LDPs governed by the same quadratic rate function (i.e. Ĩ2). Moreover this class of LDPs
fills the gap between a convergence to zero and a weak convergence to a centered Normal
distribution; see Remark 4.2 for some details and comments.

Proposition 4.2 (MD as μ → ∞) For every family of positive numbers {εμ : μ > 0} such
that

εμ → 0 and μεμ → ∞, (6)

the family
{√

μεμ(Ax(βμ,μ) − E[Ax(βμ,μ)]) : μ > 0
}
satisfies the LDP with speed

1/εμ, and good rate function Ĩ2 defined by Ĩ2(z) := z2

2x�′′(0;β,1) , where �′′(0; β, 1) =
8β

(β−1)3
.
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Proof It suffices to show that

lim
μ→∞

1

1/εμ

logE
[
e

s
εμ

√
μεμ(Ax(βμ,μ)−E[Ax(βμ,μ)])] = x�′′(0; β, 1)

2
s2 (for all s ∈ R);

in fact the limit is a finite and differentiable function (with respect to s ∈ R) and, noting that

Ĩ2(z) = sup
s∈R

{
sz − x�′′(0; β, 1)

2
s2

}
(for all z ∈ R),

the desired LDP is a straightforward application of the Gärtner Ellis Theorem.
We remark that

1

1/εμ

logE
[
e

s
εμ

√
μεμ(Ax(βμ,μ)−E[Ax(βμ,μ)])]

= εμ

(
logE

[
e
s

√
μ√
εμ

Ax(βμ,μ)
]

− s
√

μ√
εμ

E[Ax(βμ, μ)]
)

;

moreover

logE

[
e
s

√
μ√
εμ

Ax(βμ,μ)
]

= logE

[
e

sμ√
μεμ

Ax(βμ,μ)
]

= logE
[
e

s√
μεμ

Axμ(β,1)
]

where the last equality holds by the expressions of the moment generating function in
Remark 2.1 and by Eq. 3; then, since s√

μεμ
is close to zero for μ large enough, it is easy to

check that

lim
μ→∞

1

1/εμ

logE
[
e

s
εμ

√
μεμ(Ax(βμ,μ)−E[Ax(βμ,μ)])]

= lim
μ→∞ εμ

(
xμ�

(
s√
μεμ

; β, 1

)
− sμ√

μεμ

E[Ax(βμ, μ)]
)

= lim
μ→∞ μεμ

(
x�

(
s√
μεμ

; β, 1

)
− s√

μεμ

E[Ax(βμ, μ)]
)
.

Now we take into account the Mac Laurin formula of order 2 for the function �(·; β, 1),
and we have

lim
μ→∞

1

1/εμ

logE
[
e

s
εμ

√
μεμ(Ax(βμ,μ)−E[Ax(βμ,μ)])]

= lim
μ→∞ μεμ

(
(
x�′ (0; β, 1)−E[Ax(βμ,μ)]) s√

μεμ

+ x�′′ (0; β, 1)

2

s2

μεμ

+ o

(
s2

μεμ

))

where, by the mean value in Eq. 4,

x�′ (0; β, 1) − E[Ax(βμ, μ)] = x
β + 1

β − 1
− 2 + α(β + 1)μx

α(β − 1)μ
= − 2

α(β − 1)μ
;

thus

lim
μ→∞

1

1/εμ

logE
[
e

s
εμ

√
μεμ(Ax(βμ,μ)−E[Ax(βμ,μ)])]

= x�′′ (0; β, 1)

2
s2 + lim

μ→∞ − 2
√

εμ

α(β − 1)
√

μ
s + μεμo

(
s2

μεμ

)
= x�′′ (0; β, 1)

2
s2.
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Remark 4.2 (Typical features on MD in Proposition 4.2) The class of LDPs in Proposition
4.2 fills the gap between the two following asymptotic regimes as μ → ∞:

• the convergence to zero of Ax(βμ,μ) − E[Ax(βμ,μ)] (case εμ = 1/μ);
• the weak convergence of

√
μ(Ax(βμ, μ) − E[Ax(βμ, μ)]) to the centered Normal

distribution with variance x�′′(0; β, 1) (case εμ = 1).

In both cases one condition in Eq. 6 holds, and the other one fails. We also note
that, by taking into account the variance expression in Eq. 4, we have x�′′(0; β, 1) =
limμ→∞ μVar[Ax(βμ,μ)].

We conclude this section with another moderate deviation result, which will be stated in
Proposition 4.3. Namely we mean a class of LDPs that fills the gap between two asymptotic
regimes, as μ → ∞, as in Proposition 4.2; more precisely the convergence to a constant,
and the weak convergence to a suitable non degenerate limit law (this will be explained in
Remark 4.4 below). In some sense we have a non-central moderate deviation result because
the limit law is non-Gaussian; actually, as shown in the next Lemma 4.1, we deal with a
family of equally distributed random variables and therefore the weak convergence trivially
holds.

Lemma 4.1 (A weak convergence result as μ → ∞) The random variables{
μAx/μ(βμ, μ) : μ > 0

}
are equally distributed.

Proof The result can be easily proved by taking the moment generating function of the
involved random variables, and by referring to the formulas presented in Remark 2.1. One
can easily check (we omit the details) that, under every condition on α stated in Remark
2.1, we have the same moment generating function for every random variables of the family{
μAx/μ(βμ, μ) : μ > 0

}
(in fact it does not depend on μ).

Now we can prove the non-central moderate deviation result.

Proposition 4.3 (Non-central MD as μ → ∞) Assume that α ≥ 1 −
√

1
β . Then,

for every family of positive numbers {εμ : μ > 0} such that Eq. 6 holds, the family{
μεμAx/(μεμ)(βμ,μ) : μ > 0

}
satisfies the LDP with speed 1/εμ, and good rate function

I2 (presented in Proposition 4.1).

Proof We want to apply the Gärtner Ellis Theorem. So we have

1

1/εμ

logE
[
e

s
εμ

μεμAx/(μεμ)(βμ,μ)
]

= εμ logE
[
e
sμAx/(μεμ)(βμ,μ)

]

=
⎧⎨
⎩

εμ log 2αβμex/(μεμ)�(sμ;βμ,μ)

2βμ(α−1)+βμ+μ−2sμ+
√

(βμ+μ−2sμ)2−4βμ2
for sμ ≤ (

√
βμ−√

μ)2

2

∞ otherwise

=
⎧⎨
⎩

εμ log 2αβex�(s;β,1)/εμ

2β(α−1)+β+1−2s+
√

(β+1−2s)2−4β
for s ≤ (

√
β−1)2

2

∞ otherwise;
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then

lim
μ→∞

1

1/εμ

logE
[
e

s
εμ

μεμAx/(μεμ)(βμ,μ)
]

= x�(s; β, 1) (for all s ∈ R),

and, by Remark 2.2, the desired LDP is a straightforward application of the Gärtner Ellis
Theorem.

In the next remark we follow the same lines of Remarks 3.2 and 4.1.

Remark 4.3 (A version of Proposition 4.3 with exposed points) Here we discuss what hap-

pens when we consider the inequality α < 1 −
√

1
β in Proposition 4.3. In this case we still

have to consider some items in the second part of Lemma 2.1 (as in Remarks 3.2 and 4.1)
and, by the Gärtner Ellis Theorem, we have

lim sup
μ→∞

1

1/εμ

logP
(
μεμAx/(μεμ)(βμ, μ) ∈ F

) ≤ − inf
z∈F

x�∗(z/x; β, 1, α) for all closed sets F

and

lim inf
μ→∞

1

1/εμ

logP
(
μεμAx/(μεμ)(βμ, μ) ∈ G

) ≥ − inf
z∈G∩E

x�∗(z/x; β, 1, α) for all open setsG

where E = (xz̃(β, 1, α),∞) is the set of exposed points of x�∗(·/x; β, 1, α). Note that
xz̃(β, 1, α) > z2, and therefore both x�∗(·/x; β, 1, α) and I2 uniquely vanish at z2.

We conclude with the analogue of Remark 4.2, where we also give some comments on
the limit of the scaled variance.

Remark 4.4 (The analogue of Remark 4.2) The class of LDPs in Proposition 4.3 fills the
gap between the two following asymptotic regimes as μ → ∞:

• the convergence of Ax(βμ,μ) to x�′(0; β, 1) (case εμ = 1/μ), which follows from
the LDP in Proposition 4.1;

• the weak convergence of μAx/μ(βμ, μ) to Ax(β, 1) (case εμ = 1) proved in
Lemma 4.1.

In both cases one condition in Eq. 6 holds, and the other one fails. We can also provide the
following limit for the scaled variance (where we take into account the variance expression
in Eq. 4):

lim
μ→∞

1

εμ

Var
[
μεμAx/(μεμ)(βμ,μ)

] = x�′′(0; β, 1).

Thus the variance of the equally distributed random variables in Lemma 4.1 (and therefore
the variance of the weak limit Ax(β, 1)) can be expressed as

Var[Ax(β, 1)] = 4(β + 2βxα2 + 2α − 1)

(β − 1)3α2
= (α, β) + x�′′(0; β, 1),
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where x�′′(0; β, 1) is the limit value obtained above, and (α, β) := 4(β+2α−1)
(β−1)3α2 > 0;

moreover (α, β) tends to zero as β → ∞.

5 Numerical Estimates by Simulations

In this section we refer to the asymptotic Normality result under the scaling 2 stated in
Remark 4.2. We present numerical values obtained by simulations to estimate β; actually
we assume that β > β0 for some known β0 > 1. In the final part we also present some
figures concerning sample paths for some β > 1.

We denote the standard Normal distribution by �. Then, for every δ > 0, we have

lim
μ→∞ P

(
Ax(βμ, μ)− δ√

μ
≤E[Ax(βμ, μ)]≤Ax(βμ, μ)+ δ√

μ

)
=2�

(
δ√

8βx/(β − 1)3

)
−1;

so, if we choose δ =
√

8βx

(β−1)3
�−1

(
1+�
2

)
for some � ∈ (0, 1), the above limit is equal to �.

Thus we can consider the following approximated confidence interval for E[Ax(βμ,μ)] at
the level �, when μ is large:

Ax(βμ,μ) ± sup
β>β0

√
8βx

(β − 1)3

�−1
(
1+�
2

)
√

μ
.

We already remarked just after Proposition 4.1 that

lim
μ→∞E[Ax(βμ, μ)] = x�′(0; β, 1) = x

β + 1

β − 1
;

thus, for μ large enough (μ > μ0, say) the approximation E[Ax(βμ, μ)] ≈ x
β+1
β−1

can be adopted. Moreover, since supβ>β0

√
8βx

(β−1)3
=

√
8β0x

(β0−1)3
, the above approximated

confidence interval can be specified as follows:

Ax(βμ,μ) ±
√

8β0x

(β0 − 1)3

�−1
(
1+�
2

)
√

μ
.

Then we can obtain numerical values for this confidence interval by performing simulations
of Ax(βμ,μ). Specifically, the validate simulations of Ax(βμ, μ) are those performed for
selected values of β, i.e. for chosen values β = β∗ > β0 > 1, for which the fraction of
sample paths such that

x
β∗ + 1

β∗ − 1
∈

⎛
⎝Ax(β∗μ, μ)−

√
8β0x

(β0 − 1)3

�−1
(
1+�
2

)
√

μ
, Ax(β∗μ, μ)+

√
8β0x

(β0 − 1)3

�−1
(
1+�
2

)
√

μ

⎞
⎠,

where Ax(β∗μ,μ) is the simulated sample mean, is at least �; this is also equivalent to say
that

x
β∗ + 1

β∗ − 1
−

√
8β0x

(β0 − 1)3

�−1
(
1+�
2

)
√

μ
< Ax(β∗μ, μ) < x

β∗ + 1

β∗ − 1
+

√
8β0x

(β0 − 1)3

�−1
(
1+�
2

)
√

μ
.

(7)
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Table 1 Numerical approximations for the confidence interval for β varying α

α μ β∗ x
β∗+1
β∗−1 Ax(β∗μ,μ) Confidence interval (8) Point estimation (9)

0.7 1000 1.75 3.6 5.15575 (1.349423,1.772864) 1.481261

0.8 1000 1.75 3.6 4.496909 (1.394876,2.03684) 1.571934

0.9 1000 1.75 3.6 4.03037 (1.434939,2.367616) 1.659985

0.925 1000 1.75 3.6 3.92666 (1.444975,2.472007) 1.683373

Thus, when μ is large, β can be estimated by the following items.

• The confidence interval at the level �, when x < Ax(β∗μ, μ) −
√

8β0x
(β0−1)3

�−1
(
1+�
2

)
√

μ
:

⎛
⎜⎜⎝

Ax(β∗μ,μ) +
√

8β0x
(β0−1)3

�−1
(
1+�
2

)
√

μ
+ x

Ax(β∗μ,μ) +
√

8β0x
(β0−1)3

�−1
(
1+�
2

)
√

μ
− x

,
Ax(β∗μ,μ) −

√
8β0x

(β0−1)3
�−1

(
1+�
2

)
√

μ
+ x

Ax(β∗μ,μ) −
√

8β0x
(β0−1)3

�−1
(
1+�
2

)
√

μ
− x

⎞
⎟⎟⎠ .

(8)
• The point estimation:

Ax(β∗μ,μ) + x

Ax(β∗μ,μ) − x
. (9)

Moreover, in addition to these estimators, the meaningful information carried by these
simulations concern both μ0 and β∗ for which the inequality (7) is satisfied.

Now we are ready to present some numerical values. In all cases we perform simulations
by setting x = 1 and β0 = 1.25; furthermore, the size of simulated sample paths is 103 and
the confidence level is � = 0.95.

We conclude with some comments, and we also refer to the figures presented below.
In Table 1, we have increasing values of α and we find decreasing values of the sample
mean Ax(β∗μ,μ) (as expected) that tends to the asymptotic value x

β∗+1
β∗−1 . Furthermore,

we find also increasing values of the point estimate (9) and wider confidence intervals. In
Table 2, for increasing values of μ, we find quite stable values for Ax(β∗μ,μ) and the
point estimation (9). Moreover we obtain more and more narrow confidence intervals as μ

increases. In Table 3, it appears evident that, for increasing values of β∗, the values of the
sample mean Ax(β∗μ, μ) become more accurate estimations for the corresponding values
of x

β∗+1
β∗−1 , whereas the right endpoints of the confidence intervals are less accurate. We also

Table 2 Numerical approximations for the confidence interval for β varying μ

α μ β∗ x
β∗+1
β∗−1 Ax(β∗μ,μ) Confidence interval (8) Point estimation (9)

0.9 1000 2 3 3.297049 (1.517462,3.743193) 1.870682

0.9 5000 2 3 3.292031 (1.66817,2.257219) 1.872588

0.9 10000 2 3 3.292868 (1.717179,2.112946) 1.87227

0.9 20000 2 3 3.291491 (1.756974,2.030459) 1.872794
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Table 3 Numerical approximations for the confidence interval for β varying β∗

α μ β∗ x
β∗+1
β∗−1 Ax(β∗μ,μ) confidence interval (8) point estimation (9)

0.8 1000 1.5 5 6.128791 (1.298652,1.561668) 1.389955

0.8 1000 2 3 3.678367 (1.470994,2.80116) 1.746724

0.8 1000 2.5 2.3 2.860925 (1.583278,7.827018) 2.074734

0.8 1000 2.75 2.142857 2.626983 (1.625987,34.89173) 2.229269

remark that, in all tables, the estimated values based on the point estimation (9) are less than
the corresponding set values of β∗.

From Tables 1–3, and all performed simulations results, we can say that the numerical
strategy to obtain the above estimates is reliable for high values of α. This is easily under-
standable because the above estimates are reliable in a neighborhood of the asymptotic value
x

β∗+1
β∗−1 (for high value of μ, i.e. for high rate of downward steps) or, in some sense equiv-

alently, for high value of absorbing probability α (compare Fig. 1 and left side of Fig. 2).
Furthermore, as far as the value μ0 is concerned (i.e. the value such that we can obtain reli-
able estimates, at the confidence level 0.95, when μ > μ0), we can take μ0 = 1000. The
results in Table 2 show that the approximation of the confidence interval improves as μ

increases. Finally we also stress that all these numerical values provide indications on the
true value of β under the scaling 2 for finite values of μ (instead of asymptotic results as
μ → ∞).

We conclude with some brief comments on Figs. 1–2. They show that sample paths of
the process for different choices of values for parameters μ, α, β. In Fig. 1 it is possible
to observe how the paths change for different values of μ. In Fig. 2 we consider different
values of α and β; in particular, we set μ = 10 because the effect of different values of α

and β on the sample paths appears more evident.

Fig. 1 Sample paths for different
values of μ, for α = 0.9 and
β = 1.25
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Fig. 2 Left: sample paths for different values of α, for μ = 10 and β = 1.25. Right: the same varying β, for
μ = 20 and α = 0.9
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