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Abstract
This paper studies a discrete-time batch arrival GI/Geo/1 queue where the server may
take multiple vacations depending on the state of the queue/system. However, during the
vacation period, the server does not remain idle and serves the customers with a rate lower
than the usual service rate. The vacation time and the service time during working vacations
are geometrically distributed. Keeping note of the specific nature of the arrivals and depar-
tures in a discrete-time queue, we study the model under late arrival system with delayed
access and early arrival system independently. We formulate the system using supplemen-
tary variable technique and apply the theory of difference equation to obtain closed-form
expressions of steady-state system content distribution at pre-arrival and arbitrary epochs
simultaneously, in terms of roots of the associated characteristic equations. We discuss the
stability conditions of the system and develop few performance measures as well. Through
some numerical examples, we illustrate the feasibility of our theoretical work and highlight
the asymptotic behavior of the probability distributions at pre-arrival epochs. We further
discuss the impact of various parameters on the performance of the system. The model con-
sidered in this paper covers a wide class of vacation and non-vacation queueing models
which have been studied in the literature.

Keywords Bulk arrival · Difference equation method · Discrete-time · GI/Geo/1
queue · Multiple working vacations · Supplementary variable technique
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1 Introduction

Since last few decades, discrete-time queueing models with various vacation policies
have drawn the attention of researchers because of its potential application in modeling
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computer networks and digital telecommunication systems. These systems are intended to
serve real-time applications where the processing of data takes place within a defined time
constraint in slots or units of equal lengths. The stochastic processes involved in these
systems occurs near the slot boundaries which eventually gives rise to two variations in
the modeling of discrete-time queues: late arrival system with delayed access (LAS-DA
or LAS) and early arrival system (EAS). A detailed study of discrete-time queues with
vacations can be found in Takagi (1993). For further reference, one may also see the sur-
vey papers by Doshi (1986) and Ke et al. (2010). The discrete-time Geo/G/1 queue and
GI/Geo/1 queue with multiple vacations was respectively studied by Zhang and Tian
(2001) and Tian and Zhang (2002) where they assumed that the server takes a random max-
imum number of vacations after serving the customers present in the system. Fiems and
Bruneel (2002) analyzed the discrete-time GI/G/1 queue subject to server vacations which
are governed by timers. Various single and multiple server queueing models in both dis-
crete and continuous-time set-up are addressed by Tian and Zhang (2006) under different
vacation policies. Further, Samanta et al. (2007a, b) investigated discrete-time finite buffer
GeoX/G(a,b)/1/N queue with single and multiple vacations, and GI/Geo/1/N queue
with multiple vacations, respectively. In all the works mentioned above, it is assumed that
the server does not perform any service during the vacation period.

While the introduction of vacation policies in the classical queueing models captures
many real-world systems, the assumption that whether or not the server takes up some kind
of service during the vacation phase considerably impacts the performance of the system.
Servi and Finn (2002) was the first to introduce the concept of ‘working server’ during a
vacation period and studied the M/M/1 queue with multiple working vacations (MWV).
Baba (2005) extended the work done in Servi and Finn (2002) and investigated the infi-
nite buffer renewal input GI/M/1 queue with MWV, whereas Ye and Liu (2016) carried
out the analysis of GI/M/1 queue with single working vacation and vacations. Banik et al.
(2007) considered the same model as in Baba (2005) under the assumption of finite buffer
i.e., GI/M/1/N queue with MWV. Subsequently, Yu et al. (2009) addressed the analytical
as well as computational aspects of a finite-buffer bulk-arrival bulk-service GIX/Mb/1/L
queueing system with MWV and partial batch rejection. Recently, Guha and Banik (2013)
generalized the model considered in Baba (2005) into a batch arrival renewal input queue
under both single and multiple working vacation policy and modeled it for end user system
in an ethernet passive optical network (EPON). The work done in Baba (2005) and Banik
et al. (2007) was carried forward in discrete-time set up by Li et al. (2007) and Goswami
and Mund (2010), respectively. The former analyzed the model under the consideration of
both LAS-DA and EAS disciplines whereas the latter addressed only the EAS policy. Li
et al. (2010) presented the steady-state analysis of a discrete-time batch arrival GeoX/G/1
queue under working vacations. In recent years Goswami and Mund (2011) investigated a
discrete-time batch service renewal input GI/Geo(1,b)/1 queue with MWV and studied the
effect of various parameters on the performance of the system. The analysis of finite buffer
GIX/Geo/1/N queue with negative customers and MWV was presented by Gao et al.
(2013) where they adopted the partial batch rejection policy. It may be mentioned that the
analysis carried out in Li et al. (2010), Goswami and Mund (2011) and Gao et al. (2013)
were based on EAS discipline. Meanwhile, the memoryless property of geometric interar-
rival time distribution makes the analytical analysis of the model quite simpler, but it does
not represent well the situations arising in many real-world systems. Thus, the assumption
of general uncorrelated interarrival time distribution is preferable in modeling of computer
networks, manufacturing systems, etc.
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From the literature survey, we came across two important observations related to the
analysis of working vacation models in discrete-time queues: (i) in most of the cases the
arrivals are assumed to occur individually, otherwise, whenever batch arrival is considered
the waiting space is restricted to finite capacity; (ii) except for Li et al. (2007), all the
authors have addressed only the EAS policy. The importance of the model under LAS-DA
policy has somehow been ignored which may be due to the fact that its analysis is rela-
tively more complicated (see Chaudhry and Gupta 1997). Thus, with an aim to cover up
the gap in the literature on discrete-time queues, we analyze an infinite buffer GIX/Geo/1
queue with multiple working vacations. The server may take a random number of vaca-
tions depending on the state of the queue, but during vacation period the server serves the
customers with a rate lower than the usual service rate. We first formulate the governing
equations of the system via supplementary variable technique (SVT) and then using the dis-
placement operator method we simultaneously obtain the steady-state distributions of the
number of customers in the system with respect to the state of the server at pre-arrival and
arbitrary epochs in terms of roots of the associated characteristic equations. For the con-
venience of the readers, we distinguish the analysis of LAS-DA and EAS in two different
sections.

The methodology used in this paper to carry out the analysis is in many ways differ-
ent from the well-known methods available in the literature. Li et al. (2007) and Ye and
Liu (2016) used the matrix-geometric method (MGM) (developed by Neuts 1994) which
is considered to be one of the most powerful methods to derive the analytical results for
GI/M/1−type queueing models, but its numerical implementation is relatively difficult
because of the large number of iterations involved in the computation of the rate matrix R.
In this connection, one may refer to Chaudhry et al. (2016). Eventually, embedded Markov
chain technique (EMCT) is widely used by researchers (e.g., Samanta et al. 2007b; Gao
et al. 2013; Goswami and Mund 2010) to analyze such type of queues. It requires the con-
struction of a transition probability matrix (tpm) associated with the Markov chain, using
which an expression of probability generating function (pgf) at pre-arrival epoch is obtained
and it is further inverted via roots method (e.g., Chaudhry et al. 2012; Chaudhry and Gupta
1997) in order to extract the probabilities. But a major challenge in this procedure is the
construction of the tpm which becomes more involved with the increase in the complexity
of the queueing model. The methods described above enables one to obtain the distribu-
tion at pre-arrival epoch and subsequently, a relation between the probabilities at pre-arrival
and arbitrary epochs is established to obtain the latter one. Keeping a note of all these dis-
cussions we ascertain few major contributions of the present work. Firstly, the approach
used to accomplish the analysis of the model is theoretically tractable and practically very
easy to implement, as we obtain the explicit and closed-form expression for distributions
at pre-arrival and arbitrary epochs simultaneously in terms of finite number of roots and
the corresponding constants. The procedure is based on the theory of difference equation
(see Elaydi 2005) which completely bypasses the complexity involved in the construction
of any rate matrix or tpm at the embedded points, and also does not require the inversion of
any generating functions. Secondly, the model considered in this paper is a generalization
of the already studied models in the literature and hence the procedure developed through-
out presents an alternative approach to their solution. This has been thoroughly discussed
in Section 4. We also evaluate some quantitative measures of the system and highlight the
impact of several parameters on its performance. Finally, we numerically obtain the esti-
mation of the tail probabilities at pre-arrival epochs based on the unique largest root of the
characteristic equations.
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The queueing model considered in this paper may find application in cloud computing
services which provides service through a network of servers hosted over the internet rather
than local networks or personal computers. It allows an enormous storage capacity meant
for processing huge data at a very reduced cost. But a major issue in using the cloud platform
is its high energy consumption. The data transmitted into the cloud environment in the form
of packets often arrive in random size. The compute nodes (server) have to be powered on
all the time in order to accept the incoming jobs, which sometimes results in a huge wastage
of energy. At this instance, the working vacation queueing model can be efficiently used to
model the task schedule of the servers. When no task arrives, the server may switch to a
working vacation phase keeping the service rate lower than the usual rate. This may reduce
the power consumption and save operational ability of the system to a large extent. For a
better insight along this direction one may see Vilaplana et al. (2014), Cheng et al. (2015)
and the references therein.

The remaining portion of the paper is organized as follows: in Section 2 we give a com-
prehensive description of the model; in Section 3 we provide the theoretical analysis of the
model under LAS-DA and EAS policies and also discuss the stability condition of the sys-
tem. In Section 4 we present some special cases of our model. In Section 5 we evaluate
several system performances and implement the derived results through some numerical
examples which are followed by the conclusion in Section 6.

2 Model Description

In discrete-time set-up, we assume that the time axis is divided into intervals of equal length
termed as slots, and are separated by slot boundaries 0, 1, 2, . . . , m, . . . . The arrival and
departure of customers and the server vacation takes place around these slot boundaries. The
case when arrival and departure occur just after and just before the slot boundary respec-
tively is termed as early arrival system (EAS). On the other hand, when arrival and departure
occur just before and just after the slot boundary respectively is termed as late arrival sys-
tem with delayed access (LAS-DA). Under EAS policy an arrival may be departed in the
same interval provided the server is empty and it gets served, but the same is not possible in
case of LAS-DA policy. Meanwhile, for both the systems the server begins or ends a work-
ing vacation just before a potential batch arrival. A much detailed concepts on both EAS
and LAS-DA discipline can be found in Hunter (1983), Gravey and Hebuterne (1992) and
Chaudhry (2000).

Customers arrive into the system in batches of size X, which is a random variable with
probability mass function (p.m.f) P(X = i) = gi , i = 1, 2, .... For mathematical conve-
nience and from a more realistic point of view we assume that the maximum acceptable
size of the arriving batch is b. However, for batch size distribution with infinite support, our
methodology can be used by considering the maximum batch size to be a sufficiently larger
value. Consequently, the probability generating function (pgf) and the average size of the
arriving batch are denoted by G(z) = ∑b

i=1 giz
i , |z| ≤ 1 and g = ∑b

i=1 igi , respectively.
Further, the inter-arrival times T between the batches are independent and identically dis-
tributed (i.i.d) random variables with p.m.f P(T = n) = an, n ≥ 1, pgf A(z) = ∑∞

n=1 anz
n

and mean a = 1
λ

= A′(1) = ∑∞
n=1 nan, where λ is the arrival rate of the batches. The

customers on arrival are lined up according to first-come first-served (FCFS) basis and are
served individually by a single server.

When the server is in normal busy period the service times S of the customers are inde-
pendent and geometrically distributed with parameter μ and p.m.f P(S = n) = μn−1μ,
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0 < μ < 1, n ≥ 1. At the epoch when the system (queue + server) becomes empty, the
server takes a working vacation such that the working vacation times V are independent and

geometrically distributed with parameter φ and p.m.f P(V = n) = φ
n−1

φ, 0 < φ < 1,
n ≥ 1. The working vacation time is the period when the server remains active, but serves
the arriving customers with a rate lower than the normal service rate. When the server is
in working vacation period, the service times Sv of the customers are i.i.d geometric ran-
dom variables with parameter η and p.m.f P(Sv = n) = ηn−1η, 0 < η < 1, n ≥ 1 such
that η ≤ μ. As soon as the working vacation time terminates, the server becomes active
and serves with its usual service rate μ, provided it finds the queue non-empty, otherwise it
goes for another working vacation, and the process continues. The working vacation time,
arrival process and the service process are independent of each other. The traffic intensity ρ

is given by ρ = g
aμ

and ρ < 1 ensures the stability of the system. Such a queueing model

can be mathematically denoted by GIX/Geo/1 − MWV queue.

3 Analysis of theModel

This section is devoted to the complete analytical analysis of the aforementioned queueing
model under both LAS-DA and EAS policies. At first the mathematical formulation of the
model is done using the supplementary variable technique (SVT) and then the theory of
difference equation is applied in order to obtain the steady-state distribution of system-
content at pre-arrival and arbitrary epochs. The section is divided into two subsections,
one for the analysis with LAS-DA policy and the other with EAS policy, respectively. It is
mainly done with an aim to provide the readers a clearer perception of the steps involved
and the results obtained throughout the analysis.

3.1 Modeling with LAS-DA Policy

As mentioned in the previous section, in LAS-DA policy the arrival of batches takes place
in the interval (m−, m), the departure of customers occurs in the interval (m,m+) and
the working vacation time begins or ends at the instant m−. We determine the governing
equations of the model by taking the remaining inter-arrival time of the next batch to be the
supplementary variable for which we define the following random variables at the instant
just before a potential batch arrival i.e., m−.

– Nm−= Number of customers in the system (queue + server).
– Um−= Remaining inter-arrival time of the next batch.
– Ym−= State of the server which takes the values 0 and 1 corresponding to whether it is

in working vacation period or in normal busy period.

Further we define the joint probabilities as

p̂n,0(m−, u) = P {Nm− = n,Um− = u, Ym− = 0}, u ≥ 0, n ≥ 0,

p̂n,1(m−, u) = P {Nm− = n, Um− = u, Ym− = 1}, u ≥ 0, n ≥ 1.

Thus in steady-state we have

pn,0(u) = lim
m−→∞ p̂n,0(m−, u), n ≥ 0 and pn,1(u) = lim

m−→∞ p̂n,1(m−, u), n ≥ 1.
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Relating the states of the system at two consecutive time epochs m− and (m + 1)−
and using probabilistic arguments, we obtain (for u ≥ 1) the following set of governing
equations in steady-state

p0,0(u − 1) = p0,0(u) + ηp1,0(u) + μp1,1(u) (1)

p1,0(u − 1) = φ
{
η

[
p2,0(u) + aug1p1,0(0)

] + ηp1,0(u) + aug1p0,0(0)
}

(2)

pn,0(u − 1) = φ

{

η

[

pn+1,0(u) + au

n∑

i=1

gipn−i+1,0(0)

]

+ η

[

pn,0(u) + au

n−1∑

i=1

gipn−i,0(0)

]

+ augnp0,0(0)
}
, 2 ≤ n ≤ b (3)

pn,0(u − 1) = φ

{

η

[

pn+1,0(u) + au

b∑

i=1

gipn−i+1,0(0)

]

+η

[

pn,0(u) + au

b∑

i=1

gipn−i,0(0)

]}

, n ≥ b + 1 (4)

p1,1(u − 1) = φ
{
η

[
p2,0(u) + aug1p1,0(0)

] + ηp1,0(u)

+aug1p0,0(0)
} + μp1,1(u) + μp2,1(u)

+aug1μp1,1(0) (5)

pn,1(u − 1) = φ

{

η

[

pn,0(u) + au

n−1∑

i=1

gipn−i,0(0)

]

+η

[

pn+1,0(u) + au

n∑

i=1

gipn−i+1,0(0)

]

+ augnp0,0(0)

}

+μ

[

pn,1(u) + au

n−1∑

i=1

gipn−i,1(0)

]

+μ

[

pn+1,1(u) + au

n∑

i=1

gipn−i+1,1(0)

]

, 2 ≤ n ≤ b (6)

pn,1(u − 1) = φ

{

η

[

pn,0(u) + au

b∑

i=1

gipn−i,0(0)

]

+η

[

pn+1,0(u) + au

b∑

i=1

gipn−i+1,0(0)

]}

+μ

[

pn,1(u) + au

b∑

i=1

gipn−i,1(0)

]

+μ

[

pn+1,1(u) + au

b∑

i=1

gipn−i+1,1(0)

]

, n ≥ b + 1 (7)

In order to obtain the steady-state probabilities pn,0, n ≥ 0 and pn,1, n ≥ 1 from the
set of Eqs. 1–7, we introduce the transform p∗

n,0(z) = ∑∞
u=0 pn,0(u)zu and p∗

n,1(z) =
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∑∞
u=0 pn,1(u)zu so that pn,0 = p∗

n,0(1) and pn,1 = p∗
n,1(1). Thus multiplying (1)–(7) by zu

and summing over u from 1 to ∞ we obtain the following transformed equations

(z − 1)p∗
0,0(z) = η

[
p∗
1,0(z) − p1,0(0)

] + μ
[
p∗
1,1(z) − p1,1(0)

] − p0,0(0) (8)

(z − ηφ)p∗
1,0(z) = φ

{
η

[
p∗
2,0(z) − p2,0(0) + A(z)g1p1,0(0)

]

−ηp1,0(0) + A(z)g1p0,0(0)
}

(9)

(z − ηφ)p∗
n,0(z) = φ

{

η

[

p∗
n+1,0(z) − pn+1,0(0) + A(z)

n∑

i=1

gipn−i+1,0(0)

]

+η

[

A(z)

n−1∑

i=1

gipn−i,0(0) − pn,0(0)

]

+A(z)gnp0,0(0)

}

, 2 ≤ n ≤ b (10)

(z − ηφ)p∗
n,0(z) = φ

{

η

[

p∗
n+1,0(z) − pn+1,0(0) + A(z)

b∑

i=1

gipn−i+1,0(0)

]

+η

[

A(z)

b∑

i=1

gipn−i,0(0) − pn,0(0)

]}

, n ≥ b + 1 (11)

(z − μ)p∗
1,1(z) = φ

{
η

[
p∗
2,0(z) − p2,0(0) + A(z)g1p1,0(0)

] + η
[
p∗
1,0(z) − p1,0(0)

]

+A(z)g1p0,0(0)
} + μ

[
p∗
2,1(z) − p2,1(0)

+A(z)g1p1,1(0)
] − μp1,1(0) (12)

(z − μ)p∗
n,1(z) = φ

{

η

[

p∗
n+1,0(z) − pn+1,0(0) + A(z)

n∑

i=1

gipn−i+1,0(0)

]

+η

[

p∗
n,0(z) − pn,0(0) + A(z)

n−1∑

i=1

gipn−i,0(0)

]

+ A(z)gnp0,0(0)

}

+μ

[

p∗
n+1,1(z) − pn+1,1(0) + A(z)

n∑

i=1

gipn−i+1,1(0)

]

+μ

[

A(z)

n−1∑

i=1

gipn−i,1(0) − pn,1(0)

]

, 2 ≤ n ≤ b (13)

(z − μ)p∗
n,1(z) = φ

{

η

[

p∗
n+1,0(z) − pn+1,0(0) + A(z)

b∑

i=1

gipn−i+1,0(0)

]

+η

[

p∗
n,0(z) − pn,0(0) + A(z)

b∑

i=1

gipn−i,0(0)

]}

+μ

[

p∗
n+1,1(z) − pn+1,1(0) + A(z)

b∑

i=1

gipn−i+1,1(0)

]
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+μ

[

A(z)

b∑

i=1

gipn−i,1(0) − pn,1(0)

]

, n ≥ b + 1. (14)

Adding (8)–(14) for all values of n we obtain

∞∑

n=0

p∗
n,0(z) +

∞∑

n=1

p∗
n,1(z) = A(z) − 1

z − 1

{ ∞∑

n=0

pn,0(0) +
∞∑

n=1

pn,1(0)

}

.

Taking limit as z → 1 and using the normalizing condition
∑∞

n=0 pn,0 + ∑∞
n=1 pn,1 = 1

we have the following relation

∞∑

n=0

pn,0(0) +
∞∑

n=1

pn,1(0) = 1

a
. (15)

Now let us denote p−
n,0, n ≥ 0 and p−

n,1, n ≥ 1 as the probability that there are n customers
in the system at pre-arrival epoch depending on whether the server is in working vacation
period or normal busy period respectively. Applying Bayes’ theorem we have

p−
n,j = P {n customers in the system prior to an arrival of a batch when the server is in state j

| the server is either in working vacation period or in busy period at pre-arrival epoch}
= pn,j (0)

∑∞
i=0 pi,0(0) + ∑∞

i=1 pi,1(0)
, n ≥ 0, j = 0 or n ≥ 1, j = 1. (16)

Using (15) in Eq. 16 we have

p−
n,j = apn,j (0), n ≥ 0, j = 0 or n ≥ 1, j = 1. (17)

Now using the right shift operator D on the sequence {p∗
n,0(z)} and {pn,0(0)} defined by

Dp∗
n,0(z) = p∗

n+1,0(z) and Dpn,0(0) = pn+1,0(0) for all n, Eq. 11 can be re-written in the
form

[
z − φ(η + ηD)

]
p∗

n,0(z) = φ

[

η

{

A(z)

b∑

i=1

giD
b−i+1 − Db+1

}

+η

{

A(z)

b∑

i=1

giD
b−i − Db

}]

pn−b,0(0),

n ≥ b + 1. (18)

Substituting z = φ(η + ηD) in Eq. 18 we obtain the following homogeneous difference
equation with constant coefficient

[

φ(η + ηD)

{

A(φ(η + ηD))

b∑

i=1

giD
b−i − Db

}]

pn,0(0) = 0, ∀ n ≥ 1. (19)

The characteristic equation (c.e.) corresponding to Eq. 19 is

φ(η + ηs)

{

A(φ(η + ηs))

b∑

i=1

gis
b−i − sb

}

= 0 (20)
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and hence the general solution of Eq. 19 is given by

pn,0(0) =
b∑

j=1

cj r
n
j , ∀ n ≥ 1 (21)

where r1, r2, ..., rb are the roots of the c.e. (20) lying inside the unit circle |s| = 1 (see
Section 3.3), and c1, c2, ..., cb are the corresponding arbitrary constants independent of n.
Using Eq. 21 in Eq. 18 we obtain

[
z − φ(η + ηD)

]
p∗

n,0(z) = φ

b∑

j=1

cj (η + ηrj )(A(z)G(r−1
j ) − 1)rn

j , n ≥ b + 1. (22)

Equation 22 is a non-homogeneous difference equation with constant coefficient and the
corresponding solution is given by

p∗
n,0(z)=B

(

1 − 1

η
+ z

φη

)n

+ φ

b∑

j=1

cj (η + ηrj )(A(z)G(r−1
j )−1)

z−φ(η + ηrj )
rn
j , n≥b + 1. (23)

The first term in the RHS of Eq. 23 is the solution corresponding to the homogeneous
part of Eq. 22 such that B is an arbitrary constant, whereas the second term represents a
particular solution of Eq. 22. Now summing over the range of n and taking limit as z → 1
in Eq. 23, we must have its convergence, since

∑∞
n=b+1 p∗

n,0(1) = ∑∞
n=b+1 pn,0 ≤ 1. But

in that case the first term in the R.H.S takes the form B
∑∞

n=b+1

(

1 + φ

ηφ

)n

which tends

towards infinity. Thus in order to ensure the convergence of Eq. 23 we must have B = 0
and consequently the solution of Eq. 22 takes the form

p∗
n,0(z) = φ

b∑

j=1

cj (η + ηrj )(A(z)G(r−1
j ) − 1)

z − φ(η + ηrj )
rn
j , n ≥ b + 1. (24)

We now find the conditions under which p∗
n,0(z) holds the same expression as in Eq. 24 for

1 ≤ n ≤ b. Substituting the respective values in Eq. 10 we obtain

b∑

j=1

cj r
n
j (η + ηrj )

b∑

i=n

gir
−i
j = gnp0,0(0) + ηgn

b∑

j=1

cj rj , 2 ≤ n ≤ b. (25)

Setting n = b in Eq. 25 and considering the fact that gb 	= 0 we have

p0,0(0) = η

b∑

j=1

cj . (26)

Now using (26), considering the fact that gb 	= 0 and setting n = b − 1, b − 2, ..., 2 in
Eq. 25 we obtain the following condition

b∑

j=1

cj

rb−n
j

(η + ηrj ) = 0, n = 2, 3, ..., b − 1. (27)

Similarly substituting the respective values in Eq. 9 we obtain

b∑

j=1

cj

rb−1
j

(η + ηrj ) = 0. (28)
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Thus Eqs. 27 and 28 can be combined together in the form

b∑

j=1

cj

rn
j

(η + ηrj ) = 0, n = 1, 2, ..., b − 1. (29)

Again, using the shift operator D over the sequence {p∗
n,1(z)} and {pn,1(0)} as defined

previously, Eq. 14 can be re-written in the form

[z − μ − μD]p∗
n,1(z) =

[

μA(z)

b∑

i=1

giD
b−i + μA(z)

b∑

i=1

giD
b−i+1 − μDb − μDb+1

]

pn−b,1(0)

+φ

{

η

[

p∗
n+1,0(z) − pn+1,0(0) + A(z)

b∑

i=1

gipn−i+1,0(0)

]

+η

[

p∗
n,0(z) − pn,0(0) + A(z)

b∑

i=1

gipn−i,0(0)

]}

, n ≥ b + 1 (30)

Substituting z = μ + μD in Eq. 30 we obtain

[

(μ + μD)(Db−A(μ+μD)

b∑

i=1

giD
b−i )

]

pn,1(0)=φ

{

η

[

p∗
n+b+1,0(z) − pn+b+1,0(0)

+A(z)

b∑

i=1

gipn+b−i+1,0(0)

]

+ η

[

p∗
n+b,0(z) − pn+b,0(0)

+A(z)

b∑

i=1

gipn+b−i,0(0)

]} ∣
∣
∣
∣
z=μ+μD

,

n ≥ 1. (31)

Equation 31 is a non-homogeneous difference equation with constant coefficient and the
subsequent solution is given by

pn,1(0) =
b∑

j=1

kj ξ
n
j + φ

b∑

j=1

cj (η + ηrj )

φ(η + ηrj ) − (μ + μrj )
rn
j , n ≥ 1. (32)

Here one may note that the first term in the R.H.S of Eq. 32 is the solution corresponding
to the homogeneous equation of Eq. 31 where ξ1, ξ2,..., ξb are the roots of the c.e.

(μ + μs)(sb − A(μ + μs)

b∑

i=1

gis
b−i ) = 0 (33)

lying inside the unit circle |s| = 1 (see Section 3.3), and k1, k2,..., kb are the corresponding
arbitrary constants independent of n. On the other hand, the second term in the R.H.S of
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Eq. 32 represents a particular solution of Eq. 31. Now using expression (32) in Eq. 30 we
have

[z − μ − μD]p∗
n,1(z) =

b∑

j=1

kj (μ + μξj )(A(z)G(ξ−1
j ) − 1)ξn

j

+φφ

b∑

j=1

cj (η + ηrj )
2(A(z)G(r−1

j ) − 1)

φ(η + ηrj ) − (μ + μrj )
rn
j

+φφ

b∑

j=1

cj (η + ηrj )
2(A(z)G(r−1

j )−1)

z − φ(η + ηrj )
rn
j , n≥b+1 (34)

which is also a non-homogeneous difference equation with constant coefficient and the
corresponding solution is of the form

p∗
n,1(z) = K

(

1 + (z − 1)

μ

)n

+
b∑

j=1

kj (μ + μξj )(A(z)G(ξ−1
j ) − 1)

z − (μ + μξj )
ξn
j

+φφ

b∑

j=1

cj (η + ηrj )
2(A(z)G(r−1

j ) − 1)

(z − φ(η + ηrj ))(φ(η + ηrj ) − (μ + μrj ))
rn
j , n ≥ b + 1. (35)

The first term in the RHS of Eq. 35 is the solution corresponding to the homogeneous
part of Eq. 34 such that K is an arbitrary constant, whereas the second and third term
together represents a particular solution of Eq. 34. Now summing over the range of n and
taking limit as z → 1 in Eq. 35, we must have its convergence, since

∑∞
n=b+1 p∗

n,1(1) =
∑∞

n=b+1 pn,1 ≤ 1. But in that case the first term in the R.H.S tends towards infinity. Thus
in order to ensure the convergence of Eq. 35 we must have K = 0 and consequently the
solution of Eq. 34 takes the form

p∗
n,1(z) =

b∑

j=1

kj (μ + μξj )(A(z)G(ξ−1
j ) − 1)

z − (μ + μξj )
ξn
j

+φφ

b∑

j=1

cj (η + ηrj )
2(A(z)G(r−1

j ) − 1)

(z − φ(η + ηrj ))(φ(η + ηrj ) − (μ + μrj ))
rn
j ,

n ≥ b + 1. (36)

We now find the condition under which p∗
n,1(z) holds the expression in Eq. 36 for 1 ≤ n ≤

b. Substituting the respective values in Eq. 13 we obtain the following relation

b∑

j=1

kj ξ
n
j (μ + μξj )

b∑

i=n

giξ
−i
j + φφ

b∑

j=1

cj (η + ηrj )
2rn

j

∑b
i=n gir

−i
j

φ(η + ηrj ) − (μ + μrj )

− gn

⎛

⎝μ

b∑

j=1

kj ξj + φ

b∑

j=1

cj (η + ηrj )(φ(η + ηrj ) − μ)

φ(η + ηrj ) − (μ + μrj )

⎞

⎠ = 0, 2 ≤ n ≤ b. (37)
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Setting n = b in Eq. 37 and considering the fact that gb 	= 0 we obtain

b∑

j=1

kj + φ

b∑

j=1

cj (η + ηrj )

φ(η + ηrj ) − (μ + μrj )
= 0. (38)

Again taking n = b − 1, b − 2, ..., 2 in Eq. 37 we obtain the following condition

b∑

j=1

kj

ξb−n
j

(μ+μξj )+φφ

b∑

j=1

cj (η + ηrj )
2

rb−n
j (φ(η + ηrj )−(μ+μrj ))

=0, n=2, 3, ..., b−1. (39)

In a similar manner substituting the respective values in Eq. 12 we obtain

b∑

j=1

kj

ξb−1
j

(μ + μξj ) + φφ

b∑

j=1

cj (η + ηrj )
2

rb−1
j (φ(η + ηrj ) − (μ + μrj ))

= 0. (40)

Now Eqs. 39 and 40 can be combined in the form

b∑

j=1

kj

ξn
j

(μ + μξj ) + φφ

b∑

j=1

cj (η + ηrj )
2

rn
j (φ(η+ηrj )−(μ +μrj ))

= 0, n=1, 2, ..., b−1. (41)

Moreover, using Eqs. 21, 26 and 32 over (15) we obtain the relation

b∑

j=1

kj ξj

1 − ξj

+
b∑

j=1

cj rj

1 − rj
+η

b∑

j=1

cj +φ

b∑

j=1

cj (η + ηrj )rj

(1−rj )(φ(η +ηrj )−(μ +μrj ))
= 1

a
. (42)

One may observe that Eqs. 29, 38, 41 and 42 together constitutes a system of 2b equations
in 2b unknowns which can be solved in order to obtain the constants cj ’s and kj ’s, j =
1, 2, ...b. Once the arbitrary constants are determined, the system-content distributions can
be obtained in explicit form as

p−
0,0 = ap0,0(0) = aη

b∑

j=1

cj (43)

p−
n,0 = apn,0(0) = a

b∑

j=1

cj r
n
j , n ≥ 1 (44)

pn,0 = p∗
n,0(1) = φ

b∑

j=1

cj (η + ηrj )(G(r−1
j ) − 1)

1 − φ(η + ηrj )
rn
j , n ≥ 1 (45)

p−
n,1 = apn,1(0) = a

b∑

j=1

kj ξ
n
j + aφ

b∑

j=1

cj (η + ηrj )

φ(η + ηrj ) − (μ + μrj )
rn
j , n ≥ 1 (46)

pn,1 = p∗
n,1(1) =

b∑

j=1

kj (μ + μξj )(G(ξ−1
j ) − 1)

1 − (μ + μξj )
ξn
j

+φφ

b∑

j=1

cj (η + ηrj )
2(G(r−1

j ) − 1)

(1 − φ(η + ηrj ))(φ(η + ηrj ) − (μ + μrj ))
rn
j , n ≥ 1. (47)
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Using the normalizing condition
∑∞

n=0 pn,0 + ∑∞
n=1 pn,1 = 1, we further have

p0,0 = 1 −
b∑

j=1

kj (μ + μξj )(G(ξ−1
j ) − 1)ξj

{
1 − ξj

} {
1 − (μ + μξj )

}

−φ

b∑

j=1

cj (η + ηrj )(G(r−1
j ) − 1)rj

{
1 − rj

} {
1 − φ(η + ηrj )

}

[

1 + φ(η + ηrj )

φ(η + ηrj ) − (μ + μrj )

]

(48)

This completes the analysis of GIX/Geo/1 − MWV queue under LAS-DA policy.

3.2 Modeling with EAS Policy

Under EAS policy the arrival of batches and the departure of individual customer takes
place in the interval (m,m+) and (m−, m) respectively, whereas the server vacation starts
or ends exactly at the slot boundary i.e., at the instant m. In order to formulate the set of
equations governing the system we consider the remaining inter-arrival time of the next
batch to be the supplementary variable and define the random variables Nm, Um and Ym as
done in Section 3.1 at the instant just before a potential batch arrival i.e., at m. We define
the joint probabilities as

q̂n,0(m, u) = P {Nm = n,Um = u, Ym = 0}, u ≥ 0, n ≥ 0,

q̂n,1(m, u) = P {Nm = n, Um = u, Ym = 1}, u ≥ 0, n ≥ 1.

In steady-state we have

qn,0(u) = lim
m→∞ q̂n,0(m, u), n ≥ 0 and qn,1(u) = lim

m→∞ q̂n,1(m, u), n ≥ 1.

Relating the states of the system at two consecutive time epochs m and (m + 1) and using
probabilistic arguments, we obtain (for u ≥ 1) the following equations in steady-state

q0,0(u − 1) = q0,0(u) + ηq1,0(u) + μq1,1(u) + auηg1q0,0(0), (49)

qn,0(u − 1) = φ

{

η

[

qn,0(u) + au

n∑

i=1

giqn−i,0(0)

]

+ η

[

qn+1,0(u) + au

n+1∑

i=1

giqn−i+1,0(0)

]}

,

1 ≤ n ≤ b − 1, (50)

qn,0(u − 1) = φ

{

η

[

qn,0(u) + au

b∑

i=1

giqn−i,0(0)

]

+ η

[

qn+1,0(u) + au

b∑

i=1

giqn−i+1,0(0)

]}

,

n ≥ b, (51)

q1,1(u − 1) = φ

{

η
[
q1,0(u) + aug1q0,0(0)

] + η

[

q2,0(u) + au

2∑

i=1

giq2−i,0(0)

]}

+ μq1,1(u)

+μq2,1(u) + aug1μq1,1(0), (52)
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qn,1(u − 1) = φ

{

η

[

qn,0(u) + au

n∑

i=1

giqn−i,0(0)

]

+ η

[

qn+1,0(u) + au

n+1∑

i=1

giqn+1−i,0(0)

]}

+μ

[

qn,1(u) + au

n−1∑

i=1

giqn−i,1(0)

]

+μ

[

qn+1,1(u)+au

n∑

i=1

giqn−i+1,1(0)

]

, 2≤n≤b, (53)

qn,1(u − 1) = φ

{

η

[

qn,0(u) + au

b∑

i=1

giqn−i,0(0)

]

+ η

[

qn+1,0(u) + au

b∑

i=1

giqn+1−i,0(0)

]}

+μ

[

qn,1(u) + au

b∑

i=1

giqn−i,1(0)

]

+μ

[

qn+1,1(u)+au

b∑

i=1

giqn−i+1,1(0)

]

, n≥b+1. (54)

We introduce the transforms q∗
n,0(z) = ∑∞

u=0 qn,0(u)zu and q∗
n,1(z) = ∑∞

u=0 qn,1(u)zu so
that the steady-state probabilities qn,0 = q∗

n,0(1), n ≥ 0 and qn,1 = q∗
n,1(1), n ≥ 1. Thus

multiplying (49)–(54) by zu and summing over u from 1 to ∞ we obtain the following set
of transformed equations

(z − 1)q∗
0,0(z) = ηq∗

1,0(z) − q0,0(0) − ηq1,0(0)

+μq∗
1,1(z) − μq1,1(0) + ηA(z)g1q0,0(0), (55)

(z − ηφ)q∗
n,0(z) = φ

{

η

[

q∗
n+1,0(z) − qn+1,0(0) + A(z)

n+1∑

i=1

giqn−i+1,0(0)

]

+η

[

A(z)

n∑

i=1

giqn−i,0(0) − qn,0(0)

]}

, 1 ≤ n ≤ b − 1, (56)

(z − ηφ)q∗
n,0(z) = φ

{

η

[

q∗
n+1,0(z) − qn+1,0(0) + A(z)

b∑

i=1

giqn−i+1,0(0)

]

+η

[

A(z)

b∑

i=1

giqn−i,0(0) − qn,0(0)

]}

, n ≥ b, (57)

(z − μ)q∗
1,1(z) = φ

{

η

[

q∗
2,0(z) − q2,0(0) + A(z)

2∑

i=1

giq2−i,0(0)

]

+ η

[

q∗
1,0(z) − q1,0(0)

+A(z)g1q0,0(0)

]}

+μ
[
q∗
2,1(z)−q2,1(0)+A(z)g1q1,1(0)

] − μq1,1(0), (58)

(z − μ)q∗
n,1(z) = φ

{

η

[

q∗
n+1,0(z) − qn+1,0(0) + A(z)

n+1∑

i=1

giqn−i+1,0(0)

]

+η

[

q∗
n,0(z) − qn,0(0) + A(z)

n∑

i=1

giqn−i,0(0)

]}

+μ

[

q∗
n+1,1(z) − qn+1,1(0) + A(z)

n∑

i=1

giqn−i+1,1(0)

]

+μ

[

A(z)

n−1∑

i=1

giqn−i,1(0) − pn,1(0)

]

, 2 ≤ n ≤ b, (59)
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(z − μ)q∗
n,1(z) = φ

{

η

[

q∗
n+1,0(z) − qn+1,0(0) + A(z)

b∑

i=1

giqn−i+1,0(0)

]

+η

[

q∗
n,0(z) − qn,0(0) + A(z)

b∑

i=1

giqn−i,0(0)

]}

+μ

[

q∗
n+1,1(z) − qn+1,1(0) + A(z)

b∑

i=1

giqn−i+1,1(0)

]

+μ

[

A(z)

b∑

i=1

giqn−i,1(0) − pn,1(0)

]

, n ≥ b + 1. (60)

Adding (55)–(60) for all values of n, taking limit as z → 1 and using the normalizing
condition

∑∞
n=0 qn,0 + ∑∞

n=1 qn,1 = 1 we have the following relation

∞∑

n=0

qn,0(0) +
∞∑

n=1

qn,1(0) = 1

a
. (61)

Let us denote q−
n,0, n ≥ 0 and q−

n,1, n ≥ 1 as the probability that there are n customers
in the system at pre-arrival epoch depending on whether the server is in working vacation
period or normal busy period, respectively. Applying the arguments of Bayes’ theorem as
in Section 3.1 and using (61) we have the following relation

q−
n,j = aqn,j (0), n ≥ 0, j = 0 or n ≥ 1, j = 1. (62)

Now using the right shift operator D on the sequence {q∗
n,0(z)} and {qn,0(0)} such that

Dq∗
n,0(z) = q∗

n+1,0(z) and Dqn,0(0) = qn+1,0(0) for all n, Eq. 57 can be re-written in the
form

[
z − φ(η + ηD)

]
q∗
n,0(z) = φ

[

η

{

A(z)

b∑

i=1

giD
b−i+1 − Db+1

}

+η

{

A(z)

b∑

i=1

giD
b−i − Db

}]

qn−b,0(0),

n ≥ b. (63)

Substituting z = φ(η + ηD) we obtain

[

φ(η + ηD)

(

A(φ(η + ηD))

b∑

i=1

giD
b−i − Db

)]

qn,0(0) = 0, n ≥ 0, (64)

which is a homogeneous difference equation with constant coefficient and the correspond-
ing c.e. is same as Eq. 20. Thus the general solution of Eq. 64 is

qn,0(0) =
b∑

i=1

eiα
n
i , n ≥ 0, (65)
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where α1, α2, ..., αb are the roots of the c.e. lying inside the unit circle |s| = 1 and, e1,
e2, ..., eb are the arbitrary constants corresponding to each root αi which are independent
of n . Now using Eq. 65 in Eq. 63 we have

[
z − φ(η + ηD)

]
q∗
n,0(z) = φ

b∑

j=1

ej (ηαj + η)(A(z)G(α−1
j ) − 1)αn

j , n ≥ b, (66)

which is a non-homogeneous difference equation with constant coefficient. Now using
similar argument as in Section 3.1 we have the general solution of Eq. 66 as

q∗
n,0(z) = φ

b∑

j=1

ej (η + ηαj )(A(z)G(α−1
j ) − 1)

z − φ(η + ηαj )
αn

j , n ≥ b. (67)

We now find the condition under which Eq. 67 holds for q∗
n,0(z), 1 ≤ n ≤ b − 1 as well.

Substituting the respective values in Eq. 56 we obtain the following condition

η

b∑

j=1

ej α
n+1
j

(
b∑

i=1

giα
−i
j −

n+1∑

i=1

giα
−i
j

)

+ η

b∑

j=1

ej α
n
j

(
b∑

i=1

giα
−i
j −

n∑

i=1

giα
−i
j

)

= 0, 1 ≤ n ≤ b − 1.

(68)

Setting n = b − 1, b − 2, ..., 1 in Eq. 68 and using the fact that gb 	= 0 we have

b∑

j=1

ej

αn
j

= 0, n = 1, 2, ..., b − 1. (69)

Now using the definition of the operator D over the sequence {q∗
n,1(z)} and {qn,1(0)}, for all

n as done above, and further using the expression of Eqs. 65 and 67, 60 can be re-written in
the form:

[z − μ − μD] q∗
n,1(z) =

[

μA(z)

b∑

i=1

giD
b−i + μA(z)

b∑

i=1

giD
b−i+1 − μDb − μDb+1

]

qn−b,1(0)

+φ

b∑

j=1

ej (η + ηαj )(A(z)G(α−1
j ) − 1)αn

j

+φφ

b∑

j=1

ej (η + ηαj )
2(A(z)G(α−1

j ) − 1)

z − φ(η + ηαj )
αn

j , n ≥ b + 1. (70)

Substituting z = μ + μD in Eq. 70 we obtain:

[

(μ + μD)

(

Db − A(μ + μD)

b∑

i=1

giD
b−i

)]

qn,1(0) = φ

[ b∑

j=1

ej (η + ηαj )(A(z)G(α−1
j ) − 1)αn+b

j

+ φ

b∑

j=1

ej (η + ηαj )
2(A(z)G(α−1

j ) − 1)

z − φ(η + ηαj )
αn+b

j

]∣
∣
∣
∣
z=μ+μD

,

n ≥ 1. (71)
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Equation 71 is a non-homogeneous difference equation with constant coefficient and the
general solution is given by

qn,1(0) =
b∑

j=1

lj β
n
j + φ

b∑

j=1

ej (η + ηαj )

φ(η + ηαj ) − (μ + μαj )
αn

j , n ≥ 1. (72)

The first term in the R.H.S of Eq. 72 is the solution corresponding to the homogeneous part
of Eq. 71. β1, β2, ..., βb are the roots of the c.e. (which is same as Eq. 33) of the homoge-
neous equation lying inside the unit circle |s| = 1, and l1, l2, ..., lb are the corresponding
arbitrary constants independent of n. On the other hand, the second term in the R.H.S of
Eq. 72 represents a particular solution of Eq. 71. Now using expression (72) on (70) we have

[z − μ − μD] q∗
n,1(z) =

b∑

j=1

lj (μ + μβj )(A(z)G(β−1
j ) − 1)βn

j

+φφ

b∑

j=1

ej (η + ηαj )
2(A(z)G(α−1

j ) − 1)

z − φ(η + ηαj )
αn

j

+φφ

b∑

j=1

ej (η+ηαj )
2(A(z)G(α−1

j )−1)

φ(η+ηαj ) − (μ + μαj )
αn

j , n≥b+1. (73)

Equation 73 is a non-homogeneous difference equation with constant coefficient. Using a
similar argument as in Section 3.1 we obtain the general solution of Eq. 73 as

q∗
n,1(z) =

b∑

j=1

lj (μ + μβj )(A(z)G(β−1
j ) − 1)

z − (μ + μβj )
βn

j

+φφ

b∑

j=1

ej (η + ηαj )
2(A(z)G(α−1

j ) − 1)

(z − φ(η + ηαj ))(φ(η + ηαj ) − (μ + μαj ))
αn

j

n ≥ b + 1. (74)

We now find the condition under which (74) holds true for q∗
n,1(z), 1 ≤ n ≤ b as well.

Substituting the respective values in Eq. 59 we obtain the following condition

μ

b∑

j=1

lj β
n
j

b∑

i=n

giβ
−i
j + μ

b∑

j=1

lj β
n+1
j

b∑

i=n+1

giβ
−i
j − μgnφ

b∑

j=1

ej (η + ηαj )αj

φ(η + ηαj ) − (μ + μαj )

− ηφgn+1

b∑

j=1

ej − φgn

b∑

j=1

ej (η + ηαj )

+ φφ

b∑

j=1

ej (η + ηαj )
2αn

j

∑b
i=n giα

−i
j

φ(η + ηαj ) − (μ + μαj )
= 0, 2 ≤ n ≤ b. (75)
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Setting n = b and n = b − 1 in Eq. 75 and using the fact that gb 	= 0 we respectively obtain

b∑

j=1

lj + φ

b∑

j=1

ej (η + ηαj )

φ(η + ηαj ) − (μ + μαj )
= 0, (76)

b∑

j=1

lj

βj

(μ + μβj ) − ηφ

b∑

j=1

ej + φφ

b∑

j=1

ej (η + ηαj )
2

αj

{
φ(η + ηαj ) − (μ + μαj )

} = 0. (77)

Again setting n = b − 2, b − 3, ..., 2 in Eq. 75 we have

b∑

j=1

lj

βb−n
j

(μ + μβj ) + φφ

b∑

j=1

ej (η + ηαj )
2

αb−n
j

{
φ(η + ηαj ) − (μ + μαj )

} = 0, n = 2, 3, ..., b − 2. (78)

In a similar manner setting the respective values in Eq. 58 we obtain the following condition

b∑

j=1

lj

βb−1
j

(μ + μβj ) + φφ

b∑

j=1

ej (η + ηαj )
2

αb−1
j

{
φ(η + ηαj ) − (μ + μαj )

} = 0. (79)

Thus (78) and (79) can be combined together in the form

b∑

j=1

lj

βn
j

(μ+μβj )+φφ

b∑

j=1

ej (η + ηαj )
2

αn
j

{
φ(η+ηαj ) − (μ+μαj )

} = 0, n=2, 3, ...b − 1. (80)

Also, using Eqs. 65 and 72 in Eq. 61 we have the following relation

b∑

j=1

lj βj

1 − βj

+
b∑

j=1

ej

1 − αj

+ φ

b∑

j=1

ej (η + ηαj )αj

(1 − αj )
{
φ(η + ηαj ) − (μ + μαj )

} = 1

a
. (81)

It can be seen that Eqs. 69, 76, 77, 80 and 81 together constitutes a system of 2b equa-
tions which can be solved in order to obtain the 2b unknowns namely e1, e2, . . . , eb and
l1, l2, . . . , lb. Thus we have the closed-form expressions of the system-content distributions
at pre-arrival and arbitrary epochs as

q−
n,0 = aqn,0(0) = a

b∑

j=1

ejα
n
j , n ≥ 0 (82)

qn,0 = q∗
n,0(1) = φ

b∑

j=1

ej (η + ηαj )(G(α−1
j ) − 1)

1 − φ(η + ηαj )
αn

j , n ≥ 1 (83)

q−
n,1 = aqn,1(0) = a

b∑

j=1

lj β
n
j + aφ

b∑

j=1

ej (η + ηαj )

φ(η + ηαj ) − (μ + μαj )
αn

j , n ≥ 1 (84)

qn,1 = q∗
n,1(1) =

b∑

j=1

lj (μ + μβj )(G(β−1
j ) − 1)

1 − (μ + μβj )
βn

j

+φφ

b∑

j=1

ej (η + ηαj )
2(G(α−1

j ) − 1)

(1 − φ(η + ηαj ))(φ(η + ηαj ) − (μ + μαj ))
αn

j , n ≥ 1. (85)
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Further, using the normalizing condition we have

q0,0 = 1 −
b∑

j=1

lj (μ + μβj )(G(β−1
j ) − 1)βj

{
1 − βj

} {
1 − (μ + μβj )

}

−φ

b∑

j=1

ej (η + ηαj )(G(α−1
j ) − 1)αj

{
1 − αj

} {
1 − φ(η + ηαj )

}

[

1 + φ(η + ηαj )

φ(η + ηαj ) − (μ + μαj )

]

. (86)

This completes the analysis of GIX/Geo/1 − MWV queue under EAS policy.

3.3 Stability Analysis

The analysis done in Sections 3.1 and 3.2 are mainly based on the roots of the characteristic
equations. As a result, it is significant to determine the conditions under which the system
remains stable, which is discussed in the following theorem.

Theorem 1 Under the conditions ρ = g
aμ

< 1 and 0 < φ ≤ 1, 0 ≤ η ≤ μ < 1, the root

equations sb − A(μ + μs)
∑b

i=1 gis
b−i = 0 and sb − A(φ(η + ηs))

∑b
i=1 gis

b−i = 0,
respectively possesses exactly b roots inside the unit circle |s| = 1.

Proof Let us first consider the equation sb − A(μ + μs)
∑b

i=1 gis
b−i = 0 and assume

f1(s) = sb and f2(s) = −A(μ + μs)
∑b

i=1 gis
b−i . Consider the circle |s| = 1 − δ where

δ > 0 and is a sufficiently smaller quantity. Let A(μ + μs) = K(s) = ∑∞
i=0 kis

i , where
ki ≥ 0 for all i. This gives

|f1(s)| = |s|b = (1 − δ)b = 1 − bδ + o(δ)

|f2(s)| = |K(s)||
b∑

i=1

gis
b−i | ≤ K(1 − δ)

b∑

i=1

gi(1 − δ)b−i = 1 − bδ + (g − μa)δ + o(δ)

As δ is a very small quantity, we have |f2(s)| < |f1(s)| under the condition that g < μa,
i.e., ρ = g

aμ
< 1. Hence from Rouché’s theorem we can conclude that |f1(s)| and |f1(s)|+

|f2(s)| have exactly b roots inside the unit circle. Here one may note that the condition
ρ < 1 is necessary as well as sufficient for the stability of the system (see Abolnikov and
Dukhovny 1991).

Similarly, for equation sb − A(φ(η + ηs))
∑b

i=1 gis
b−i = 0 assume h1(s) = sb and

h2 = −A(φ(η + ηs))
∑b

i=1 gis
b−i . As before, consider the circle |s| = 1 − δ and let

A(φ(η + ηs)) = B(s) = ∑∞
i=0 bis

i such that bi ≥ 0 for all i. This gives

|h1(s)| = 1 − bδ + o(δ)

|h2(s)| = |B(s)||
b∑

i=1

gis
b−i | ≤ B(1 − δ)

b∑

i=1

gi(1 − δ)b−i

= A(φ) − δ(ηφA(1)(φ) + bA(φ) − gA(φ)) + o(δ) (87)

It can observed that as δ is sufficiently small, |h2(s)| < |h1(s)| under the condition that
A(φ) < 1 and ηφA(1)(φ)+bA(φ)−gA(φ)) > 0, which holds true provided 0 < φ ≤ 1 and
0 ≤ η ≤ μ < 1. Thus from Rouché’s theorem we conclude that |h1(s)| and |h1(s)|+|h2(s)|
have exactly b roots inside the unit circle.
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4 Some Special Models

In this section we discuss in brief few special cases of our model which can be deduced by
taking some fixed values of the parameters η, φ and/or g′

i s. Based on the analysis done in
Section 3, the pre-arrival and arbitrary epoch probabilities can be obtained in an explicit and
readily computable form under both LAS-DA and EAS policies.

Case 1: Let g1 = 1 and gi = 0, ∀ i ≥ 2, i.e., the customers arrive into the system
individually rather than in batches. Thus our model becomes GI/Geo/1 queue with
multiple working vacations (Li et al. 2007). Correspondingly, the two root equations
reduces to (s − A(φ(η + ηs))) = 0 and (s − A(μ + μs)) = 0 such that both possesses
single root in the interval 0 < s < 1. Solving a system of two equations given by Eqs. 38
and 42 for LAS-DA, and Eqs. 76 and 81 for EAS will give the constants and hence
the steady-state probabilities can be evaluated using Eqs. 43–48 and Eqs. 82–86. Here
it is worthy to mention that our analysis provides an alternative approach to study the
queueing model considered in Li et al. (2007).

Case 2: Let η = 0, i.e., the server remains idle during vacation period. Thus our model
becomes GIX/Geo/1 queue with multiple vacations. Our analysis provides a method-
ology to derive the results of this queueing model which has not been investigated in the
past. The two c.e.’s and the system of 2b equations should be solved by putting η = 0
and correspondingly, the steady-state probabilities can be obtained using (43)–(48) and
(82)–(86). The model considered in this case may again reduce to GI/Geo/1 queue with
multiple vacations (Tian and Zhang 2002) by assuming single arrivals i.e., g1 = 1 and
gi = 0, ∀ i ≥ 2.

Case 3: Let φ = 1 and η = 0, i.e., the server does not take any vacation and thus our
model reduces toGIX/Geo/1 queue without vacation (Chaudhry and Gupta 1997). Cor-
respondingly we have only one root equation given by (sb−A(μ+μs)

∑b
i=1 gis

b−i ) = 0
which have b roots inside the unit circle. The associated b arbitrary constants (kj ’s) for
LAS-DA policy can be obtained by solving the following system of b equations which
are deduced from Eqs. 26, 41 and 42 as

b∑

j=1

kj

ξn
j

(μ + μξj ) = 0, n = 1, 2, ..., b − 1, and
b∑

j=1

kj

(
μ + μξj

1 − ξj

)

= 1

a
,

and the state probabilities can be evaluated from Eqs. 43, 46, 47 and 48. Similarly, for
EAS policy, the b arbitrary constants (lj ’s) can be obtained by solving the following
system of b equations deduced from Eqs. 76, 77, 80 and 81 as

b∑

j=1

lj

βn
j

= 0, n = 1, 2, ..., b − 1 and
b∑

j=1

lj

1 − βj

= 1

a

and the state probabilities can be evaluated from Eqs. 82, 84, 85, and 86. The model
considered in this case can be further used to derive the results of the classicalGI/Geo/1
queue (Chaudhry et al. 1996) by assuming single arrivals instead of batch arrivals, i.e.,
g1 = 1 and gi = 0, ∀ i ≥ 2.
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5 PerformanceMeasures

Once the steady-state probabilities at pre-arrival and arbitrary epochs are known, different
performance measures of the system can be obtained as discussed below.

5.1 Working Vacation/Busy Period Probabilities

For an arriving customer it is important to know whether the server is in busy period or in
working vacation. Thus the probability that the server is in working vacation period (Pwv)

or the server is in normal busy period, (Pb) is given by

Pwv =
∞∑

n=0

p−
n,0, Pb =

∞∑

n=1

p−
n,1.

One may note that the above performance measures are for LAS-DA policy. In case of EAS
policy p−

n,0 and p−
n,1 should be replaced by q−

n,0 and q−
n,1, respectively.

5.2 System Length

The average system-length when the server is in working vacation period (Lwv) or in busy
period (Lb), and the average system-length (Ls) at arbitrary epoch under LAS-DA policy
is given by

Lwv =
∞∑

n=0

npn,0, Lb =
∞∑

n=1

npn,1, Ls = Lwv + Lb.

Further, the corresponding average system length L−
wv , L

−
b and L−

s at pre-arrival epoch can
be obtained by replacing pn,0 and pn,1 by p−

n,0 and p−
n,1 respectively. Also under EAS policy

pn,0 and pn,1 should be replaced by qn,0 and qn,1, respectively.

5.3 Numerical Results and Discussion

In this section we discuss the significance of the analytical results obtained in the previous
sections through some numerical examples. The results are displayed in the form of self
explanatory tables. In Tables 1 and 2, system-content distribution at pre-arrival and arbi-
trary epochs are obtained for geometric and deterministic inter-arrival time distributions,
respectively. Some performance measures are also given at the bottom of each table. It may
be remarked that all the results presented here are rounded off to eight decimal places. In
Table 1 one may note that the distributions at pre-arrival and arbitrary epochs are exactly
the same irrespective of the state of the server which is mainly due to Bernoulli arrivals i.e.,
BASTA property (see Takagi 1993). Moreover, a very significant trend can be observed in
the fourth and seventh column of both the tables. As n becomes larger, the ratio of the pre-
arrival epoch probabilities (working vacation/ busy period) converges to the unique largest
real root of the c.e.’s (Eqs. 20 and 33) lying inside the unit circle. This suggests that the
tail probabilities at pre-arrival epoch can be well approximated using the unique largest real
root, i.e., p−

n,0 = acbr
n
b , p−

n,1 = akbξ
n
b , q−

n,0 = aebα
n
b , q−

n,1 = albβ
n
b , where rb(αb) and

ξb(βb) are respectively the largest root of Eqs. 20 and 33 for LAS(EAS) policy.
We also investigate the impact of different parameters on the system performance

through some graphical representations. The graphs are plotted for both late (LAS) and
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Table 1 System-content distributions at various epochs for GeoX/Geo/1/MV W queue in LAS-DA policy
with parameters g2 = 0.3, g3 = 0.25, g4 = 0.35, g6 = 0.1, a = 5, μ = 0.8, η = 0.6, φ = 0.5, ρ = 0.8375

n p−
n,0 pn,0 p−

n+1,0/p
−
n,0 p−

n,1 pn,1 p−
n+1,1/p

−
n,1

0 0.15500898 0.15500898 0.01394697

1 0.00216191 0.00216191 3.50000000 0.04681888 0.04681888 1.24035007

2 0.00756667 0.00756667 0.91785227 0.05807180 0.05807180 1.04844168

3 0.00694509 0.00694509 1.05834838 0.06088489 0.06088489 1.00025312

4 0.00735032 0.00735032 0.19989220 0.06090030 0.06090030 0.89217738

5 0.00146927 0.00146927 1.84198875 0.05433387 0.05433387 0.96606833

6 0.00270638 0.00270638 0.25274103 0.05249023 0.05249023 0.89391814

7 0.00068401 0.00068401 0.65207976 0.04692197 0.04692197 0.91232969

8 0.00044603 0.00044603 0.64357200 0.04280831 0.04280831 0.90834132
...

...
...

...
...

...
...

23 0.00000007 0.00000007 0.55418535 0.00898905 0.00898905 0.90017282

24 0.00000004 0.00000004 0.55290267 0.00809170 0.00809170 0.90017148

25 0.00000002 0.00000002 0.55394196 0.00728392 0.00728392 0.90017061

26 0.00000001 0.00000001 0.55350573 0.00655677 0.00655677 0.90017009

27 0.00000001 0.00000001 0.55330098 0.00590221 0.00590221 0.90016978

28 0.00000000 0.00000000 0.55358438 0.00531299 0.00531299 0.90016958
...

...
...

...
...

...
...

Sum 0.18497306 0.18497306 0.81502693 0.81502693

Lwv = 0.10595350, Lb = 8.91166727, Ls = 9.01762077, Pwv = 0.18497306, Pb = 0.81502693

early (EAS) arrival systems. Figure 1a demonstrates the effect of service rate during vaca-
tion (η) on the average system content (Ls) for different distributions of inter-arrival time
namely, geometric, arbitrary and deterministic, i.e., A(z) = λz

1−(1−λ)z
, A(z) = 0.25z +

0.2z3 + 0.35z5 + 0.15z11 + 0.05z15 and A(z) = za respectively. Other parameters are taken
as g2 = 0.3, g3 = 0.25, g4 = 0.35, g6 = 0.1, μ = 0.95, φ = 0.5, a = 5. Certainly, Ls

decreases with the increase in η irrespective of any inter-arrival time distribution. However,
for any fixed value of η, Ls decreases as one moves from geometric to arbitrary and then
to deterministic inter-arrival time distribution for both LAS and EAS systems. It may be
concluded that despite having the same mean inter-arrival time, the distribution of the inter-
arrival time plays a major role in determining the performance of the system. In addition, if
we compare LAS and EAS, we observe that for a very low value of η (say 0.1), Ls is almost
the same for both the systems. But as η increases, the value of Ls for EAS goes on decreas-
ing at a faster rate as compared to LAS, i.e., the difference in Ls between both the systems
becomes significantly higher. This is mainly due to the fact that in EAS policy the customer
may depart in the same slot in which it arrived if it finds the server idle. But this is not pos-
sible in case of LAS policy where the arriving customer(s) will have to wait for at least one
slot before getting served. This leads to the accumulation of customers in the queue and as
a result the average system length in LAS becomes more than that of EAS.

Figure 1b highlights the impact of arrival rate (λ) on Ls for GeoX/Geo/1 queue under
various vacation policies namely, multiple working vacations (MWV) (φ = 0.5, η = 0.6),
multiple vacations (MV) (φ = 0.5, η = 0) and no vacation (φ = 1, η = 0). Further
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Table 2 System-content distributions at various epochs for DX/Geo/1/MV W queue in EAS policy with
parameters g1 = 0.4, g2 = 0.2, g3 = 0.2, g4 = 0.1, g5 = 0.1, a = 4, μ = 0.8, η = 0.5, φ = 0.4,
ρ = 0.71875

n q−
n,0 qn,0 q−

n+1,0/q
−
n,0 q−

n,1 qn,1 q−
n+1,1/q

−
n,1

0 0.52827341 0.31639294 0.02490078

1 0.01315442 0.04606541 0.71070490 0.14928442 0.14265395 0.78495881

2 0.00934891 0.03255534 0.62328096 0.11718212 0.12796348 0.66358167

3 0.00582700 0.02402104 0.45633005 0.07775991 0.10468334 0.56918251

4 0.00265903 0.01524961 0.28491835 0.04425958 0.07469578 0.53894165

5 0.00075761 0.00696148 0.22939905 0.02385333 0.04753733 0.53999202

6 0.00017379 0.00085327 0.44075506 0.01288061 0.02682281 0.53464499

7 0.00007660 0.00042332 0.37367359 0.00688655 0.01528418 0.52598890

8 0.00002862 0.00018005 0.32122215 0.00362225 0.00829973 0.52325918

9 0.00000919 0.00006239 0.31107070 0.00189538 0.00440256 0.52207646

10 0.00000286 0.00001834 0.34488862 0.00098953 0.00231973 0.52097858

11 0.00000099 0.00000584 0.35603925 0.00051552 0.00121783 0.52009069

12 0.00000035 0.00000220 0.33380952 0.00026812 0.00063644 0.51958094

13 0.00000012 0.00000075 0.32968594 0.00013931 0.00033155 0.51929905

14 0.00000004 0.00000025 0.33818942 0.00007234 0.00017248 0.51910119

15 0.00000001 0.00000008 0.34257830 0.00003755 0.00008965 0.51896287
...

...
...

...
...

...
...

Sum 0.56031297 0.44279235 0.43968702 0.55720764

Lwv = 0.28941911, Lb = 1.67700126, Ls = 1.96642037, Pwv = 0.56031297, Pb = 0.43968702

g1 = 0.75, g2 = 0.2, g3 = 0.05 and μ = 0.98. It may be observed that an increase in λ

results in a significant increase in average system content regardless of any vacation pol-
icy. If the server takes multiple vacations then the average system content is more, whereas
keeping some sort of service during vacation period will lead to a decrease in system length,
which is reasonable. However, the system length further decreases if the server does not take
any vacation at all. This behavior is experienced by both LAS and EAS systems. Further-
more, one may carefully observe that the curves for LAS and EAS under multiple vacation
policy superimpose one another. It is because under MV policy the server does not serve
the customers in the queue during vacation period. As a result if the arriving customer finds
the server idle it will have to wait for at least one slot for the vacation period to end and
get served, irrespective of LAS or EAS system. Hence the average system length remains
the same for both the systems. Also for a fixed λ, Ls is lower for EAS as compared to LAS
under MWV and no vacation policy. The reason remains the same as discussed in Fig. 1a.
We finally conclude that the performance of the system is not only affected by the system
parameters and vacation policy adopted, but also considerably differs under the assump-
tion of late or early arrival system. Hence both the systems should be necessarily taken into
account while dealing with discrete-time queues.
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(a) (b)

Fig. 1 a Effect of η on average system length (Ls ) for different distributions of interarrival time. b Effect of
arrival rate (λ) on average system length (Ls ) under various vacation policies

6 Conclusion

In this paper, the steady-state analysis of a discrete-time infinite buffer GIX/Geo/1 queue
with multiple working vacations has been presented. The study is carried out under the
assumption of both late arrival and early arrival systems independently. We have employed
two important methods, the supplementary variable technique and the shift operator method,
and obtained an explicit closed-form solution of the system-content distribution at pre-
arrival and arbitrary epochs by considering different states of the server. Meanwhile, the
numerical results suggests that the tail probabilities at pre-arrival epochs can be estimated
by the unique largest root of the underlying characteristic equations present inside the unit
circle. The investigations further concludes that in addition to the system parameters, the
choice of arrival and departure policy, i.e., late arrival and early arrival systems signif-
icantly impacts the system characteristics. Hence both the systems should be taken into
consideration while studying a discrete-time queue. Moreover, the methodology developed
throughout the analysis is not only analytically tractable but is also easy to implement as
illustrated by the numerical examples. It enables us to completely avoid the construction of
any transition probability matrix and the inversion of generating functions in order to obtain
the probabilities. We are of the opinion that the procedure used here and the results derived
throughout the analysis will be of theoretical and practical importance to the researchers
working along this area.
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Vilaplana J, Solsona F, Teixidó I, Mateo J, Abella F, Rius J (2014) A queuing theory model for cloud
computing. J Supercomput 69(1):492–507

623Methodology and Computing in Applied Probability (2020) 22: 599–624



Ye Q, Liu L (2016) Performance analysis of the GI/M/1 queue with single working vacation and vacations.
Methodol Comput Appl Probab 19(3):685–714

Yu MM, Tang YH, Fu YH (2009) Steady state analysis and computation of the GIX/Mb/1/L
queue with multiple working vacations and partial batch rejection. Comput Indus Eng 56(4):1243–
1253

Zhang ZG, Tian N (2001) Discrete time Geo/G/1 queue with multiple adaptive vacations. Queue Syst
38(4):419–429

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

624 Methodology and Computing in Applied Probability (2020) 22: 599–624


	A Discrete-Time GIX/Geo/1 Queue with Multiple Working Vacations Under Late and Early Arrival System
	Abstract
	Introduction
	Model Description
	Analysis of the Model
	Modeling with LAS-DA Policy
	Modeling with EAS Policy
	Stability Analysis

	Some Special Models
	Performance Measures
	Working Vacation/Busy Period Probabilities
	System Length
	Numerical Results and Discussion

	Conclusion
	References




