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Abstract
In this paper, we study a new one-dimensional homogeneous stochastic process, termed
the Square of the Brennan-Schwartz model, which is used in various contexts. We first
establish the probabilistic characteristics of the model, such as the analytical expression
solution to Itô’s stochastic differential equation, after which we determine the trend func-
tions (conditional and non-conditional) and the likelihood approach in order to estimate the
parameters in the drift. Then, in the diffusion coefficient, we consider the problem of param-
eter estimation, doing so by a numerical approximation. Finally, we present an application
to population growth by the use of real data, namely the growth of the total population aged
65 and over, resident in the Arab Maghreb, to illustrate the research methodology presented.

Keywords Brennan Schwartz diffusion Process · Stochastic differential equation ·
Statistical inference in diffusion process · Stationary distribution · Trend function ·
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1 Introduction

In recent years, considerable progress has been made in discovering, understanding and
controlling diffusion processes, making use of this new understanding to model phenomena
that evolve randomly and continuously in time. Diffusion models have extensive areas and
domains of application. For example, in mathematical finance, the pricing and hedging
of products that largely depend on interest rates requires the use of mathematical models.
These models have been the object of particular attention in the field of stochastic finance.
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Among other work in this field, Vasicek (1977) proposed a general form of the term structure of
interest rates, and Brennan and Schwartz (1979) developed an no-arbitrage model of the
term structure of interest rates. In addition, Bezborodov et al. (2016) consider the problem
related to payoffs of polynomial growth and Mrkvicka et al. (2017) study goodness-of-fit
tests and multiple Monte Carlo testing with applications in spatial point processes.

Another field in which diffusion processes are often analysed is that of biology, where
microscopic studies may be performed, for example to identify sequences on a strand of
DNA or to characterise the evolution of cancerous tumours. On the other hand, macroscopic
phenomena may also be examined, concerning the behaviour patterns of large groups of
individuals and their interactions (the extinction of populations, the balance of ecosystems,
the predator-prey balance, meta populations), or problems of population genetics. In popula-
tion dynamics, processes of life and death and of branching constitute fundamental models;
see, for example, (Haccou et al. 2005; Allen 2010). An important analysis of the spatial
dynamics of a population, i.e. the evolution of its spatial distribution over time, has been
performed by Phillips et al. (2006).

Various stochastic models have been proposed with respect to population dynamics, in
order to study population growth under fluctuating conditions. In a stochastic differential
equation (SDE), the growth rate or any other parameter included is considered to be a ran-
dom process. In consequence, stochastic models enable us to understand the growth of
populations in processes such as the evolution of seasonal infectious disease and stochas-
tic epidemics. In this respect, see papers such as Lin and Ludkovski (2014) on sequential
Bayesian inference in hidden Markov stochastic kinetic models with application to detec-
tion and response to seasonal epidemics, and Campillo et al. (2016) on an analysis and
approximation of stochastic growth model with extinction.

The process examined in the present study is termed the Stochastic Square of the
Brennan-Schwartz Diffusion Process (SBSDP), which is an extension of the homogeneous
lognormal diffusion process (see, for example, Tintner and Sengupta (1972)). The term
adopted for the process we study, i.e. ”square of the Brennan-Schwartz process” can be
proved by stochastic calculus. However, estimating continuous time processes remains dif-
ficult due to the unattainability of a continuous sample of observations. Instead, the model
is discretized, after which estimation methods can be applied. Although there exists a class
of continuous time stochastic processes for which the transition probability density func-
tions (tpdf) are not known, the estimation can be achieved by alternative techniques (see for
example Gutierrez et al. (2006, 2007)).

This article focuses on the latter problem. As the tpdf of the process cannot be obtained,
we propose a method for calculating the trend functions, after which we estimate the param-
eters in the drift and the diffusion coefficient by applying, respectively, the likelihood
approach and a numerical approximation. Finally, to illustrate the results obtained, this
method is applied to analyse population growth in the Arab Maghreb region.

2 Probabilistic Characteristics of theModel

2.1 The ProposedModel

Let {x(t); t ∈ [t0, T ]; t0 ≥ 0} be the one-dimensional homogenous diffusion process that
takes values on (0, ∞) and which satisfies the following non-linear Itô’s stochastic differential
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equation SDE:

dx(t) =
(
αx(t) + β

√
x(t)
)

dt + σx(t)dw(t), x(t0) = xt0 , (1)

where σ > 0, α and β are real parameters, w(t) is a one-dimensional standard Wiener process
and xt0 > 0 is a fixed real value.

Following the method described in Kloeden and Platen (1992) (p.113) the nonlinear SDE (1)
can be reduced to a linear SDE, by the appropriate transformation y(t) = √

x(t) , then

dy(t) = (ay(t) + b) dt + cy(t)dw(t), y(t0) = √
xt0 , (2)

where a = α

2
− σ 2

8
, b = β

2
and c = σ

2
.

2.2 The Analytical Expression of theModel

The SDE (2) has a unique solution y(t) which is known, especially in the field of stochastic
finance, as the Brenann-Schwartz diffusion process (see for example Kloeden and Platen (1992)
and Gutiérrez et al. (2005)). The analytical expression of this solution is given by:

y(t) =
(

y(t0) + b

∫ t

t0

exp

[
−
(

a − c2

2

)
(τ − t0) − c (w(τ) − w(t0))

]
dτ

)

(
exp

[(
a − c2

2

)
(t − t0) + c (w(t) − w(t0))

])
,

Then, by the continuous mapping theorem, it can be deduced that the SDE (1) has a unique
solution, namely x(t) = y2(t) which is given analytically by the following expression:

x(t) =
(√

xt0 + b

∫ t

t0

exp

[
−
(

a − c2

2

)
(τ − t0) − c (w(τ) − w(t0))

]
dτ

)2

(
exp

[
2

(
a − c2

2

)
(t − t0) + 2c (w(t) − w(t0))

])
,

By substituting, we then have:

x(t) =
(√

xt0 + β

2

∫ t

t0

exp

{
−1

2

[(
α − σ 2

2

)
(τ − t0) + σ (w(τ) − w(t0))

]}
dτ

)2

(
exp

[(
α − σ 2

2

)
(t − t0) + σ (w(t) − w(t0))

])
. (3)

2.3 The Trend Functions

Since the closed form of the ptdf of the process is not available, we propose a method for obtain-
ing the conditional and non conditional trend functions of the process from those corresponding
to the Brennan-Schwartz process. This method can be summarised as follows:

On the one hand, obtaining the conditional form with respect to x(s), taking the expectations
in the SDE (1) and making use of the fact that y(t) = √

x(t), we have:
d

dt
[E (x(t) | x(s) = xs)] = αE (x(t) | x(s) = xs)

+βE
(
y(t) | y(s) = √

xs

)
,

Furthermore, using the explicit form of the conditional trend function of the Brennan-Schwartz
diffusion process (see Gutiérrez et al. (2005)), that is

E(y(t) | y(s) = ys) =
(

ys + b

a

)
ea(t−s) − b

a
,
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It can be deduced that the conditional trend function of the proposed process ϕ(t) = E(x(t) |
x(s) = xs) solves the following non homogeneous ordinary differential equation (ODE):

ϕ′(t) = αϕ(t) + β

(
ys + b

a

)
ea(t−s) − bβ

a
, ϕ(s) = xs,

The unique solution of the latter ODE has the following form:

ϕ(t) = xse
α(t−s) + β

a − α

(√
xs + b

a

)(
ea(t−s) − eα(t−s)

)

+ bβ

aα

(
1 − eα(t−s)

)
,

Finally, the conditional trend function of the process is seen to be

E(x(t) | x(s) = xs) = xse
α(t−s) + β2

α(α − σ 2/4)

(
1 − eα(t−s)

)

+ 2β

α + σ 2/4

(√
xs + β

α − σ 2/4

)(
eα(t−s) − e

(
α
2 − σ2

8

)
(t−s)
)
. (4)

By assuming the initial conditional P
(
x(t0) = xt0

) = 1, the trend function of the process is:

E(x(t)) = xt0e
α(t−t0) + β2

α(α − σ 2/4)

(
1 − eα(t−t0)

)

+ 2β

α + σ 2/4

(√
x0 + β

α − σ 2/4

)(
eα(t−t0) − e

(
α
2 − σ2

8

)
(t−t0)

)
. (5)

2.4 Ergodicity and Stationary Distribution

We show (see the Appendix A) that for α <
σ 2

2
and β > 0, the process is ergodic and its

stationary density function is given by the following expression:

f (x) = μλ

2� (λ)
x

−
(

λ
2 +1
)
e
− μ√

x . (6)

where λ = 2 − 4α

σ 2
, μ = 4β

σ 2
and �(.) is the Gamma function. The ergodicity conditions of the

process, in terms of λ and μ are equivalent to λ > 0 and μ > 0.
Let X be a random variable with the stationary density function f given by (6). This expres-

sion can be used to calculate the asymptotic moment of order k, (k ∈ N
∗), and thus we have for

λ > 2k, (ie: α < (1 − k) σ 2

2 )

E[Xk] =
∫ ∞

0
xkf (x)dx = μ2k�(λ − 2k)

�(λ)
.

From the properties of the Euler function, the asymptotic trend function of the process is (k = 1),
for λ > 2, (ie: α < 0)

E[X] = μ2

(λ − 1)(λ − 2)
= β2

α(α − σ 2

4 )
.

By taking the limit when t tends to ∞ in (5), we have for α < 0

lim
t→∞E(x(t)) = E(X).

This means that the limit of the trend function in (5) (when t tends to ∞) coincides with the
asymptotic trend function.
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3 Statistical Inference in theModel

Let us now determine the estimators of the parameters of the proposed model. The estimators of
the drift parameters (α and β ) are obtained by the maximum likelihood method, with continuous
sampling.

3.1 Likelihood Estimation of Drift Parameters

Consider the one dimensional diffusion process defined by the following vectorial form:

dx(t) = At(x(t))θ + Bt (x(t))dw(t), t0 ≤ t ≤ T ,

where θ ∈ R
k , At is a k dimensional vector and Bt is R-valued depending only on the sample

path up to given instant. Assume that the previous equation has a unique solution for every θ . The
maximum likelihood estimator of the vector θ is: (see, Florenz-Zmrou (1989); Yoshida (1992);
Kloeden et al. (1996); Skiadas and Giovanis (1997) and Giovanis and Skiadas (1999)).

θ̂ = S−1
T HT .

where HT is the following k-dimensional vector

HT =
∫ T

t0

A∗
t (x(t))(Bt (x(t))Bt (x(t)))−1dx(t),

and ST is the k × k matrix

ST =
∫ T

t0

A∗
t (x(t))(Bt (x(t))Bt (x(t)))−1At(x(t))dt,

and ∗ denote the transposition.
The vector form of the SDE of the proposed model can be written with:

At(x(t)) = (x(t),
√

x(t)), θ∗ = (α, β), Bt = σx(t),

The corresponding vector HT in this case is 2-dimensional and is given by:

H ∗
T = 1

σ 2

(∫ T

t0

dx(t)

x(t)
,

∫ T

t0

dx(t)

x(t)
√

x(t)

)
,

and ST is the following square matrix:

ST = 1

σ 2

⎛
⎜⎜⎜⎜⎜⎜⎝

T − t0

∫ T

t0

dt√
x(t)

∫ T

t0

dt√
x(t)

∫ T

t0

dt

x(t)

⎞
⎟⎟⎟⎟⎟⎟⎠

,

After some calculation (not shown), we obtain the expressions of the estimators

α̂ =
∫ T

t0

dt
x(t)

∫ T

t0

dx(t)
x(t)

− ∫ T

t0

dt√
x(t)

∫ T

t0

dx(t)

x(t)
√

x(t)

(T − t0)
∫ T

t0

dt
x(t)

−
(∫ T

t0

dt√
x(t)

)2 ,

β̂ =
(T − t0)

∫ (T )

t0

dx(t)

x(t)
√

x(t)
− ∫ T

t0

dt√
x(t)

∫ T

t0

dx(t)
x(t)

(T − t0)
∫ T

t0

dt
x(t)

−
(∫ T

t0

dt√
x(t)

)2 ,
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The stochastic integrals in the latter expressions can be transformed into Riemann integrals by
using Itô’s formula and thus:

∫ T

t0

dx(t)

x(t)
= log(xT ) − log(xt0) + σ 2

2
(T − t0) ,

∫ T

t0

dx(t)

x(t)
√

x(t)
= 2

(
1√
xt0

− 1√
xT

)
+ 3σ 2

4

∫ T

t0

dt√
x(t)

.

Therefore, the expressions of the Maximum Likelihood estimators are:

α̂ =
∫ T

t0

dt
x(t)

(
log(xT /xt0) + σ 2

2 (T − t0)
)

(T − t0)
∫ T

t0

dt
x(t)

−
(∫ T

t0

dt√
x(t)

)2 (7)

−
2
(

1√
xt0

− 1√
xT

+ 3σ 2

8

∫ T

t0

dt√
x(t)

) ∫ T

t0

dt√
x(t)

(T − t0)
∫ T

t0

dt
x(t)

−
(∫ T

t0

dt√
x(t)

)2 ,

β̂ =
2 (T − t0)

(
1√
xt0

− 1√
xT

+ 3σ 2

8

∫ T

t0

dt√
x(t)

)

(T − t0)
∫ T

t0

dt
x(t)

−
(∫ T

t0

dt√
x(t)

)2 (8)

−
(
log(xT /xt0) + σ 2

2 (T − t0)
) ∫ T

t0

dt√
x(t)

(T − t0)
∫ T

t0

dt
x(t)

−
(∫ T

t0

dt√
x(t)

)2 .

3.2 Approximate Estimator of the Diffusion Coefficient

The estimators of the coefficient diffusion parameter can be approximated using a method similar
to that discussed in Chesney and Elliott (1995), Skiadas and Giovanis (1997), Giovanis and
Skiadas (1999), and Gutiérrez et al. (2008) (see Appendix B). This method can be summarised
in the following steps:

By applying the Itô formula, we have:

d

(
1

x(t)

)
= −dx(t)

x2(t)
+ σ 2

x(t)
dt, (9)

The differentials shown in the latter equation can be approximated by consecutive observa-
tions of a sample path of the process in t − 1 and t , as follows:

d

(
1

x(t)

)

 1

x(t)
− 1

x(t − 1)
and d(x(t)) 
 x(t) − x(t − 1),

By inserting these approximations in (9), an approximate estimator of the σ parameter
between the latter observations is found to be

σ̂(t−1,t) =| x(t) − x(t − 1) | /
√

x(t)x(t − 1),

For n observations of a sample path of the process, the resulting approximate estimator has
the following expression:

σ̂ = 1

n − 1

n∑
t=1

| x(t) − x(t − 1) |√
x(t)x(t − 1)

. (10)
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3.3 Asymptotic Normality of Likelihood Estimators

As shown above, for λ > 0 (i.e., α <
σ 2

2
) and β > 0, the conditions of ergodicity are confirmed

(see for example Kutoyants (2004) and Gutiérrez et al. (2009)) and the process is shown to have
ergodic properties. Then, we have, for a known σ and for θ = (α, β) ∈ (α1, α2)× (β1, β2), with

α2 <
σ 2

2
and β1 > 0,

Lθ

(√
T (θ̂ − θ)

)
→ N2

(
0, I−1(θ)

)
, when T → ∞, (11)

where

I(θ) = Eθ

(
ȧ(X)ȧ∗(X)

b2(X)

)
and ȧ(x) =

(
∂a(x, θ)

∂α
,
∂a(x, θ)

∂β

)∗
,

Then, by calculation, we obtain:

I(θ) = 1

σ 2
Eθ

⎛
⎝

1 1√
X

1√
X

1
X

⎞
⎠,

It can then be shown straightforwardly that the random variable
1√
X

has a Gamma distribution

�

(
λ,

1

μ

)
with parameters λ and

1

μ
. Then, we have

E

(
1√
X

)
= λ

μ
,

Moreover, by simpler integration, we can show that

E

(
1

X

)
= λ(λ + 1)

μ2
,

From which the information matrix I(θ) provides

I(θ) = 1

σ 2

⎛
⎝

1 λ
μ

λ
μ

λ(λ+1)
μ2

⎞
⎠,

and the inverse is:

I
−1(θ) = σ 2

⎛
⎝

λ + 1 −μ

−μ
μ2

λ

⎞
⎠, (12)

An approximate and asymptotic confidence region of θ and an approximate and asymptotic
marginal confidence intervals of α̂ and β̂ can be obtained by substitution of (11) and (12). The
above-mentioned region is given, for a large T , by:

P
[
T
(
θ − θ̂

)∗
Î(θ)
(
θ − θ̂

)
≤ χ2

2,γ

]
= 1 − γ . (13)

where Î(θ) is obtained by replacing the parameters by their estimators in the expression (12) and
χ2
2,γ is the is the upper 100γ per cent points of the chi squared distribution with two degrees of

freedom.
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The γ% confidence (marginal) intervals for the parameters α and β are given, for a large T ,
by

P

(
α ∈
[
α̂ ± ξγ σ

√(
λ̂ + 1

)
/T

])
= 1 − γ, (14)

P

(
β ∈
[
β̂ ± ξγ σ μ̂

√
1/λ̂T

])
= 1 − γ . (15)

where ξγ is the 100γ per cent points of the normal standard distribution.
In expressions (13), (14) and (15) it is assumed that σ is known with value σ = σ̂ .

4 Computational Aspects

4.1 Approximate Likelihood Estimators

In order to use the above expressions, (7) and (8), to estimate the parameters, we must have con-
tinuous observations. In practice, continuous sample paths are not able to observed. Rather, the
state of the diffusion process is observed at a finite number of time instances (0 = t0 < t1 <

· · · < tn = T ), then an alternative estimation procedure that is frequently utilised (see for exam-
ple Giovanis and Skiadas (1999) and Gutiérrez et al. (2008)) for such data is to use the continuous
time maximum likelihood estimators with suitable approximations of the integrals that appear
in the expressions (7) and (8); specifically, the Riemann-Stieljes integrals are approximated by
means of the trapezoidal formula.

An approximation of the standard error of the estimator of σ̂ is given by:

es(σ̂ ) = 1

n − 1

n∑
t=1

(
σ̂(t−1,t) − σ̂

)2 .

4.2 Estimated Trend Functions

By using Zehna’s theorem see Zehna and et al (1966), the estimated trend function (ETF) and
estimated conditional trend function (ECTF) of the process are obtained by replacing the param-
eters in (4) and (5) by their estimators given in (7), (8) and (10). Then the ECTF and ETF are
given by the following expression:

Ê(x(t)/x(s) = xs) = xse
α̂(t−s) + β̂2

α̂(α̂ − σ̂ 2/4)

(
1 − eα̂(t−s)

)

+ 2β̂

α̂ + σ̂ 2/4

(
√

xs + β̂

α̂ − σ̂ 2/4

)(
eα̂(t−s) − e

(
α̂
2 − σ̂2

8

)
(t−s)
)

, (16)

Ê(x(t)) = xt0e
α̂(t−t0) + β̂2

α̂(α̂ − σ̂ 2/4)

(
1 − eα̂(t−t0)

)

+ 2β̂

α̂ + σ̂ 2/4

(
√

xt0 + β̂

α̂ − σ̂ 2/4

)(
eα̂(t−t0) − e

(
α̂
2 − σ̂2

8

)
(t−t0)

)
. (17)

4.3 Approximate Asymptotic Confidence Interval of the Trend Functions

Asymptotic and approximate confidence intervals of the ETF of the model can be obtained by
replacing in (3) and (4) the parameters α and β by the extreme values of those confidence
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intervals: the lower limit of α and β ( αll and βll respectively) and the upper limit of α and β

( αul and βul respectively) which are given in expression (14) and (15). Then, the lower limit of
the ETF ( ETFll) is given by:

Êll [x(t)] = eα̂ll (t−t0) + β̂2
ll

α̂ll (α̂ll − σ̂ 2/4)

(
1 − eα̂ll (t−t0)

)

+ 2β̂ll

α̂ll + σ̂ 2/4

(
√

xt0 + β̂ll

α̂ll − σ̂ 2/4

)(
eα̂ll (t−t0) − e

(
α̂ll
2 − σ̂2

8

)
(t−t0)

)
, (18)

and the upper limit of the ETF (ETFul) is:

Êul [x(t)] = eα̂ul (t−t0) + β̂2
ul

α̂ul(α̂ul − σ̂ 2/4)

(
1 − eα̂ul (t−t0)

)

+ 2β̂ul

α̂ul + σ̂ 2/4

(
√

xt0 + β̂ul

α̂ul − σ̂ 2/4

)(
eα̂ul (t−t0) − e

(
α̂ul
2 − σ̂2

8

)
(t−t0)

)
. (19)

These functions are utilised in the last section to fit and predict the future evolution of the
stochastic diffusion process under consideration.

5 Application to Real Data

5.1 Dynamic of Population Aging

Fertility rates have fallen to very low levels in most world regions, and at the same time, people
tend to live longer. In consequence, the world population is rapidly aging. The world’s population
aged 65 years and older has increased from 562 million to 627 million in recent years. Most
studies of the dynamics of population aging, therefore, analyse declining rates of fertility by
regions and countries, and observe indicators of population aging, such as dependency ratios and
median age.

Populations where fertility rates remain high have a population distribution with larger num-
bers of young people and a lower proportion of the elderly. In contrast, where fertility rates are
low, the society is older. The population of Africa is the youngest in the world and will remain
so in the coming decades. The Arab Maghreb is composed of five countries to the south of the
Mediterranean - Morocco, Algeria, Tunisia, Libya and Mauritania - and their political union is
designed to boost cooperation and integration between these countries. This region has abundant
natural and energetic resources that are currently being employed to promote the industrialisa-
tion of these countries. The population is young, with high rates of fertility, and therefore the
region does not experience the type of problems encountered in countries with older populations.
Although in recent years fertility rates have decreased in the region, they are expected to remain
relatively high for some time. In consequence, the Arab Maghreb has a young population that
has grown considerably and will continue to do so.

Because of low fertility rates and emigration elsewhere, however, the number of children and
young adults in the world has already begun to fall. In contrast, the number of people aged 65
years and over will soon have grown fivefold, making aging an important social, economic and
demographic issue. Studying the growth of the older population in the Arab Maghreb is a major
challenge, aimed at answering questions such as the following, which are of vital importance
to economic development. How many years can older people expect to live in good health?
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How long can they live independently? How many are still working? Will they have sufficient
economic resources to last their lifetimes?

5.2 Data and Results

In our study, the SBSDP model incorporating the above-described statistical methodology was
applied to the total population aged 65 years and over living in the Arab Maghreb, in accordance
with the de facto definition of population, which counts all residents regardless of legal status
or citizenship. The de facto population, thus, is a concept under which individuals are attributed
to a given geographical area at a specified time. In the case in question, the time period taken
was from 1960 to 2016. The data, available by year and country were accessed at https://data.
worldbank.org/.

Note that these values correspond to observations of the stochastic process in a time dis-
cretization at equal-amplitude intervals of one year. The values observed for the period 1960 to
2011 were used to estimate the drift parameters given in the equations presented in Section 3.1,
together with the approximation of the estimator of the diffusion coefficient, obtained by the
Matlab package. Tables 1 and 2 show the values observed and those adjusted by the conditioned
trends of the stochastic SBSDP. The estimators calculated and the upper and lower limits of the
95% confidence intervals for the parameters of the drift coefficient of the process are shown in
Table 3. Note that these values correspond to observations.

The data from 2012 to 2016, which were not used for the statistical fit, were used to make
forecasts of the future values of the process, with the trend and conditional trend functions and
the confidence interval of 95% are shown in Table 4.

The original data and the corresponding data fitted by the ETF and the ECTF together with
the corresponding confidence intervals for the respective ETF are shown in Figs. 1 and 2.

5.3 Goodness of Fit of the Model

In evaluating a forecast, the measure of goodness of fit describes the deviation between the
observed values and those expected under the model. Among many measures of forecasting
accuracy that have been proposed, the most common are the mean absolute percentage error
(MAPE), the symmetric mean absolute percentage (SMAPE) and the relative root mean square
error (RRMSE). The actual value is denoted by yi , the forecast value by ŷi and the total number
of predictions by n. These three measures of forecasting accuracy are defined as follows:

• MAPE is the most commonly used measure of forecasting accuracy. It is expressed as a
percentage and provides reliability, ease of interpretation and independence of the units. It
is defined by the formula:

MAPE = 1

n

n∑
t=1

|ŷi − yi |
yi

× 100.

According to Lewis see Lewis (1982), the following are typical MAPE values and their
interpretation (see Table 5.)

• SMAPE is based on percentage errors. It illustrates the fact that the geometric-mean
combination of different forecasts provides a better forecast. This measure is defined as
follows:

SMAPE = 100

n

n∑
t=1

|ŷi − yi |
(|ŷi | + |yi |)/2
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Table 1 Fit from 1960 to 1985
Years Data ETF ECTF

Observed values

1960 954708 954708 954708

1961 995722 991081 991081

1962 1036593 1028602 1033390

1963 1076290 1067304 1075548

1964 1113783 1107217 1116490

1965 1148428 1148377 1155154

1966 1188187 1190816 1190878

1967 1225668 1234572 1231872

1968 1261765 1279680 1270513

1969 1297156 1326177 1307724

1970 1332256 1374101 1344205

1971 1377365 1423492 1380384

1972 1421442 1474390 1426875

1973 1463249 1526836 1472298

1974 1501302 1580872 1515379

1975 1535344 1636543 1554589

1976 1571462 1693892 1589664

1976 1571462 1693892 1589664

1977 1604262 1752966 1626876

1978 1636079 1813811 1660667

1979 1669599 1876476 1693445

1980 1706579 1941010 1727975

1981 1759496 2007464 1766067

1982 1816762 2075891 1820572

1983 1878054 2146342 1879553

1984 1943340 2218874 1942676

1985 2013345 2293543 2009907

• RRMSE is used to estimate the accuracy of data involving large magnitudes, for example
distances of 10000 m and over. It is defined as follows:

RRMSE =
√√√√ 1

n

n∑
t=1

( |ŷi − yi |
|yi |

)2
.

Our calculation of these three measures of error (as shown in Table 6.) shows that the
SBSDP is accurate and efficient.

5.4 The Comparison of the SBSDPwith an Exponential GrowthModel

In order to evaluate the results obtained using the SBSDP in studying our data series, we com-
pared it with an exponential growth model, namely the Stochastic Lognormal Diffusion Process
(SLDP) (see Appendix C).
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Table 2 Fit from 1986 to 2011
Years Data ETF ECTF

Observed values

1986 2089488 2370406 2081992

1987 2169740 2449523 2160391

1988 2256017 2530955 2243015

1989 2350239 2614763 2331835

1990 2453335 2701013 2428826

1991 2569496 2789769 2534943

1992 2689849 2881099 2654497

1993 2814228 2975073 2778355

1994 2943046 3071761 2906346

1995 3076966 3171236 3038894

1996 3219713 3273573 3176680

1997 3366092 3378848 3323538

1998 3514659 3487140 3474120

1999 3662726 3598529 3626942

2000 3809334 3713099 3779239

2001 3947773 3830935 3930026

2002 4081214 3952123 4072402

2003 4212039 4076753 4209632

2004 4342602 4204916 4344164

2005 4474910 4336707 4478421

2006 4603476 4472222 4614467

2007 4734289 4611560 4746659

2008 4866930 4754823 4881156

2009 4998913 4902115 5017527

2010 5130705 5053542 5153217

2011 5241221 5209215 5288705

Table 3 Estimation of the
parameters and the limits of the
95% confidence intervals

Parameters estimation Lower limit Upper limit

α̂ = 0.024957390573 0.018869360346 0.031045420800

β̂ = 12.26390299011 12.26390065421 12.26390532602

σ̂ 2 = 0.033392073701 0.033333895322 0.033450252080

Table 4 Predictions from trend
function and conditional trend
function of the process

Years Data ET Fll ETF ET Ful ECTF

2012 5349608 4025252 5369246 7178805 5402317

2013 5469842 4126771 5533750 7438632 5513737

2014 5623220 4230532 5702845 7707248 5637333

2015 5823530 4336580 5876654 7984939 5794994

2016 6053008 4444962 6055300 8272000 6000889
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Fig. 1 It illustrates the data observed versus those fitted by ETF, the ET Fll and the ET Ful
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Fig. 2 It shows the real data versus ECT F : the conditional estimated trend function

Table 5 Interpretation of typical
MAPE values MAPE Interpretation

< 10 Highly accurate forecasting

20 − 30 Good forecasting

30 − 50 Reasonable forecasting

> 50 Inaccurate forecasting
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Table 6 Goodness of fit of the
model Measures of forecasting accuracy error Values

MAPE 0.4178463999

SMAPE 0.4244362742

RRMSE 0.5912382771
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Fig. 3 It illustrates the data observed versus those fitted by SBSDP
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Fig. 4 It illustrates the real data versus those fitted by the SLDP
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Table 7 Predictions from trend
functions of the SBSDP and
SLDP

Years ETF (SBSDP) ETF (SLDP)

2012 5369246 5767940
2013 5533750 5967047
2014 5702845 6173026
2015 5876654 6386116
2016 6055300 6606562

Table 8 Goodness of fit of the two models

Measures of forecasting accuracy error Values of SBSDP Values of SLDP

MAPE 0.4178463999 8.3366037

SMAPE 0.4244362742 8.62727416

As stated in the Introduction, the SBSDP is an extension of the SLDP, as well-known stochastic
growth model that has been widely used to model exponential growth phenomena in biology, eco-
nomics and other fields, see, for example (Tintner and Sengupta 1972 and Gutiérrez et al. 2009).

The results obtained using the SBSDP in the data series were compared with those obtained
by the SLDP, as shown in Figs. 3 and 4. Table 7 shows that the forecasts obtained by the SBSDP
for 2012 to 2016 are better than those obtained by the SLDP. Finally, in evaluating a forecast of
the processes, Table 8 shows a comparison between the results obtained by some measures of
errors (MAPE and SMAPE) of the SBSDP and the SLDP.

6 Conclusion

• In this paper, we evaluate the capability of the SBSDP for modelling real data in the field of
population dynamics. This model produced a good fit to the real data for the total population
aged 65 years and over, resident in the Arab Maghreb during the period 1960-2011.

• The ETF and the ECTF presented a reasonable description of the changing levels of this
population. Furthermore, the forecasts and the real data for the period 2011 to 2016 were
situated within the confidence interval of the ETF. However, the description and forecast
obtained using the conditioned trend were better than those based on the trend alone. More-
over, the fit for the period 1975-1994 using ETF could be improved by the inclusion of
exogenous factors in the model see for example Nafidi et al. (2016). Moreover, to evaluate
the forecasting accuracy obtained, three different evaluation statistics were calculated. All
showed the model to be highly accurate and reliable.

• In the same way, by fitting the SLDP to our data series, a reasonable description of the
changing levels of this population is obtained. However, that of the SBSDP is considerably
better than that based on the SLDP. In additon, for the period 2012 to 2016, the forecasts
obtained using the SBSDP are more suitable than those obtained with the SLDP. Finally, the
resulting values obtained by two differents measures of errors (MAPE and SMAPE) show
that the SBSDP is more reliable than the SLDP.

• Taking into account these points, we conclude that the results obtained by the SBSDP are
better than those obtained by the SLDP.
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Appendix A: Ergodicity and stationary distribution of the SBSDP

Here, we study the asymptotic behaviour of the process proposed in this paper, analyse the
problem of ergodicity and the existence of the stationary distribution of the process and
explicitly obtain its density function.

In general (see Nobile and Ricciardi (1984) and Nicolau (2005)), a diffusion process
{x(t), t ≥ 0}, with state space I = (l, r) , is governed by the following SDE:

dx(t) = a(x(t))dt + b(x(t))dWt , x0 = x,

where Wt is a standard Wiener process and x is either a constant value or a random value
independent of Wt . We assume that a(x) and b(x) have continuous derivatives.

Let s(z) = exp

{
−
∫ z

z0

2a(u)

b2(u)
du

}
be the scale density function (z0 is an arbitrary point

inside I ).

The speed density function is: m(u) =
(
b2(u)s(u)

)−1
. And we denote by:

S[x, y] =
∫ y

x

s(u)du, S(l, y] = lim
x→l

∫ y

x

s(u)du and

S[x, r) = lim
y→r

∫ y

x

s(u)du,

where, l < x < y < r , and then if:

S(l, x] = S[x, r) = ∞ and
∫ r

l

m(u)du < ∞,

the process {x(t), t ≥ 0} is ergodic and has an invariant (stationary) density function which
is given by:

f (x) = m(x)/

∫ r

l

m(u)du.

In our diffusion, the drift and diffusion coefficient are, respectively:

a(x) = αx + β
√

x and b2(x) = σ 2x2,

and I = (0,∞). In this case, it follows that:

s(z) = kz
− 2α

σ2 e
4β

σ2
√

z , with k = z

2α
σ2

0 e
− 4β

σ2
√

z0 .

and we have, for 0 < x < y < ∞

S[x, y] =
∫ y

x

s(u)du = k

∫ y

x

u
− 2α

σ2 e
4β

σ2
√

u du,

with the variable change v = u−1/2, the latter expression can be written as

S[x, y] = 2k
∫ 1/

√
x

1/
√

y

v
4α
σ2

−3
e

4β
σ2

v
dv. (20)

On the one hand, taking the limit as x tends to 0 in (20). We have, for β > 0, S(0, y] = ∞
(the case of β = 0 is excluded, because the process is lognormal, and this is not ergodic). On the
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other hand, taking the limit when y tends to ∞ in (20), we have, for α ≤ σ 2

2
, S[x, ∞) = ∞.

And therefore, for α ≤ σ 2

2
and β > 0,

S[x, ∞) = S(0, y] = ∞.

The speed density in this case is

m(x) = 1

kσ 2
x

2α
σ2

−2
e

−4β
σ2

√
x ,

and we have: ∫ ∞

0
m(x)dx = 1

kσ 2

∫ ∞

0
x

2α
σ2

−2
e

−4β
σ2

√
x dx

= 2

kσ 2

∫ ∞

0
v

−4α
σ2

+1
e
− 4β

σ2
v
dv,

and according to Gradshteyn and Ryzhik (1979) 3.18. p.317, for ν > 0 and μ > 0,∫ ∞

0
xν−1e−μxdx = μ−ν�(ν),

we have, for α <
σ 2

2
and β > 0,

∫ ∞

0
m(x)dx = 2

kσ 2

(
4β

σ 2

)( 4α
σ2

−2
)

�

(
2 − 4α

σ 2

)
< ∞,

Then, by combining the two conditions, we deduce that for α <
σ 2

2
and β > 0, the process is

ergodic and its stationary density function is given by the following expression:

f (x) = m(x)/

∫ ∞

0
m(u)du = μλ

2� (λ)
x

−
(

λ
2 +1
)
e
− μ√

x

where λ = 2 − 4α

σ 2
and μ = 4β

σ 2
, and the conditions of ergodicity in terms of λ and μ are

equivalent to λ > 0 and μ > 0.

Appendix B: Approximate estimator of the diffusion coefficient
of the SBSDP

To estimate the parameter σ , we used an extension of the method described by Chesney and
Elliott (1995). This method has been used by Giovanis and Skiadas (1999) in a paper on a
stochastic logistic innovation diffusion model studying electricity consumption in Greece
and the United States, and in another on a stochastic Bass innovation diffusion model to
study the growth of electricity consumption in Greece, see Skiadas and Giovanis (1997).

In our study, an approximate estimator of the σ parameter between two observations has
the general form:

σ̂(t−1,t) = | x(t) − x(t − 1) |√
x(t)x(t − 1)

,

Then, we have

σ̂(0,1) = | x(1) − x(0) |√
x(1)x(0)

,
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σ̂(1,2) = | x(2) − x(1) |√
x(2)x(1)

,

...

σ̂(n−1,n) = | x(n) − x(n − 1) |√
x(n)x(n − 1)

.

The method described by Chesney and Elliot was then applied to each time interval, and
the average of these estimators for n observations of a sample path of the process is the
approximate estimator. It takes the following form:

σ̂ = 1

n − 1

n∑
t=1

| x(t) − x(t − 1) |
x(t)

√
x(t − 1)

.

Other approximate estimators of σ can be obtained by the same procedure, for example:

– Using Itô’s lemma to the transformation y = ln(x(t)) in (1) as follows:

d(lnx(t)) = dx(t)

x(t)
− σ 2

2
dt,

By substituting:
(d(lnx(t)))2 = σ 2dt,

Considering that
(d(lnx(t))) 
 ln(x(t)) − ln(x(t − 1)),

an approximate estimator of σ is:

σ̂ =| ln(x(t)) − ln(x(t − 1)) |,
Then, for n observations of a sample path of the process, the resulting approximate estimator
has the following expression:

σ̂ = 1

n − 1

n∑
t=1

| ln(x(t)) − ln(x(t − 1)) | .

– Alternatively, from the stochastic differential equation (1) of the variable x(t), we
obtain:

(
dx(t)

x(t)

)
=
(

α + β√
x(t)

)
dt + σdw(t),

and then:
(

dx(t)

x(t)

)2
= σ 2dt,

Considering that
d(x(t)) 
 x(t) − x(t − 1),

An approximate value of σ is:

σ̂ = | x(t) − x(t − 1) |
x(t)

,
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Table 9 Values obtained using the three expressions of σ̂

σ̂ = 1

n − 1

∑
t=1n

| x(t) − x(t − 1) |√
x(t)x(t − 1)

σ̂ = 1

n − 1

∑
t=1n

| ln(x(t)) − ln(x(t − 1)) | σ̂ = 1

n − 1

∑
t=1n

| x(t) − x(t − 1) |
x(t)

0.033392073701 0.033390279030 0.032810853600

Therefore, for n observations of a sample path of the process, the resulting approximate
estimator has the following expression:

σ̂ = 1

n − 1

n∑
t=1

| x(t) − x(t − 1) |
x(t)

.

By applying the three expressions of σ̂ to our real data, we obtain the following results:
Similar values are obtained by all three methods.

Appendix C: Probabilistic characteristics and statistical inference
of the SLDP

The SLDP from the SBSDP
In the equation (1) when β = 0, the homogeneous lognormal diffusion process is

obtained as a particular case in which the infinitesimal moments are given by:

A1(x) = αx , A2(x) = σ 2x2,

This satisfies the following Itô’s SDE:

dx(t) = αx(t)dt + σx(t)dw(t) , x(t0) = xt0 ,

where σ > 0 and α are real parameters, Wt is a standard Wiener process and xt0 is fixed in
R

∗+.
• The analytical expression of the SLDP

By taking β = 0 in equation (3) of the Section 2.2, the previous SDE has a unique
solution which is given analytically by the following expression:

x(t) = xt0

(
exp

[(
α − σ 2

2

)
(t − t0) + σ (w(t) − w(t0))

])

• The trend functions of the SLDP
In the same way, by taking β = 0 in equations (4) and (5 of the Section 2.3, the

conditional trend function of the process is:

E(x(t) | x(s) = xs) = xse
α(t−s). (21)

and by assuming the initial condition P
(
x(t0) = xt0

) = 1, the trend function of the
process is:

E(x(t)) = xt0e
α(t−t0). (22)

Parameter estimation in the SLDP
We now determine the estimator of the parameter α of the SLDP using the method

described. The estimator of the drift parameters α is obtained by the maximum likelihood
method, with continuous sampling.

• Likelihood estimation of the drift parameter:
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The vector form of the SDE of the SLDP can be written as:

At(x(t)) = x(t), θ∗ = α, Bt (x(t)) = σx(t),

The corresponding vector HT in this case is one-dimensional and is given by:

H ∗
T = 1

σ 2

∫ T

t0

dx(t)

x(t)
,

and ST has the following form:

ST = T − t0

σ 2

Then the expression of the estimator is

α̂ =
∫ T

t0

dx(t)
x(t)

T − t0
,

The stochastic integral in the latter expression can be transformed into Riemann
integrals by using Itô’s formula and thus:

∫ T

t0

dx(t)

x(t)
= log(xT ) − log(xt0) + σ 2

2
(T − t0) .

Therefore, the expression of the Maximum Likelihood estimator is:

α̂ =
(
log(xT ) − log(xt0

)+ σ 2

2 (T − t0)

T − t0
.

• Approximate estimator of the diffusion coefficient

The estimator of the coefficient diffusion parameter can be approximated using a method
similar to that described Section 3.2. By following the same steps and for n observations of
a sample path of the process, the resulting approximate estimator is:

σ̂ = 1

n − 1

n∑
t=1

| x(t) − x(t − 1) |√
x(t)x(t − 1)

.

Computational aspects in SLDP

• Approximated likelihood estimators
As for the SBSDP, in order to use the above expression to estimate the parameter

α, we must have continuous observations. Therefore, we use an alternative estima-
tion procedure based on continuous time maximum likelihood estimators with suitable
approximations of the integrals that appear in the expression. The Riemann-Stieljes
integrals are approximated by means of the trapezoidal formula.

• Estimated trend functions
By applying Zehna’s theorem and by taking β = 0 in the equations (21) and (22),

the estimated trend function (ETF) and estimated conditional trend function (ECTF) of
the process are obtained as:

Ê(x(t)/x(s) = xs) = xse
α̂(t−s),

Ê(x(t)) = xt0e
α̂(t−t0).
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