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Abstract
We prove the strong law of large numbers for random signed measures. The result is uniform
over a family of subsets under mild assumptions.
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1 Introduction

Let {Xj, j ∈ N
d} denote a family of independent and identically distributed random variables

with E
[|Xj|

]
< ∞ for all j ∈ N

d . Throughout the paper Nd = {1, 2, . . . }d is the set of

Based on a talk at the conference Stereology, Spatial Statistics, and Stochastic Geometry in Prague,
June 25–29, 2018.

Supported by the grant 0118U003614 from Ministry of Education and Science of Ukraine (project N
2105�).

Supported by the grant 0118U003614 from Ministry of Education and Science of Ukraine (project N
2105�) and by the grant IZ7320 152292 from Swiss National Science Foundation.

Supported by the grant IZ7320 152292 from Swiss National Science Foundation.

� O. I. Klesov
klesov@matan.kpi.ua

V. Yu. Bogdanskii
hypostimpack@ukr.net

I. Molchanov
ilya.molchanov@stat.unibe.ch

1 Department of Mathematical Analysis and Probability Theory, National Technical
University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Peremogy Avenue,
37, 03056, Kyiv, Ukraine

2 Institute of Mathematical Statistics and Actuarial Science, University of Bern, Alpeneggstrasse 22,
CH–3012, Bern, Switzerland

Published online: 27 May 2019

Methodology and Computing in Applied Probability (2021) 23:461–470



positive integer points in the d-dimensional Euclidean space R
d . Denoting by B the family

of bounded Borel sets in R
d we put

S(B) =
∑
j∈B

Xj

for all B ∈ B.
The strong law of large numbers for {Xj, j ∈ N

d} is due to Kolmogorov if d = 1 and to
Smythe (1973) if d > 1. In what follows Leb (A) denotes the Lebesgue measure of a Borel
set A.

Theorem 1 (Smythe (1973)) Let Pd be the family of d-dimensional rectangles

P(n) = [1, n1] × · · · × [1, nd ], n1, . . . , nd ∈ N.

Then

lim
Leb(P (n))→∞

S(P (n))

Leb (P (n))
= μ a.s. for some μ ∈ R

if and only if

E
[
Xj

] = μ, E
[
|Xj|(log+ |Xj|)d−1

]
< ∞.

Here “a.s.” abbreviates “almost surely” and log+ z = log(e + z) for z ≥ 0.

More strong laws of large numbers for sums of independent random variables with
multiindices can be found in Klesov (2014).

A natural problem arises on obtaining similar results for sums over subsets belonging to
other families of sets.

1.1 Ruled Sums

For d = 1, this problem goes back to the concept of ruled sums due to Baum, Katz,
and Stratton (Baum et al. 1971) (further development of this idea can be found in Strat-
ton (1972), Baum and Stratton (1973), Petrov (1974), Martikainen (1977a), Martikainen
(1977b), Skovoroda (1987), and Skovoroda and Mikosch (1992)). A rule (·) is a function
mapping N into 2N where (n) is some collection of n distinct positive numbers for each n.
Given an appropriate sequence of independent and identically distributed random variables
{Xj , j ∈ N}, ruled sums S(n) are defined by

S(n) =
∑
j∈(n)

Xj , n ∈ N.

If (n) = {1, 2, . . . , n}, then this model corresponds to the classical model of cumula-
tive sums of random variables. The model arising in the so called complete convergence
coincides with the model of ruled sums if (m) ∩ (n) = ∅ for m �= n (necessary and suffi-
cient conditions for the strong law of large numbers are found in Hsu and Robbins (1947)
and Erdös (1949) in the case of the complete convergence). It is also clear that the model
of rectangular sums for d > 1 can be imbedded into the model of ruled sums for the cor-
responding rule (·), however not all results for rectangular sums, d > 1, can be derived
explicitly from existing results for ruled sums.
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1.2 Partial Sum Process

Another concept for d > 1 is proposed in Bass and Pyke in Bass and Pyke (1984). For every
set A, scaled versions nA, n ∈ N, are considered in Bass and Pyke (1984), where

nA = {y : y = nx = (nx1, . . . , nxd) for x = (x1, . . . , xd) ∈ A}.
Further we consider a family A of Borel subsets in R

d , a family of independent identically
distributed random variables {Xj, j ∈ N

d}, and corresponding sums

S(nA) =
∑
j∈nA

Xj, n ∈ N.

Then the uniform one-parameter version of Theorem 1 proved in Bass and Pyke (1984)
reads as follows. Put 0 = (0, 0, . . . , 0)︸ ︷︷ ︸

d

, 1 = (1, 1, . . . , 1)︸ ︷︷ ︸
d

. We say that

(a, b] = (a1, b1] × . . . (ad, bd ] ⊂ R
d

is a d-dimensional left-open and right-closed interval or a semi-interval. Let I = (0, 1] =
(0, 1]d be the d-dimensional unit semi-interval.

In what follows, A denotes a family of Borel subsets of the d-dimensional unit semi-
interval I . For any A ⊂ R

d , the symbol ∂A stands for the boundary of A with respect
to the Euclidean distance ρ in R

d . Throughout the paper | · | is the Euclidean norm. The
δ-neighborhood of ∂A, A ⊂ R

d , is denoted by A(δ),

A(δ) = {x ∈ R
d : ρ(x, ∂A) < δ}.

Theorem 2 (Bass and Pyke (1984)) If a family A of Borel subsets of the d-dimensional unit
semi-interval I is such that

r(δ) ≡ sup
A∈A

Leb (A(δ)) → 0, δ → 0, (1)

then

lim
n→∞ sup

A∈A

∣∣∣∣S(nA)

nd
− μ Leb (A)

∣∣∣∣ = 0 a.s. (2)

Other limit theorems for partial sum processes (like central limit theorem (Alexander and
Pyke 1986) or law of the iterated logarithm (Bass 1985)) require an extra entropy type con-
ditions imposed on the family A. Further uniform limit theorems for partial sum processes
can be found in Alexander (1987) and Bass and Pyke (1985) to cite a few.

This line of researches led to a notion of set-indexed processes (an important particular
case is presented by the empirical processes, see Pyke (1984)). Several important appli-
cations of strong limit theorems for partial sum processes are known to various statistical
problems, especially in higher dimensions, such a testing for multimodality, estimating
density contour clusters, estimating nonlinear functionals of a density, density estimation,
regression problems and spectral analysis (see, for example, Polonik (1995).) Nonparamet-
ric regression estimation for random fields arising in different scientific areas including
econometrics, image analysis, meteorology, geostatistics is also based on dynamical prop-
erties of partial sum processes (see, for instance, El Machkouri (2007)). Other applications
are in measurement error in nonlinear models (see Carroll et al. 2006) and image processing
(see Müller and Song 1996).
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1.3 Random SignedMeasures

Another look at set-indexed processes in presented in Klesov and Molchanov (2019). There
S(nA) is treated as a random signed measure. In particular, if all random variables Xj, j ∈
N

d , are nonnegative, then S(nA) is a random measure over an appropriate family of subsets.
Let Rd+ be the subset of Rd of points with positive coordinates. Let t = (t1, . . . , td ) ∈ R

d+
and

tA = {y : y = tx = (t1x1, . . . , tdxd) for x = (x1, . . . , xd) ∈ A}, A ⊂ R
d .

Sometimes we write t ·A instead of tA. We say that a random signed measure ξ satisfies the
multiparameter strong law of large numbers if

lim|t|→∞
ξ(t · I ) − E [ξ(t · I )]

|t| = 0 a.s.

Further put Cm(k) = 1
m

(k − 1, k], where k ∈ N
d and m ∈ N. Also let

B ′
m =

⋃
k : Cm(k)⊆B

Cm(k),

B ′′
m =

⋃
k : Cm(k)∩B �=∅

Cm(k)

for all B ⊂ R
d+ and m ∈ N.

Theorem 3 (Klesov and Molchanov (2019)) Let A be a family of Borel sets of the d-
dimensional unit semi-interval and let ξ be a random signed measure that satisfies the
multiparameter strong law of large numbers. Assume that

lim
m→∞ lim sup

|t|→∞
sup
A∈A

∣∣∣∣∣E
[
ξ(t · (A \ A′

m)
]

|t|

∣∣∣∣∣ = 0

and |ξ(A)| ≤ η(A) for all Borel sets A and a random measure η that satisfies the
multiparameter strong law of large numbers and such that

lim
m→∞ lim sup

|t|→∞
sup
A∈A

E
[
η(t · (A′′

m \ A′
m)

]
|t| = 0.

Then ξ satisfies the uniform strong law of large numbers, that is,

lim|t|→∞ sup
A∈A

∣∣∣∣ξ(t · A) − E [ξ(t · A)]

|t|
∣∣∣∣ = 0 a.s.

Remark 1 The difference between settings in Bass and Pyke (1984) and in Klesov and
Molchanov (2019) is twofold. First, the scaling parameter t in Klesov and Molchanov (2019)
is multiparameter while that in Bass and Pyke (1984) is one-parameter. Thus the result
in Klesov and Molchanov (2019) is related to Theorem 1 rather than to Kolmogorov’s strong
law of large numbers as in (Bass and Pyke 1984). Second, t in Klesov and Molchanov
(2019) is continuous, while n in Bass and Pyke (1984) is discrete. As a result, the condition
in Klesov and Molchanov (2019) is stronger than in Bass and Pyke (1984) (however it leads
to a stronger conclusion, as well).

Our aim in this paper is to prove an analogue of Theorem 2 for signed measures rather
than for sums of random variables (see Section 2). In doing so we use some other conditions
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as compared to Bass and Pyke (1984) and Klesov and Molchanov (2019). In Section 3 we
show that these conditions are weaker than in Bass and Pyke (1984). The method of the
proof of Theorem 4 below is close to that in Klesov and Molchanov (2019).

2 Main Result

A random measure is a mapping defined on B×� and such that, for every fixed ω ∈ �, it is
a measure, and, for every fixed B ∈ B, it is a random variable. As usual, [r], r ∈ R, denotes
the integer part of a real number; similarly, [x] = [(x1, x2, . . . , xd)] = ([x1], [x2], . . . , [xd ])
is the integer part of a d-dimensional vector.

Theorem 4 Let ξ be a random signed measure. Assume that

lim
n→∞

ξ(nC) − E [ξ(nC)]

nd
= 0 a.s. (3)

for all C = (0, x] ⊂ I = (0, 1]d .
Let A be a certain family of Borel subsets of I . Suppose that there exists a random

measure η such that

1. |ξ(A)| ≤ η(A) for all A ∈ B;
2. For all C = (0, x] ⊂ I ,

lim
n→∞

η(nC) − E [η(nC)]

nd
= 0 a.s.; (4)

3.

lim
m→∞ lim sup

n→∞
sup
A∈A

E
[
η(n(A′′

m\A′
m))

]
nd

= 0. (5)

Then

lim
n→∞ sup

A∈A

∣∣∣∣ξ(nA) − E [ξ(nA)]

nd

∣∣∣∣ = 0 a.s. (6)

Proof First we show that equality (3) (as well as (4)) holds for all sets of the form C =
(x, y] ⊂ I . Note that if (3) holds for two disjoint sets C1 and C2, then (3) holds for C1 ∪C2,
as well. Indeed,

lim
n→∞

ξ(n(C1 ∪ C2)) − E [ξ(n(C1 ∪ C2))]

nd

= lim
n→∞

ξ(nC1) − E [ξ(nC1)]

nd
+ lim

n→∞
ξ(nC2) − E [ξ(nC2)]

nd
= 0 a.s.

Similarly, if (3) holds for C1 ⊂ C2, then it holds for C2\C1:

lim
n→∞

ξ(n(C2\C1)) − E [ξ(n(C2\C1))]

nd

= lim
n→∞

ξ(nC1) − E [ξ(nC1)]

nd
− lim

n→∞
ξ(nC2) − E [ξ(nC2)]

nd
= 0 a.s.

Sets of the form (x, y] ⊂ I can easily be constructed with the help of the second operation
above from sets of the form (0, x] ⊂ I . We prove this by induction over k, where k ∈
{0, 1, 2, . . . , d} is the minimal number such that xl = 0 for all l, k < l ≤ d. This result is
obvious for k = 0. Assume it holds for k = s < d and let us prove it for s + 1. Indeed, if
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x = (x1, x2, . . . , xs+1, 0, . . . , 0), x′ = (x1, x2, . . . , xs, 0, . . . , 0) and y = (y1, y2, . . . , yd),
then

(x, y] = (x′, y]\(x′, (y1, y2, . . . , ys, xs+1, ys+2, . . . , yd)].
It is clear that, for all m ∈ N,

lim sup
n→∞

sup
A∈A

∣∣∣∣ξ(nA) − E [ξ(nA)]

nd

∣∣∣∣ ≤ Xm + Ym + Zm,

where

Xm = lim sup
n→∞

sup
A∈A

∣∣∣∣ξ(nA) − ξ(nA′
m)

nd

∣∣∣∣ ,
Ym = lim sup

n→∞
sup
A∈A

∣∣∣∣∣ξ(nA′
m) − E

[
ξ(nA′

m)
]

nd

∣∣∣∣∣ ,
Zm = lim sup

n→∞
sup
A∈A

∣∣∣∣∣E
[
ξ(nA′

m)
] − E [ξ(nA)]

nd

∣∣∣∣∣ .

Thus our result is proved if Xm → 0 and Ym → 0 a.s. and Zm → 0 as m → ∞.
It is clear that

Zm = lim sup
n→∞

sup
A∈A

∣∣∣∣∣E
[
ξ(n(Am\A′

m))
]

nd

∣∣∣∣∣
≤ lim sup

n→∞
sup
A∈A

E
[∣∣ξ(n(Am\A′

m))
∣∣]

nd
≤ lim sup

n→∞
sup
A∈A

E
[
η(n(A′′

m\A′
m))

]
nd

,

for all m ≥ 1. Also, Zm → 0 as m → ∞ by (5).
The equality Ym = 0 a.s. follows, since, for all m, the cardinality of the set {A′

m | A ∈ A}
is finite and since,

lim
n→∞

ξ(nA′
m) − E

[
ξ(nA′

m)
]

nd
= 0 a.s.

for all A′
m. The latter equality holds, since A′

m = ⋃
k : Cm(k)⊆A Cm(k) is the union of disjoint

sets of the form (x, y] ⊂ I and equality (3) holds for each of these sets.
Further,

Xm ≤ lim sup
n→∞

sup
A∈A

η(n(A′′
m\A′

m))

nd

≤ lim sup
n→∞

sup
A∈A

E
[
η(n(A′′

m\A′
m))

]
nd

+ lim sup
n→∞

sup
A∈A

∣∣∣∣∣η(n(A′′
m\A′

m)) − E
[
η(n(A′′

m\A′
m))

]
nd

∣∣∣∣∣ .

The first term tends to 0 as m → ∞ by condition (5); the second term equals 0 a.s. (this is
proved by analogy with the proof of the equality Ym = 0 a.s.)

3 Comparison of Theorems 2 and 4

Now we show that Theorem 4 is an extension of Theorem 2 in a certain sense.
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Proposition 1 If (1) holds with A ⊂ 2I , ξ(B) ≡ S(B), and η(B) ≡ T (B) ≡ ∑
j∈B |Xj |,

then all assumptions of Theorem 4 are satisfied.

Proposition 2 Let condition (1) hold for a family A ⊂ 2I . Denote by W(A) the number of
positive integer points in A for A ∈ R

d . If

lim
n→∞ sup

A∈A

∣∣∣∣S(nA) − μW(nA)

nd

∣∣∣∣ = 0 a.s.,

then (2) also holds.

Clearly Proposition 2 is weaker than Theorem 2. However the proof of (2) below is
different from the proof in Bass and Pyke (1984).

Proof of Proposition 1 Clearly S(B) is a random signed measure. Our aim is to prove that

lim
n→∞

S(nC) − E [S(nC)]

nd
= 0 a.s. for all C = (0, x] ⊂ I ; (7)

|S(B)| ≤ T (B) for all B ∈ B; (8)

lim
n→∞

T (nC) − E [T (nC)]

nd
= 0 a.s. for all C = (x, y] ⊂ I ; (9)

lim
m→∞ lim sup

n→∞
sup
A∈A

E
[
T (n(A′′

m\A′
m))

]
nd

= 0. (10)

It is obvious that E [S(nC)] = μW(nC) and thus (7) follows from

lim
n→∞

S(nC) − μW(nC)

nd
= 0 a.s.

Note that S(nC)−μW(nC)

nd = W(nC)

nd

(
S(nC)
W(nC)

− μ
)

. The second factor tends to 0 a.s. by the

strong law of large numbers, while the first one does not exceed 1.
Bound (8) is obvious.
Equality (9) is proved similarly to the analogous result for S (since |Xj | also are

independent and identically distributed random variables).
Since v = E

[|Xj |
]

< +∞, for the proof equality (10), we need to show that

lim
m→∞ lim sup

n→∞
sup
A∈A

W(n(A′′
m\A′

m))

nd
= 0. (11)

First we prove that

Leb
(
A′′

m\A′
m

) ≤ Leb

(
A

(√
d

m

))
for all m ∈ N. (12)

Note that (12) follows from A′′
m\A′

m ⊂ A(
√

d
m

). Note that A′′
m\A′

m is constituted by those
d-dimensional semi-intervals Cm(k) that contain both a point of A and a point that does not
belong to A.

We prove that each semi-interval Cm(k) with this property belongs to A(
√

d
m

). Choose
points x and y in Cm(k) such that x ∈ A and y /∈ A. The segment of the line connecting
these points (this interval is denoted by L) contains a boundary point of A. Indeed, let
v = sup{r ∈ R|(Ū(x, r) ∩ L) ⊂ A}, where Ū (x, r) is the closed ball in R

d with radius r

centered at the point x, and let z ∈ L be a point such that ρ(x, z) = v. Then z is a boundary

point of A. Further, a
√

d
m

-neighborhood of this point contains a semi-interval Cm(k), since
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√
d

m
is its diameter (this value is not attained, that is

√
d

m
is larger than the distance between

any two points belonging to the semi-interval). Thus a
√

d
m

-neighborhood of ∂A contains
A′′

m\A′
m.

Now we prove that W(C) ≤ 3d Leb (C) if C is of the form (x, y], where x =
(x1, x2, . . . , xd), y = (y1, y2, . . . , yd) and yk ≥ xk + 1 for all k. This follows from

W(C) ≤ W(([x], [y] + 1]) =
d∏

k=1

([yk] + 1 − [xk]) ≤
d∏

k=1

(yk + 2 − xk)

≤
d∏

k=1

3(yk − xk) = 3d Leb (C) .

Now we turn back to the proof of (11). If n > m, then n(A′′
m\A′

m) is a union of disjoint sets
nCm(k) of the form (x, y], where yk ≥ xk + 1 for all k. Thus

W(n(A′′
m\A′

m))

nd
≤ 3d Leb

(
n(A′′

m\A′
m)

)
nd

= 3d Leb
(
A′′

m\A′
m

) ≤ 3d Leb

(
A

(√
d

m

))

for n > m, whence

sup
A∈A

W(n(A′′
m\A′

m))

nd
≤ 3d sup

A∈A
Leb

(
A

(√
d

m

))
= 3dr

(√
d

m

)

for all n > m. Hence

lim sup
n→∞

sup
A∈A

W(n(A′′
m\A′

m))

nd
≤ 3dr

(√
d

m

)
.

It is obvious that 3dr
(√

d
m

)
→ 0 as m → ∞.

Proof of Proposition 2 It is sufficient to prove that

lim
n→∞ sup

A∈A

∣∣∣∣W(nA)

nd
− Leb (A)

∣∣∣∣ = 0

or, in other words, for all ε > 0 there exists N ∈ N such that

sup
A∈A

∣∣∣∣W(nA)

nd
− Leb (A)

∣∣∣∣ ≤ ε

for all n > N .
Choose δ > 0 such that r(δ) < ε and let N be such that δ >

√
d

N
. Then δ >

√
d

n
for all

n > N . Now we prove that

sup
A∈A

∣∣∣∣W(nA)

nd
− Leb (A)

∣∣∣∣ ≤ ε for all n > N .

This follows from∣∣∣∣W(nA)

nd
− Leb (A)

∣∣∣∣ ≤ Leb (A(δ)) for all A ∈ A and n > N . (13)

To prove (13) note that the numbers Leb (A) and W(nA)

nd lie between the numbers

Leb
(
A′

n

)
and Leb

(
A′′

n

)
. This is obvious for Leb (A). Let us show that

nd · Leb
(
A′

n

) ≤ W(nA) ≤ nd · Leb
(
A′′

n

)
. (14)
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Consider the following three subsets of Nd :

W1 =
{
k ∈ N : 1

n
(k − 1, k] ⊂ A

}
;

W2 =
{
k ∈ N : k

n
⊂ A

}
;

W3 =
{
k ∈ N : 1

n
(k − 1, k] ∩ A �= ∅

}
.

It is clear that W1 ⊆ W2 ⊆ W3 and that the numbers of points in these sets are equal to
nd · Leb

(
A′

n

)
, W(nA), and nd · Leb

(
A′′

n

)
, respectively. This implies (14).

Thus ∣∣∣∣W(nA)

nd
− Leb (A)

∣∣∣∣ ≤ Leb
(
A′′

n

) − Leb
(
A′

n

) = Leb
(
A′′

n\A′
n

)
,

and it is sufficient to show that Leb
(
A′′

n\A′
n

) ≤ Leb (A(δ)). This follows from (12), since

δ >
√

d
n

.

4 A Remark on the Set I

In fact, Theorem 2 in Bass and Pyke (1984) is proved for I = [0, 1] rather than for I =
(0, 1]. In Proposition 3 below we prove that the statement in Theorem 2 with I = (0, 1] =
(0, 1]d is equivalent to that with I ′ = [0, 1] instead of I = (0, 1].

Remark 2 On the other hand, the authors are not aware whether or not Theorem 4 holds
with I = [0, 1].

Proposition 3 Theorem 2 with I = (0, 1] is equivalent to that with I ′ = [0, 1].

Proof It is clear that the statement with I ′ implies that with I . Assume that this statement
holds for I and let us prove it for I ′. Let A be the family of Borel subsets of I ′. For every
A ∈ A, let F(A) = A ∩ I and F(A) = {F(A) | A ∈ A}. Then condition (1) with I holds
for F(A). Indeed, if A ∈ A is an arbitrary subset, then Leb (F (A)(δ)) ≤ Leb (A(δ)) +
Leb (I (δ)), since ∂F (A) ⊂ (∂A ∪ ∂I). Thus

sup
A∈A

Leb (F (A)(δ)) ≤ sup
A∈A

Leb (A(δ)) + Leb (I (δ)) → 0, δ → 0.

Therefore (2) holds for I :

lim
n→∞ sup

A∈F(A)

∣∣∣∣S(nA)

nd
− μ Leb (A)

∣∣∣∣ = 0 a.s.

Since S(nF(A)) = S(nA) and Leb (F (A)) = Leb (A), we get

lim
n→∞ sup

A∈A

∣∣∣∣S(nA)

nd
− μ Leb (A)

∣∣∣∣ = lim
n→∞ sup

A∈A

∣∣∣∣S(nF(A))

nd
− μ Leb (F (A))

∣∣∣∣
= lim

n→∞ sup
A∈F(A)

∣∣∣∣S(nA)

nd
− μ Leb (A)

∣∣∣∣ = 0 a.s.,

which is what had to be proved.
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